i915_gem.c 131.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54
				       unsigned alignment, bool mappable);
55
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
82
				  struct drm_gem_object *obj)
83
{
84
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
85
	dev_priv->mm.gtt_count++;
86 87 88 89 90 91 92
	dev_priv->mm.gtt_memory += obj->size;
	if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
		dev_priv->mm.mappable_gtt_used +=
			min_t(size_t, obj->size,
			      dev_priv->mm.gtt_mappable_end
					- obj_priv->gtt_offset);
	}
93 94 95
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
96
				     struct drm_gem_object *obj)
97
{
98
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
99
	dev_priv->mm.gtt_count--;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	dev_priv->mm.gtt_memory -= obj->size;
	if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
		dev_priv->mm.mappable_gtt_used -=
			min_t(size_t, obj->size,
			      dev_priv->mm.gtt_mappable_end
					- obj_priv->gtt_offset);
	}
}

/**
 * Update the mappable working set counters. Call _only_ when there is a change
 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
 * @mappable: new state the changed mappable flag (either pin_ or fault_).
 */
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
			      struct drm_gem_object *obj,
			      bool mappable)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	if (mappable) {
		if (obj_priv->pin_mappable && obj_priv->fault_mappable)
			/* Combined state was already mappable. */
			return;
		dev_priv->mm.gtt_mappable_count++;
		dev_priv->mm.gtt_mappable_memory += obj->size;
	} else {
		if (obj_priv->pin_mappable || obj_priv->fault_mappable)
			/* Combined state still mappable. */
			return;
		dev_priv->mm.gtt_mappable_count--;
		dev_priv->mm.gtt_mappable_memory -= obj->size;
	}
134 135 136
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
137 138
				  struct drm_gem_object *obj,
				  bool mappable)
139
{
140
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
141
	dev_priv->mm.pin_count++;
142 143 144 145 146
	dev_priv->mm.pin_memory += obj->size;
	if (mappable) {
		obj_priv->pin_mappable = true;
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}
147 148 149
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
150
				     struct drm_gem_object *obj)
151
{
152
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
153
	dev_priv->mm.pin_count--;
154 155 156 157 158
	dev_priv->mm.pin_memory -= obj->size;
	if (obj_priv->pin_mappable) {
		obj_priv->pin_mappable = false;
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

209
	WARN_ON(i915_verify_lists(dev));
210 211
	return 0;
}
212

213 214 215 216 217 218 219 220
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

221 222
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
D
Daniel Vetter 已提交
223
		     unsigned long mappable_end,
J
Jesse Barnes 已提交
224
		     unsigned long end)
225 226 227
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
228 229 230
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
231 232 233
		return -EINVAL;
	}

J
Jesse Barnes 已提交
234 235
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
236

237
	dev_priv->mm.gtt_total = end - start;
238
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
239
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
240 241 242

	return 0;
}
243

J
Jesse Barnes 已提交
244 245 246 247 248 249 250 251
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
252
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 254
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
255
	return ret;
256 257
}

258 259 260 261
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
262
	struct drm_i915_private *dev_priv = dev->dev_private;
263 264 265 266 267
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

268 269 270 271
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
272 273 274 275

	return 0;
}

276 277 278 279 280 281 282 283 284 285

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
286 287
	int ret;
	u32 handle;
288 289 290 291

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
292
	obj = i915_gem_alloc_object(dev, args->size);
293 294 295 296
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
297
	if (ret) {
298 299 300
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
301
		return ret;
302
	}
303

304 305 306 307
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

308
	args->handle = handle;
309 310 311
	return 0;
}

312 313 314 315 316 317 318 319 320 321
static bool
i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	return obj->gtt_space == NULL ||
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
}

322 323 324
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
325
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
326 327 328 329 330

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

331
static inline void
332 333 334 335 336 337 338 339
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

340 341
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
342 343 344

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

345 346
	kunmap(src_page);
	kunmap(dst_page);
347 348
}

349
static inline void
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

369 370
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

394 395
	kunmap(cpu_page);
	kunmap(gpu_page);
396 397
}

398 399 400 401 402 403 404 405 406 407
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
408
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
409
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
410
	ssize_t remain;
411
	loff_t offset;
412 413 414 415 416 417
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

418
	obj_priv = to_intel_bo(obj);
419 420 421
	offset = args->offset;

	while (remain > 0) {
422 423 424 425
		struct page *page;
		char *vaddr;
		int ret;

426 427 428 429 430 431 432 433 434 435
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

436 437 438 439 440 441 442 443 444 445 446 447 448 449
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
450
			return -EFAULT;
451 452 453 454 455 456

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

457
	return 0;
458 459 460 461 462 463 464 465 466 467 468 469 470
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
471
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
472
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
473 474 475 476 477
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
478 479
	int shmem_page_offset;
	int data_page_index, data_page_offset;
480 481 482
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
483
	int do_bit17_swizzling;
484 485 486 487 488 489 490 491 492 493 494

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

495
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
496 497 498
	if (user_pages == NULL)
		return -ENOMEM;

499
	mutex_unlock(&dev->struct_mutex);
500 501
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
502
				      num_pages, 1, 0, user_pages, NULL);
503
	up_read(&mm->mmap_sem);
504
	mutex_lock(&dev->struct_mutex);
505 506
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
507
		goto out;
508 509
	}

510 511 512
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
513
	if (ret)
514
		goto out;
515

516
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
517

518
	obj_priv = to_intel_bo(obj);
519 520 521
	offset = args->offset;

	while (remain > 0) {
522 523
		struct page *page;

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

541 542 543 544 545
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

546
		if (do_bit17_swizzling) {
547
			slow_shmem_bit17_copy(page,
548
					      shmem_page_offset,
549 550 551 552 553 554 555
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
556
					page,
557 558
					shmem_page_offset,
					page_length);
559
		}
560

561 562 563
		mark_page_accessed(page);
		page_cache_release(page);

564 565 566 567 568
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

569
out:
570 571
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
572
		mark_page_accessed(user_pages[i]);
573 574
		page_cache_release(user_pages[i]);
	}
575
	drm_free_large(user_pages);
576 577 578 579

	return ret;
}

580 581 582 583 584 585 586 587 588 589 590 591
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
592
	int ret = 0;
593

594
	ret = i915_mutex_lock_interruptible(dev);
595
	if (ret)
596
		return ret;
597 598

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
599 600 601
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
602
	}
603
	obj_priv = to_intel_bo(obj);
604

605 606
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
607
		ret = -EINVAL;
608
		goto out;
C
Chris Wilson 已提交
609 610
	}

611 612 613
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
614 615 616 617
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
618
		goto out;
619 620
	}

621 622 623 624 625
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
626
	}
627

628 629 630 631
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
632
		goto out;
633 634 635

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
636
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
637 638
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
639

640
out:
641
	drm_gem_object_unreference(obj);
642
unlock:
643
	mutex_unlock(&dev->struct_mutex);
644
	return ret;
645 646
}

647 648
/* This is the fast write path which cannot handle
 * page faults in the source data
649
 */
650 651 652 653 654 655

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
656 657
{
	char *vaddr_atomic;
658
	unsigned long unwritten;
659

P
Peter Zijlstra 已提交
660
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
661 662
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
663
	io_mapping_unmap_atomic(vaddr_atomic);
664
	return unwritten;
665 666 667 668 669 670
}

/* Here's the write path which can sleep for
 * page faults
 */

671
static inline void
672 673 674 675
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
676
{
677 678
	char __iomem *dst_vaddr;
	char *src_vaddr;
679

680 681 682 683 684 685 686 687 688
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
689 690
}

691 692 693 694
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
695
static int
696 697 698
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
699
{
700
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
701
	drm_i915_private_t *dev_priv = dev->dev_private;
702
	ssize_t remain;
703
	loff_t offset, page_base;
704
	char __user *user_data;
705
	int page_offset, page_length;
706 707 708 709

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

710
	obj_priv = to_intel_bo(obj);
711 712 713 714 715
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
716 717 718
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
719
		 */
720 721 722 723 724 725 726
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
727 728
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
729
		 */
730 731 732 733
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
734

735 736 737
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
738 739
	}

740
	return 0;
741 742
}

743 744 745 746 747 748 749
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
750
static int
751 752 753
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
754
{
755
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
756 757 758 759 760 761 762 763
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
764
	int ret;
765 766 767 768 769 770 771 772 773 774 775 776
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

777
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
778 779 780
	if (user_pages == NULL)
		return -ENOMEM;

781
	mutex_unlock(&dev->struct_mutex);
782 783 784 785
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
786
	mutex_lock(&dev->struct_mutex);
787 788 789 790
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
791

792 793
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
794
		goto out_unpin_pages;
795

796
	obj_priv = to_intel_bo(obj);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

819 820 821 822 823
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
824 825 826 827 828 829 830 831 832

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
833
	drm_free_large(user_pages);
834 835 836 837

	return ret;
}

838 839 840 841
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
842
static int
843 844 845
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
846
{
847
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
848
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
849
	ssize_t remain;
850
	loff_t offset;
851 852 853 854 855
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
856

857
	obj_priv = to_intel_bo(obj);
858 859 860 861
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
862 863 864 865
		struct page *page;
		char *vaddr;
		int ret;

866 867 868 869 870 871 872 873 874 875
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
896
			return -EFAULT;
897 898 899 900 901 902

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

903
	return 0;
904 905 906 907 908 909 910 911 912 913 914 915 916 917
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
918
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
919
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
920 921 922 923 924
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
925
	int shmem_page_offset;
926 927 928 929
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
930
	int do_bit17_swizzling;
931 932 933 934 935 936 937 938 939 940 941

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

942
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
943 944 945
	if (user_pages == NULL)
		return -ENOMEM;

946
	mutex_unlock(&dev->struct_mutex);
947 948 949 950
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
951
	mutex_lock(&dev->struct_mutex);
952 953
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
954
		goto out;
955 956
	}

957
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
958
	if (ret)
959
		goto out;
960

961
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
962

963
	obj_priv = to_intel_bo(obj);
964
	offset = args->offset;
965
	obj_priv->dirty = 1;
966

967
	while (remain > 0) {
968 969
		struct page *page;

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

987 988 989 990 991 992 993
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

994
		if (do_bit17_swizzling) {
995
			slow_shmem_bit17_copy(page,
996 997 998
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
999 1000 1001
					      page_length,
					      0);
		} else {
1002
			slow_shmem_copy(page,
1003 1004 1005 1006
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1007
		}
1008

1009 1010 1011 1012
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

1013 1014 1015
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1016 1017
	}

1018
out:
1019 1020
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1021
	drm_free_large(user_pages);
1022

1023
	return ret;
1024 1025 1026 1027 1028 1029 1030 1031 1032
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1033
		      struct drm_file *file)
1034 1035 1036 1037 1038 1039
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

1040
	ret = i915_mutex_lock_interruptible(dev);
1041
	if (ret)
1042
		return ret;
1043 1044 1045 1046 1047

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1048
	}
1049
	obj_priv = to_intel_bo(obj);
1050

1051

1052 1053
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1054
		ret = -EINVAL;
1055
		goto out;
C
Chris Wilson 已提交
1056 1057
	}

1058 1059 1060
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1061 1062 1063 1064
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1065
		goto out;
1066 1067
	}

1068 1069 1070 1071 1072
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
1073 1074 1075 1076 1077 1078 1079 1080
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1081
	if (obj_priv->phys_obj)
1082
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1083
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1084
		 obj_priv->gtt_space &&
1085
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1086
		ret = i915_gem_object_pin(obj, 0, true);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1100
	} else {
1101 1102
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1103
			goto out;
1104

1105 1106 1107 1108 1109 1110
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1111

1112
out:
1113
	drm_gem_object_unreference(obj);
1114
unlock:
1115
	mutex_unlock(&dev->struct_mutex);
1116 1117 1118 1119
	return ret;
}

/**
1120 1121
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1122 1123 1124 1125 1126
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128 1129
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1130
	struct drm_i915_gem_object *obj_priv;
1131 1132
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1133 1134 1135 1136 1137
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1138
	/* Only handle setting domains to types used by the CPU. */
1139
	if (write_domain & I915_GEM_GPU_DOMAINS)
1140 1141
		return -EINVAL;

1142
	if (read_domains & I915_GEM_GPU_DOMAINS)
1143 1144 1145 1146 1147 1148 1149 1150
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1151
	ret = i915_mutex_lock_interruptible(dev);
1152
	if (ret)
1153
		return ret;
1154

1155
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1156 1157 1158
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1159
	}
1160
	obj_priv = to_intel_bo(obj);
1161

1162 1163
	intel_mark_busy(dev, obj);

1164 1165
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1166

1167 1168 1169 1170
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1171 1172 1173
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1174 1175 1176
				       &dev_priv->mm.fence_list);
		}

1177 1178 1179 1180 1181 1182
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1183
	} else {
1184
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1185 1186
	}

1187 1188
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1189
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1190

1191
	drm_gem_object_unreference(obj);
1192
unlock:
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1211
	ret = i915_mutex_lock_interruptible(dev);
1212
	if (ret)
1213
		return ret;
1214

1215 1216
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1217 1218
		ret = -ENOENT;
		goto unlock;
1219 1220 1221
	}

	/* Pinned buffers may be scanout, so flush the cache */
1222
	if (to_intel_bo(obj)->pin_count)
1223 1224
		i915_gem_object_flush_cpu_write_domain(obj);

1225
	drm_gem_object_unreference(obj);
1226
unlock:
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
1242
	struct drm_i915_private *dev_priv = dev->dev_private;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1253
		return -ENOENT;
1254

1255 1256 1257 1258 1259
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1260 1261 1262 1263 1264 1265 1266
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1267
	drm_gem_object_unreference_unlocked(obj);
1268 1269 1270 1271 1272 1273 1274 1275
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1296
	drm_i915_private_t *dev_priv = dev->dev_private;
1297
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1298 1299 1300
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1301
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1302 1303 1304 1305 1306 1307 1308

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1309
	BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1310 1311 1312
	if (!i915_gem_object_cpu_accessible(obj_priv))
		i915_gem_object_unbind(obj);

1313
	if (!obj_priv->gtt_space) {
1314
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1315 1316
		if (ret)
			goto unlock;
1317 1318
	}

1319 1320 1321 1322
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1323 1324 1325 1326 1327
	if (!obj_priv->fault_mappable) {
		obj_priv->fault_mappable = true;
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}

1328
	/* Need a new fence register? */
1329
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1330
		ret = i915_gem_object_get_fence_reg(obj, true);
1331 1332
		if (ret)
			goto unlock;
1333
	}
1334

1335
	if (i915_gem_object_is_inactive(obj_priv))
1336
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1337

1338 1339 1340 1341 1342
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1343
unlock:
1344 1345 1346
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1347 1348 1349
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1350 1351 1352 1353
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1354
		return VM_FAULT_SIGBUS;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1375
	struct drm_local_map *map;
1376 1377 1378 1379
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1380
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1394
		ret = -ENOSPC;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1406 1407
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1408 1409 1410 1411 1412 1413 1414 1415 1416
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1417
	kfree(list->map);
C
Chris Wilson 已提交
1418
	list->map = NULL;
1419 1420 1421 1422

	return ret;
}

1423 1424 1425 1426
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1427
 * Preserve the reservation of the mmapping with the DRM core code, but
1428 1429 1430 1431 1432 1433 1434 1435 1436
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1437
void
1438 1439 1440
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1441
	struct drm_i915_private *dev_priv = dev->dev_private;
1442
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443

C
Chris Wilson 已提交
1444
	if (unlikely(obj->map_list.map && dev->dev_mapping))
1445
		unmap_mapping_range(dev->dev_mapping,
C
Chris Wilson 已提交
1446 1447
				    (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
				    obj->size, 1);
1448 1449 1450 1451 1452

	if (obj_priv->fault_mappable) {
		obj_priv->fault_mappable = false;
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
1453 1454
}

1455 1456 1457 1458 1459
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
C
Chris Wilson 已提交
1460
	struct drm_map_list *list = &obj->map_list;
1461 1462

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1463 1464 1465
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1466 1467
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1479
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1480 1481 1482 1483 1484 1485
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1486
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1487 1488 1489 1490 1491 1492
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1493
	if (INTEL_INFO(dev)->gen == 3)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
1523
	struct drm_i915_private *dev_priv = dev->dev_private;
1524 1525 1526 1527 1528 1529 1530 1531
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1532
	ret = i915_mutex_lock_interruptible(dev);
1533
	if (ret)
1534
		return ret;
1535

1536 1537 1538 1539 1540
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1541
	obj_priv = to_intel_bo(obj);
1542

1543 1544 1545 1546 1547
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		ret = -E2BIG;
		goto unlock;
	}

1548 1549
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1550 1551
		ret = -EINVAL;
		goto out;
1552 1553
	}

C
Chris Wilson 已提交
1554
	if (!obj->map_list.map) {
1555
		ret = i915_gem_create_mmap_offset(obj);
1556 1557
		if (ret)
			goto out;
1558 1559
	}

C
Chris Wilson 已提交
1560
	args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1561

1562
out:
1563
	drm_gem_object_unreference(obj);
1564
unlock:
1565
	mutex_unlock(&dev->struct_mutex);
1566
	return ret;
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
			      gfp_t gfpmask)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
	BUG_ON(obj_priv->pages != NULL);
	obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj_priv->pages == NULL)
		return -ENOMEM;

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

		obj_priv->pages[i] = page;
	}

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	return PTR_ERR(page);
}

1616
static void
1617
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1618
{
1619
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1620 1621 1622
	int page_count = obj->size / PAGE_SIZE;
	int i;

C
Chris Wilson 已提交
1623
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1624

1625 1626 1627
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1628
	if (obj_priv->madv == I915_MADV_DONTNEED)
1629
		obj_priv->dirty = 0;
1630 1631 1632 1633 1634 1635

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1636
			mark_page_accessed(obj_priv->pages[i]);
1637 1638 1639

		page_cache_release(obj_priv->pages[i]);
	}
1640 1641
	obj_priv->dirty = 0;

1642
	drm_free_large(obj_priv->pages);
1643
	obj_priv->pages = NULL;
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1656
static void
1657
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1658
			       struct intel_ring_buffer *ring)
1659 1660
{
	struct drm_device *dev = obj->dev;
1661
	struct drm_i915_private *dev_priv = dev->dev_private;
1662
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1663
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1664

1665 1666
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1667 1668 1669 1670 1671 1672

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1673

1674
	/* Move from whatever list we were on to the tail of execution. */
1675 1676
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1677
	obj_priv->last_rendering_seqno = seqno;
1678 1679
}

1680 1681 1682 1683 1684
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1686 1687

	BUG_ON(!obj_priv->active);
1688 1689
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1690 1691
	obj_priv->last_rendering_seqno = 0;
}
1692

1693 1694 1695 1696
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1697
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1698
	struct inode *inode;
1699

1700 1701 1702 1703 1704 1705
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1706
	inode = obj->filp->f_path.dentry->d_inode;
1707 1708 1709
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1710 1711

	obj_priv->madv = __I915_MADV_PURGED;
1712 1713 1714 1715 1716 1717 1718 1719
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1720 1721 1722 1723 1724
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1725
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1726 1727

	if (obj_priv->pin_count != 0)
1728
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1729
	else
1730 1731
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1732

1733 1734
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1735
	obj_priv->last_rendering_seqno = 0;
1736
	obj_priv->ring = NULL;
1737 1738 1739 1740
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1741
	WARN_ON(i915_verify_lists(dev));
1742 1743
}

1744 1745
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1746
			       uint32_t flush_domains,
1747
			       struct intel_ring_buffer *ring)
1748 1749 1750 1751 1752
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1753
				 &ring->gpu_write_list,
1754
				 gpu_write_list) {
1755
		struct drm_gem_object *obj = &obj_priv->base;
1756

1757
		if (obj->write_domain & flush_domains) {
1758 1759 1760 1761
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1762
			i915_gem_object_move_to_active(obj, ring);
1763 1764

			/* update the fence lru list */
1765 1766 1767 1768
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1769
						&dev_priv->mm.fence_list);
1770
			}
1771 1772 1773 1774 1775 1776 1777

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1778

1779
int
1780
i915_add_request(struct drm_device *dev,
1781
		 struct drm_file *file,
C
Chris Wilson 已提交
1782
		 struct drm_i915_gem_request *request,
1783
		 struct intel_ring_buffer *ring)
1784 1785
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1786
	struct drm_i915_file_private *file_priv = NULL;
1787 1788
	uint32_t seqno;
	int was_empty;
1789 1790 1791
	int ret;

	BUG_ON(request == NULL);
1792

1793 1794
	if (file != NULL)
		file_priv = file->driver_priv;
1795

1796 1797 1798
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1799

1800
	ring->outstanding_lazy_request = false;
1801 1802

	request->seqno = seqno;
1803
	request->ring = ring;
1804
	request->emitted_jiffies = jiffies;
1805 1806 1807
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1808
	if (file_priv) {
1809
		spin_lock(&file_priv->mm.lock);
1810
		request->file_priv = file_priv;
1811
		list_add_tail(&request->client_list,
1812
			      &file_priv->mm.request_list);
1813
		spin_unlock(&file_priv->mm.lock);
1814
	}
1815

B
Ben Gamari 已提交
1816
	if (!dev_priv->mm.suspended) {
1817 1818
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1819
		if (was_empty)
1820 1821
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1822
	}
1823
	return 0;
1824 1825 1826 1827 1828 1829 1830 1831
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1832
static void
1833
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1834 1835 1836 1837
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1838
	if (INTEL_INFO(dev)->gen >= 4)
1839
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1840

1841
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1842 1843
}

1844 1845
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1846
{
1847
	struct drm_i915_file_private *file_priv = request->file_priv;
1848

1849 1850
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1851

1852 1853 1854 1855
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1856 1857
}

1858 1859
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1860
{
1861 1862
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1863

1864 1865 1866
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1867

1868
		list_del(&request->list);
1869
		i915_gem_request_remove_from_client(request);
1870 1871
		kfree(request);
	}
1872

1873
	while (!list_empty(&ring->active_list)) {
1874 1875
		struct drm_i915_gem_object *obj_priv;

1876
		obj_priv = list_first_entry(&ring->active_list,
1877
					    struct drm_i915_gem_object,
1878
					    ring_list);
1879 1880

		obj_priv->base.write_domain = 0;
1881
		list_del_init(&obj_priv->gpu_write_list);
1882
		i915_gem_object_move_to_inactive(&obj_priv->base);
1883 1884 1885
	}
}

1886
void i915_gem_reset(struct drm_device *dev)
1887
{
1888 1889
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1890
	int i;
1891

1892
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1893
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1894
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1895 1896 1897 1898 1899 1900 1901 1902

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1903
					    mm_list);
1904 1905 1906 1907 1908 1909 1910 1911 1912

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1913 1914
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1915
			    mm_list)
1916 1917 1918
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1930 1931 1932 1933 1934
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1935 1936 1937
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1938 1939 1940 1941
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1942 1943
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1944 1945
		return;

1946
	WARN_ON(i915_verify_lists(dev));
1947

1948
	seqno = ring->get_seqno(ring);
1949
	while (!list_empty(&ring->request_list)) {
1950 1951
		struct drm_i915_gem_request *request;

1952
		request = list_first_entry(&ring->request_list,
1953 1954 1955
					   struct drm_i915_gem_request,
					   list);

1956
		if (!i915_seqno_passed(seqno, request->seqno))
1957 1958 1959 1960 1961
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1962
		i915_gem_request_remove_from_client(request);
1963 1964
		kfree(request);
	}
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
1975
					    ring_list);
1976

1977
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1978
			break;
1979 1980 1981 1982 1983 1984

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1985
	}
1986 1987 1988

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1989
		ring->user_irq_put(ring);
1990 1991
		dev_priv->trace_irq_seqno = 0;
	}
1992 1993

	WARN_ON(i915_verify_lists(dev));
1994 1995
}

1996 1997 1998 1999 2000
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
2011
				     mm_list)
2012 2013 2014
		    i915_gem_free_object_tail(&obj_priv->base);
	}

2015
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2016
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2017
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2018 2019
}

2020
static void
2021 2022 2023 2024 2025 2026 2027 2028 2029
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2030 2031 2032 2033 2034 2035
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2036
	i915_gem_retire_requests(dev);
2037

2038
	if (!dev_priv->mm.suspended &&
2039
		(!list_empty(&dev_priv->render_ring.request_list) ||
2040 2041
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
2042
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2043 2044 2045
	mutex_unlock(&dev->struct_mutex);
}

2046
int
2047
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2048
		     bool interruptible, struct intel_ring_buffer *ring)
2049 2050
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2051
	u32 ier;
2052 2053 2054 2055
	int ret = 0;

	BUG_ON(seqno == 0);

2056
	if (atomic_read(&dev_priv->mm.wedged))
2057 2058
		return -EAGAIN;

2059
	if (ring->outstanding_lazy_request) {
2060 2061 2062 2063
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2064
			return -ENOMEM;
2065 2066 2067 2068 2069 2070 2071 2072

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2073
	}
2074
	BUG_ON(seqno == dev_priv->next_seqno);
2075

2076
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2077
		if (HAS_PCH_SPLIT(dev))
2078 2079 2080
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2081 2082 2083 2084 2085 2086 2087
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2088 2089
		trace_i915_gem_request_wait_begin(dev, seqno);

2090
		ring->waiting_seqno = seqno;
2091
		ring->user_irq_get(ring);
2092
		if (interruptible)
2093
			ret = wait_event_interruptible(ring->irq_queue,
2094
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2095
				|| atomic_read(&dev_priv->mm.wedged));
2096
		else
2097
			wait_event(ring->irq_queue,
2098
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2099
				|| atomic_read(&dev_priv->mm.wedged));
2100

2101
		ring->user_irq_put(ring);
2102
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2103 2104

		trace_i915_gem_request_wait_end(dev, seqno);
2105
	}
2106
	if (atomic_read(&dev_priv->mm.wedged))
2107
		ret = -EAGAIN;
2108 2109

	if (ret && ret != -ERESTARTSYS)
2110
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2111
			  __func__, ret, seqno, ring->get_seqno(ring),
2112
			  dev_priv->next_seqno);
2113 2114 2115 2116 2117 2118 2119

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2120
		i915_gem_retire_requests_ring(dev, ring);
2121 2122 2123 2124

	return ret;
}

2125 2126 2127 2128 2129
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2130
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2131
		  struct intel_ring_buffer *ring)
2132
{
2133
	return i915_do_wait_request(dev, seqno, 1, ring);
2134 2135
}

2136
static void
2137
i915_gem_flush_ring(struct drm_device *dev,
2138
		    struct drm_file *file_priv,
2139 2140 2141 2142
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2143
	ring->flush(ring, invalidate_domains, flush_domains);
2144 2145 2146
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2147 2148
static void
i915_gem_flush(struct drm_device *dev,
2149
	       struct drm_file *file_priv,
2150
	       uint32_t invalidate_domains,
2151 2152
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2153 2154
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2155

2156 2157
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2158

2159 2160
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2161
			i915_gem_flush_ring(dev, file_priv,
2162 2163 2164
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2165
			i915_gem_flush_ring(dev, file_priv,
2166 2167
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2168 2169 2170 2171
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2172
	}
2173 2174
}

2175 2176 2177 2178 2179
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2180 2181
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2182 2183
{
	struct drm_device *dev = obj->dev;
2184
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2185 2186
	int ret;

2187 2188
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2189
	 */
2190
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2191 2192 2193 2194 2195

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2196 2197 2198 2199 2200
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2201 2202 2203 2204 2205 2206 2207 2208 2209
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2210
int
2211 2212 2213
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2214
	struct drm_i915_private *dev_priv = dev->dev_private;
2215
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2226 2227 2228
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2229 2230 2231 2232 2233 2234
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2235
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2236
	if (ret == -ERESTARTSYS)
2237
		return ret;
2238 2239 2240 2241
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2242 2243 2244 2245
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2246

2247 2248 2249 2250
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2251 2252
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2253

2254
	i915_gem_object_put_pages_gtt(obj);
2255

2256
	i915_gem_info_remove_gtt(dev_priv, obj);
2257
	list_del_init(&obj_priv->mm_list);
2258

2259 2260
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2261
	obj_priv->gtt_offset = 0;
2262

2263 2264 2265
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2266 2267
	trace_i915_gem_object_unbind(obj);

2268
	return ret;
2269 2270
}

2271 2272 2273
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2274 2275 2276
	if (list_empty(&ring->gpu_write_list))
		return 0;

2277 2278 2279 2280 2281 2282 2283
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2284
int
2285 2286 2287 2288
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2289
	int ret;
2290

2291 2292
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2293 2294
		       list_empty(&dev_priv->bsd_ring.active_list) &&
		       list_empty(&dev_priv->blt_ring.active_list));
2295 2296 2297 2298
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2299
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2300 2301
	if (ret)
		return ret;
2302

2303 2304 2305
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2306

2307 2308 2309
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2310

2311
	return 0;
2312 2313
}

2314 2315 2316 2317 2318
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2336 2337 2338 2339 2340
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2341
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2361
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362
	int regnum = obj_priv->fence_reg;
2363
	int tile_width;
2364
	uint32_t fence_reg, val;
2365 2366 2367 2368
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2369
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2370
		     __func__, obj_priv->gtt_offset, obj->size);
2371 2372 2373
		return;
	}

2374 2375 2376
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2377
	else
2378 2379 2380 2381 2382
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2383

2384 2385 2386 2387 2388 2389
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2390 2391 2392 2393 2394 2395 2396
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2397 2398 2399 2400 2401
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2402 2403 2404 2405 2406 2407 2408
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2409
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2410 2411 2412
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2413
	uint32_t fence_size_bits;
2414

2415
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2416
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2417
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2418
		     __func__, obj_priv->gtt_offset);
2419 2420 2421
		return;
	}

2422 2423 2424 2425
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2426 2427 2428
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2429 2430 2431
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2432 2433 2434 2435 2436 2437
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2438 2439
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2454
		obj_priv = to_intel_bo(reg->obj);
2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2464 2465 2466 2467
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2484
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2485 2486 2487 2488 2489 2490 2491
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2505
int
2506 2507
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2508 2509
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2510
	struct drm_i915_private *dev_priv = dev->dev_private;
2511
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2512
	struct drm_i915_fence_reg *reg = NULL;
2513
	int ret;
2514

2515 2516
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2517 2518
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2519 2520 2521
		return 0;
	}

2522 2523 2524 2525 2526
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2527 2528 2529 2530 2531
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2532 2533
		break;
	case I915_TILING_Y:
2534 2535 2536 2537 2538
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2539 2540 2541
		break;
	}

2542
	ret = i915_find_fence_reg(dev, interruptible);
2543 2544
	if (ret < 0)
		return ret;
2545

2546 2547
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2548
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2549

2550 2551
	reg->obj = obj;

2552 2553
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2554
		sandybridge_write_fence_reg(reg);
2555 2556 2557
		break;
	case 5:
	case 4:
2558
		i965_write_fence_reg(reg);
2559 2560
		break;
	case 3:
2561
		i915_write_fence_reg(reg);
2562 2563
		break;
	case 2:
2564
		i830_write_fence_reg(reg);
2565 2566
		break;
	}
2567

2568 2569
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2570

2571
	return 0;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2585
	drm_i915_private_t *dev_priv = dev->dev_private;
2586
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 2588
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2589
	uint32_t fence_reg;
2590

2591 2592
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2593 2594
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2595 2596 2597
		break;
	case 5:
	case 4:
2598
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2599 2600
		break;
	case 3:
2601
		if (obj_priv->fence_reg >= 8)
2602
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2603
		else
2604 2605
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2606 2607

		I915_WRITE(fence_reg, 0);
2608
		break;
2609
	}
2610

2611
	reg->obj = NULL;
2612
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2613
	list_del_init(&reg->lru_list);
2614 2615
}

2616 2617 2618 2619
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2620
 * @bool: whether the wait upon the fence is interruptible
2621 2622 2623 2624 2625
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2626 2627
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2628 2629
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2630
	struct drm_i915_private *dev_priv = dev->dev_private;
2631
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2632
	struct drm_i915_fence_reg *reg;
2633 2634 2635 2636

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2637 2638 2639 2640 2641 2642
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2643 2644 2645 2646
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2647 2648
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2649 2650
		int ret;

2651
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2652
		if (ret)
2653 2654
			return ret;

2655
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2656
		if (ret)
2657
			return ret;
C
Chris Wilson 已提交
2658 2659

		reg->gpu = false;
2660 2661
	}

2662
	i915_gem_object_flush_gtt_write_domain(obj);
2663
	i915_gem_clear_fence_reg(obj);
2664 2665 2666 2667

	return 0;
}

2668 2669 2670 2671
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2672 2673 2674
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
			    unsigned alignment,
			    bool mappable)
2675 2676 2677
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2678
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2679
	struct drm_mm_node *free_space;
2680
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2681
	int ret;
2682

C
Chris Wilson 已提交
2683
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2684 2685 2686 2687
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2688
	if (alignment == 0)
2689
		alignment = i915_gem_get_gtt_alignment(obj);
2690
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2691 2692 2693 2694
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2695 2696 2697
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2698 2699
	if (obj->size >
	    (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2700 2701 2702 2703
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2704
 search_free:
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (mappable)
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
						    obj->size, alignment, 0,
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
						obj->size, alignment, 0);

	if (free_space != NULL) {
		if (mappable)
			obj_priv->gtt_space =
				drm_mm_get_block_range_generic(free_space,
							       obj->size,
							       alignment, 0,
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
			obj_priv->gtt_space =
				drm_mm_get_block(free_space, obj->size,
						 alignment);
	}
2728 2729 2730 2731
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2732 2733
		ret = i915_gem_evict_something(dev, obj->size, alignment,
					       mappable);
2734
		if (ret)
2735
			return ret;
2736

2737 2738 2739
		goto search_free;
	}

2740
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2741 2742 2743
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2744 2745 2746

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2747
			ret = i915_gem_evict_something(dev, obj->size,
2748
						       alignment, mappable);
2749 2750
			if (ret) {
				/* now try to shrink everyone else */
2751 2752 2753
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2754 2755 2756 2757 2758 2759 2760 2761
				}

				return ret;
			}

			goto search_free;
		}

2762 2763 2764 2765 2766 2767 2768
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2769
					       obj_priv->pages,
2770
					       obj->size >> PAGE_SHIFT,
2771
					       obj_priv->gtt_space->start,
2772
					       obj_priv->agp_type);
2773
	if (obj_priv->agp_mem == NULL) {
2774
		i915_gem_object_put_pages_gtt(obj);
2775 2776
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2777

2778 2779
		ret = i915_gem_evict_something(dev, obj->size, alignment,
					       mappable);
2780
		if (ret)
2781 2782 2783
			return ret;

		goto search_free;
2784 2785
	}

2786 2787
	obj_priv->gtt_offset = obj_priv->gtt_space->start;

2788
	/* keep track of bounds object by adding it to the inactive list */
2789
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2790
	i915_gem_info_add_gtt(dev_priv, obj);
2791

2792 2793 2794 2795
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2796 2797
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2798

2799
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
C
Chris Wilson 已提交
2800

2801 2802 2803 2804 2805 2806
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2807
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2808 2809 2810 2811 2812

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2813
	if (obj_priv->pages == NULL)
2814 2815
		return;

C
Chris Wilson 已提交
2816
	trace_i915_gem_object_clflush(obj);
2817

2818
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2819 2820
}

2821
/** Flushes any GPU write domain for the object if it's dirty. */
2822
static int
2823 2824
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2825 2826
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2827
	uint32_t old_write_domain;
2828 2829

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2830
		return 0;
2831 2832

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2833
	old_write_domain = obj->write_domain;
2834
	i915_gem_flush_ring(dev, NULL,
2835 2836
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2837
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2838 2839 2840 2841

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2842 2843 2844 2845

	if (pipelined)
		return 0;

2846
	return i915_gem_object_wait_rendering(obj, true);
2847 2848 2849 2850 2851 2852
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2853 2854
	uint32_t old_write_domain;

2855 2856 2857 2858 2859 2860 2861
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
2862 2863
	i915_gem_release_mmap(obj);

C
Chris Wilson 已提交
2864
	old_write_domain = obj->write_domain;
2865
	obj->write_domain = 0;
C
Chris Wilson 已提交
2866 2867 2868 2869

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2870 2871 2872 2873 2874 2875 2876
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2877
	uint32_t old_write_domain;
2878 2879 2880 2881 2882 2883

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2884
	old_write_domain = obj->write_domain;
2885
	obj->write_domain = 0;
C
Chris Wilson 已提交
2886 2887 2888 2889

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2890 2891
}

2892 2893 2894 2895 2896 2897
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2898
int
2899 2900
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2901
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2902
	uint32_t old_write_domain, old_read_domains;
2903
	int ret;
2904

2905 2906 2907 2908
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2909
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2910 2911 2912
	if (ret != 0)
		return ret;

2913
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2914

2915
	if (write) {
2916
		ret = i915_gem_object_wait_rendering(obj, true);
2917 2918 2919
		if (ret)
			return ret;
	}
2920

C
Chris Wilson 已提交
2921 2922 2923
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2924 2925 2926 2927 2928 2929
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2930
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2931 2932
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2933 2934
	}

C
Chris Wilson 已提交
2935 2936 2937 2938
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2939 2940 2941
	return 0;
}

2942 2943 2944 2945 2946
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2947 2948
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2949
{
2950
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2951
	uint32_t old_read_domains;
2952 2953 2954 2955 2956 2957
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2958
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2959 2960
	if (ret)
		return ret;
2961

2962 2963 2964 2965
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2966 2967 2968
			return ret;
	}

2969 2970
	i915_gem_object_flush_cpu_write_domain(obj);

2971
	old_read_domains = obj->read_domains;
2972
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2973 2974 2975

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2976
					    obj->write_domain);
2977 2978 2979 2980

	return 0;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2990
	uint32_t old_write_domain, old_read_domains;
2991 2992
	int ret;

2993
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2994 2995
	if (ret != 0)
		return ret;
2996

2997
	i915_gem_object_flush_gtt_write_domain(obj);
2998

2999 3000
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3001
	 */
3002
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3003

3004
	if (write) {
3005
		ret = i915_gem_object_wait_rendering(obj, true);
3006 3007 3008 3009
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
3010 3011 3012
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

3013 3014
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3015 3016
		i915_gem_clflush_object(obj);

3017
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3018 3019 3020 3021 3022
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3023 3024 3025 3026 3027 3028
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3029
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3030 3031
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3032

C
Chris Wilson 已提交
3033 3034 3035 3036
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3037 3038 3039
	return 0;
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3151
static void
3152 3153
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
				  struct intel_ring_buffer *ring)
3154 3155
{
	struct drm_device		*dev = obj->dev;
3156
	struct drm_i915_private		*dev_priv = dev->dev_private;
3157
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3158 3159
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3160

3161 3162 3163 3164
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3165 3166
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3167 3168 3169 3170 3171 3172 3173

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3174 3175
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3176
		flush_domains |= obj->write_domain;
3177 3178
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3179 3180 3181 3182 3183
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3184
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3185
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3186 3187
		i915_gem_clflush_object(obj);

3188 3189 3190 3191
	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

3192 3193 3194 3195 3196 3197 3198 3199
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3200 3201 3202

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3203
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3204
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
3205 3206
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		dev_priv->mm.flush_rings |= ring->id;
3207 3208 3209
}

/**
3210
 * Moves the object from a partially CPU read to a full one.
3211
 *
3212 3213
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3214
 */
3215 3216
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3217
{
3218
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3219

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3231
			drm_clflush_pages(obj_priv->pages + i, 1);
3232 3233 3234 3235 3236 3237
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3238
	kfree(obj_priv->page_cpu_valid);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3258
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3259
	uint32_t old_read_domains;
3260
	int i, ret;
3261

3262 3263
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3264

3265
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3266
	if (ret != 0)
3267
		return ret;
3268 3269 3270 3271 3272 3273
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3274

3275 3276 3277
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3278
	if (obj_priv->page_cpu_valid == NULL) {
3279 3280
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3281 3282 3283 3284
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3285 3286 3287 3288

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3289 3290
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3291 3292 3293
		if (obj_priv->page_cpu_valid[i])
			continue;

3294
		drm_clflush_pages(obj_priv->pages + i, 1);
3295 3296 3297 3298

		obj_priv->page_cpu_valid[i] = 1;
	}

3299 3300 3301 3302 3303
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3304
	old_read_domains = obj->read_domains;
3305 3306
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3307 3308 3309 3310
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3311 3312 3313 3314 3315 3316 3317
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3318 3319 3320
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3321
{
3322
	struct drm_device *dev = obj->base.dev;
3323
	drm_i915_private_t *dev_priv = dev->dev_private;
3324
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3325 3326 3327
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
3328

3329
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3330
	for (i = 0; i < entry->relocation_count; i++) {
3331
		struct drm_i915_gem_relocation_entry reloc;
3332
		uint32_t target_offset;
3333

3334 3335 3336 3337 3338
		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
J
Jesse Barnes 已提交
3339 3340
		}

3341 3342
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);
3343

3344 3345 3346 3347 3348 3349 3350 3351
			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3352
		}
3353
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3354

3355 3356 3357 3358 3359 3360
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3361 3362 3363 3364
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3365
			 (int) target_offset,
3366 3367
			 (int) reloc.presumed_offset,
			 reloc.delta);
3368 3369
#endif

3370 3371 3372
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3373
		if (target_offset == 0) {
3374
			DRM_ERROR("No GTT space found for object %d\n",
3375
				  reloc.target_handle);
3376 3377
			ret = -EINVAL;
			break;
3378 3379
		}

3380
		/* Validate that the target is in a valid r/w GPU domain */
3381
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3382 3383 3384
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3385 3386 3387 3388
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3389 3390
			ret = -EINVAL;
			break;
3391
		}
3392 3393
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3394 3395 3396
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3397 3398 3399 3400
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3401 3402
			ret = -EINVAL;
			break;
3403
		}
3404 3405
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3406 3407 3408
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3409 3410 3411
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3412
				  target_obj->pending_write_domain);
3413 3414
			ret = -EINVAL;
			break;
3415 3416
		}

3417
		target_obj->pending_read_domains |= reloc.read_domains;
3418
		target_obj->pending_write_domain |= reloc.write_domain;
3419 3420 3421 3422

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3423
		if (target_offset == reloc.presumed_offset)
3424 3425
			continue;

3426
		/* Check that the relocation address is valid... */
3427
		if (reloc.offset > obj->base.size - 4) {
3428 3429
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3430
				  obj, reloc.target_handle,
3431 3432 3433
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3434
		}
3435
		if (reloc.offset & 3) {
3436 3437
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3438 3439
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3440 3441
			ret = -EINVAL;
			break;
3442 3443 3444
		}

		/* and points to somewhere within the target object. */
3445
		if (reloc.delta >= target_obj->size) {
3446 3447
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3448 3449
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3450 3451
			ret = -EINVAL;
			break;
3452 3453
		}

3454 3455
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3456 3457
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3458

3459
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3460
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
3461
			kunmap_atomic(vaddr);
3462 3463 3464
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
3465

3466 3467 3468
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3469

3470
			/* Map the page containing the relocation we're going to perform.  */
3471
			reloc.offset += obj->gtt_offset;
3472
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3473
							      reloc.offset & PAGE_MASK);
3474 3475 3476
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
3477
			io_mapping_unmap_atomic(reloc_page);
3478
		}
3479

3480 3481 3482 3483 3484 3485 3486 3487
		/* and update the user's relocation entry */
		reloc.presumed_offset = target_offset;
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					      &reloc.presumed_offset,
					      sizeof(reloc.presumed_offset))) {
		    ret = -EFAULT;
		    break;
		}
3488 3489
	}

3490
	drm_gem_object_unreference(target_obj);
3491 3492 3493
	return ret;
}

3494
static int
3495 3496 3497 3498 3499
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
3500
{
3501 3502
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3503

3504 3505 3506 3507 3508
	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3509
			struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3510 3511 3512 3513
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

3514 3515 3516 3517
			/* g33/pnv can't fence buffers in the unmappable part */
			bool need_mappable =
				entry->relocation_count ? true : need_fence;

3518 3519 3520 3521 3522 3523 3524 3525
			/* Check fence reg constraints and rebind if necessary */
			if (need_fence &&
			    !i915_gem_object_fence_offset_ok(&obj->base,
							     obj->tiling_mode)) {
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3526

3527
			ret = i915_gem_object_pin(&obj->base,
3528 3529
						  entry->alignment,
						  need_mappable);
3530 3531
			if (ret)
				break;
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3543

3544 3545
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3546

3547
			entry->offset = obj->gtt_offset;
3548 3549
		}

3550 3551 3552 3553 3554
		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3555

3556 3557 3558 3559 3560 3561
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3562 3563
	}

3564
	return 0;
3565 3566
}

3567 3568 3569
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3570 3571 3572 3573
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3574 3575 3576
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3577
static int
3578
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3579
{
3580 3581
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3582
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3583 3584 3585 3586
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3587

3588
	spin_lock(&file_priv->mm.lock);
3589
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3590 3591
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3592

3593 3594
		ring = request->ring;
		seqno = request->seqno;
3595
	}
3596
	spin_unlock(&file_priv->mm.lock);
3597

3598 3599
	if (seqno == 0)
		return 0;
3600

3601
	ret = 0;
3602
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3603 3604 3605 3606 3607
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3608
		ring->user_irq_get(ring);
3609
		ret = wait_event_interruptible(ring->irq_queue,
3610
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3611
					       || atomic_read(&dev_priv->mm.wedged));
3612
		ring->user_irq_put(ring);
3613

3614 3615
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3616 3617
	}

3618 3619
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3620 3621 3622 3623

	return ret;
}

3624
static int
3625 3626
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3642
static int
3643 3644
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3645
{
3646
	int i;
3647

3648 3649 3650
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3651

3652 3653
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3654

3655 3656 3657 3658
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3659 3660
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3661 3662
	}

3663
	return 0;
3664 3665
}

C
Chris Wilson 已提交
3666
static int
J
Jesse Barnes 已提交
3667
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3668
		       struct drm_file *file,
J
Jesse Barnes 已提交
3669 3670
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3671 3672 3673 3674
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3675
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3676
	struct drm_i915_gem_request *request = NULL;
3677
	int ret, i, flips;
3678 3679
	uint64_t exec_offset;

3680 3681
	struct intel_ring_buffer *ring = NULL;

3682 3683 3684 3685
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3686 3687 3688 3689
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3690 3691 3692 3693
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3694 3695 3696 3697 3698 3699
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3700
		if (!HAS_BSD(dev)) {
3701
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3702 3703 3704
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3717 3718
	}

3719 3720 3721 3722
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3723
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3724 3725
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3726 3727 3728 3729 3730
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3731
	if (args->num_cliprects != 0) {
3732 3733
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3734 3735
		if (cliprects == NULL) {
			ret = -ENOMEM;
3736
			goto pre_mutex_err;
3737
		}
3738 3739 3740 3741 3742 3743 3744 3745

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3746
			ret = -EFAULT;
3747 3748 3749 3750
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3751 3752 3753
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3754
		goto pre_mutex_err;
C
Chris Wilson 已提交
3755
	}
3756

3757 3758
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3759
		goto pre_mutex_err;
3760 3761 3762

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3763 3764
		ret = -EBUSY;
		goto pre_mutex_err;
3765 3766
	}

3767
	/* Look up object handles */
3768
	for (i = 0; i < args->buffer_count; i++) {
3769 3770
		struct drm_i915_gem_object *obj_priv;

3771
		object_list[i] = drm_gem_object_lookup(dev, file,
3772 3773 3774 3775
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3776 3777
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3778
			ret = -ENOENT;
3779 3780
			goto err;
		}
3781

3782
		obj_priv = to_intel_bo(object_list[i]);
3783 3784 3785
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3786 3787
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3788
			ret = -EINVAL;
3789 3790 3791
			goto err;
		}
		obj_priv->in_execbuffer = true;
3792
	}
3793

3794 3795 3796 3797 3798 3799
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3800

3801 3802 3803 3804 3805 3806 3807
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3808
			goto err;
3809 3810 3811 3812
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3813 3814 3815 3816 3817 3818
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3819

3820 3821 3822
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3823 3824 3825 3826 3827
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3828 3829 3830 3831 3832 3833
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3834
	dev_priv->mm.flush_rings = 0;
3835 3836
	for (i = 0; i < args->buffer_count; i++)
		i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3837

3838 3839 3840 3841 3842 3843 3844
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3845
		i915_gem_flush(dev, file,
3846
			       dev->invalidate_domains,
3847 3848
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3849
	}
3850 3851 3852 3853 3854 3855 3856 3857 3858

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3859
	i915_gem_dump_object(batch_obj,
3860 3861 3862 3863 3864
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

3886 3887 3888 3889
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

3890 3891 3892
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
3893 3894 3895
		}
	}

3896
	/* Exec the batchbuffer */
3897
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3898 3899 3900 3901 3902 3903 3904 3905
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3906 3907 3908
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

3909
		i915_gem_object_move_to_active(obj, ring);
3910 3911 3912 3913
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
3914
				       &ring->gpu_write_list);
3915 3916 3917 3918 3919 3920
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
3921 3922
	}

3923 3924 3925 3926 3927 3928
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

3929 3930 3931 3932
	if (i915_add_request(dev, file, request, ring))
		ring->outstanding_lazy_request = true;
	else
		request = NULL;
3933 3934

err:
3935
	for (i = 0; i < args->buffer_count; i++) {
3936 3937 3938 3939
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
3940
		drm_gem_object_unreference(object_list[i]);
3941
	}
3942 3943 3944

	mutex_unlock(&dev->struct_mutex);

3945
pre_mutex_err:
3946
	drm_free_large(object_list);
3947
	kfree(cliprects);
C
Chris Wilson 已提交
3948
	kfree(request);
3949 3950 3951 3952

	return ret;
}

J
Jesse Barnes 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
4005
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4019
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4098
int
4099 4100
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
		    bool mappable)
4101 4102
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4103
	struct drm_i915_private *dev_priv = dev->dev_private;
4104
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4105 4106
	int ret;

4107
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4108
	WARN_ON(i915_verify_lists(dev));
4109 4110 4111 4112

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
4113 4114
		if (obj_priv->gtt_offset & (alignment - 1) ||
		    (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
4115 4116 4117 4118
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4119 4120 4121 4122 4123 4124
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4125
	if (obj_priv->gtt_space == NULL) {
4126
		ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
4127
		if (ret)
4128
			return ret;
4129
	}
J
Jesse Barnes 已提交
4130

4131 4132 4133 4134 4135 4136
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4137
		i915_gem_info_add_pin(dev_priv, obj, mappable);
C
Chris Wilson 已提交
4138
		if (!obj_priv->active)
4139
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4140
				       &dev_priv->mm.pinned_list);
4141
	}
4142
	BUG_ON(!obj_priv->pin_mappable && mappable);
4143

4144
	WARN_ON(i915_verify_lists(dev));
4145 4146 4147 4148 4149 4150 4151 4152
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4153
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4154

4155
	WARN_ON(i915_verify_lists(dev));
4156 4157 4158 4159 4160 4161 4162 4163 4164
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4165
		if (!obj_priv->active)
4166
			list_move_tail(&obj_priv->mm_list,
4167
				       &dev_priv->mm.inactive_list);
4168
		i915_gem_info_remove_pin(dev_priv, obj);
4169
	}
4170
	WARN_ON(i915_verify_lists(dev));
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4182 4183 4184
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4185 4186 4187

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4188 4189
		ret = -ENOENT;
		goto unlock;
4190
	}
4191
	obj_priv = to_intel_bo(obj);
4192

C
Chris Wilson 已提交
4193 4194
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4195 4196
		ret = -EINVAL;
		goto out;
4197 4198
	}

J
Jesse Barnes 已提交
4199 4200 4201
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4202 4203
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4204 4205 4206 4207 4208
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
4209
		ret = i915_gem_object_pin(obj, args->alignment, true);
4210 4211
		if (ret)
			goto out;
4212 4213 4214 4215 4216
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4217
	i915_gem_object_flush_cpu_write_domain(obj);
4218
	args->offset = obj_priv->gtt_offset;
4219
out:
4220
	drm_gem_object_unreference(obj);
4221
unlock:
4222
	mutex_unlock(&dev->struct_mutex);
4223
	return ret;
4224 4225 4226 4227 4228 4229 4230 4231
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4232
	struct drm_i915_gem_object *obj_priv;
4233
	int ret;
4234

4235 4236 4237
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4238 4239 4240

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4241 4242
		ret = -ENOENT;
		goto unlock;
4243
	}
4244
	obj_priv = to_intel_bo(obj);
4245

J
Jesse Barnes 已提交
4246 4247 4248
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4249 4250
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4251 4252 4253 4254 4255 4256
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4257

4258
out:
4259
	drm_gem_object_unreference(obj);
4260
unlock:
4261
	mutex_unlock(&dev->struct_mutex);
4262
	return ret;
4263 4264 4265 4266 4267 4268 4269 4270 4271
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4272 4273
	int ret;

4274
	ret = i915_mutex_lock_interruptible(dev);
4275
	if (ret)
4276
		return ret;
4277 4278 4279

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4280 4281
		ret = -ENOENT;
		goto unlock;
4282
	}
4283
	obj_priv = to_intel_bo(obj);
4284

4285 4286 4287 4288
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4289
	 */
4290 4291 4292 4293 4294 4295 4296
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4297 4298
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4299 4300
					    obj_priv->ring,
					    0, obj->write_domain);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4311 4312

	drm_gem_object_unreference(obj);
4313
unlock:
4314
	mutex_unlock(&dev->struct_mutex);
4315
	return ret;
4316 4317 4318 4319 4320 4321 4322 4323 4324
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4325 4326 4327 4328 4329 4330 4331
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4332
	int ret;
4333 4334 4335 4336 4337 4338 4339 4340 4341

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4342 4343 4344 4345
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4346 4347
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4348 4349
		ret = -ENOENT;
		goto unlock;
4350
	}
4351
	obj_priv = to_intel_bo(obj);
4352 4353

	if (obj_priv->pin_count) {
4354 4355
		ret = -EINVAL;
		goto out;
4356 4357
	}

C
Chris Wilson 已提交
4358 4359
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4360

4361 4362 4363 4364 4365
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4366 4367
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4368
out:
4369
	drm_gem_object_unreference(obj);
4370
unlock:
4371
	mutex_unlock(&dev->struct_mutex);
4372
	return ret;
4373 4374
}

4375 4376 4377
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4378
	struct drm_i915_private *dev_priv = dev->dev_private;
4379
	struct drm_i915_gem_object *obj;
4380

4381 4382 4383
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4384

4385 4386 4387 4388
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4389

4390 4391
	i915_gem_info_add_obj(dev_priv, size);

4392 4393
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4394

4395
	obj->agp_type = AGP_USER_MEMORY;
4396
	obj->base.driver_private = NULL;
4397
	obj->fence_reg = I915_FENCE_REG_NONE;
4398 4399
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4400 4401
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4402

4403 4404 4405 4406 4407 4408
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4409

4410 4411 4412
	return 0;
}

4413
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4414
{
4415
	struct drm_device *dev = obj->dev;
4416
	drm_i915_private_t *dev_priv = dev->dev_private;
4417
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4418
	int ret;
4419

4420 4421
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4422
		list_move(&obj_priv->mm_list,
4423 4424 4425
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4426

C
Chris Wilson 已提交
4427
	if (obj->map_list.map)
4428
		i915_gem_free_mmap_offset(obj);
4429

4430
	drm_gem_object_release(obj);
4431
	i915_gem_info_remove_obj(dev_priv, obj->size);
4432

4433
	kfree(obj_priv->page_cpu_valid);
4434
	kfree(obj_priv->bit_17);
4435
	kfree(obj_priv);
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4454 4455 4456 4457 4458
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4459

4460
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4461

4462
	if (dev_priv->mm.suspended) {
4463 4464
		mutex_unlock(&dev->struct_mutex);
		return 0;
4465 4466
	}

4467
	ret = i915_gpu_idle(dev);
4468 4469
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4470
		return ret;
4471
	}
4472

4473 4474
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4475
		ret = i915_gem_evict_inactive(dev);
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4487
	del_timer_sync(&dev_priv->hangcheck_timer);
4488 4489

	i915_kernel_lost_context(dev);
4490
	i915_gem_cleanup_ringbuffer(dev);
4491

4492 4493
	mutex_unlock(&dev->struct_mutex);

4494 4495 4496
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4497 4498 4499
	return 0;
}

4500 4501 4502 4503
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4504
static int
4505 4506 4507 4508 4509 4510 4511
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4512
	obj = i915_gem_alloc_object(dev, 4096);
4513 4514 4515 4516 4517 4518 4519 4520
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

4521
	ret = i915_gem_object_pin(obj, 4096, true);
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4543 4544

static void
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4559 4560
}

4561 4562 4563 4564 4565
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4566

4567 4568 4569 4570 4571
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4572

4573
	ret = intel_init_render_ring_buffer(dev);
4574 4575 4576 4577
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4578
		ret = intel_init_bsd_ring_buffer(dev);
4579 4580
		if (ret)
			goto cleanup_render_ring;
4581
	}
4582

4583 4584 4585 4586 4587 4588
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4589 4590
	dev_priv->next_seqno = 1;

4591 4592
	return 0;

4593
cleanup_bsd_ring:
4594
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4595
cleanup_render_ring:
4596
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4597 4598 4599
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4600 4601 4602 4603 4604 4605 4606 4607
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4608 4609 4610
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4611 4612 4613 4614
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4615 4616 4617 4618 4619 4620 4621
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4622 4623 4624
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4625
	if (atomic_read(&dev_priv->mm.wedged)) {
4626
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4627
		atomic_set(&dev_priv->mm.wedged, 0);
4628 4629 4630
	}

	mutex_lock(&dev->struct_mutex);
4631 4632 4633
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4634 4635
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4636
		return ret;
4637
	}
4638

4639
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4640
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4641
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4642
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4643 4644
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4645
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4646
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4647
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4648
	mutex_unlock(&dev->struct_mutex);
4649

4650 4651 4652
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4653

4654
	return 0;
4655 4656 4657 4658 4659 4660 4661 4662

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4663 4664 4665 4666 4667 4668
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4669 4670 4671
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4672
	drm_irq_uninstall(dev);
4673
	return i915_gem_idle(dev);
4674 4675 4676 4677 4678 4679 4680
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4681 4682 4683
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4684 4685 4686
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4687 4688
}

4689 4690 4691 4692 4693 4694 4695 4696
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4697 4698 4699
void
i915_gem_load(struct drm_device *dev)
{
4700
	int i;
4701 4702
	drm_i915_private_t *dev_priv = dev->dev_private;

4703
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4704 4705
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4706
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4707
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4708
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4709 4710 4711
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4712 4713
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4714 4715
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4716
	init_completion(&dev_priv->error_completion);
4717

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4728
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4729 4730
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4731

4732
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4733 4734 4735 4736
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4737
	/* Initialize fence registers to zero */
4738 4739 4740 4741 4742 4743 4744
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4745 4746
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4747 4748
		break;
	case 3:
4749 4750 4751
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4752 4753 4754 4755
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4756
	}
4757
	i915_gem_detect_bit_6_swizzle(dev);
4758
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4759 4760 4761 4762

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4763
}
4764 4765 4766 4767 4768

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4769 4770
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4771 4772 4773 4774 4775 4776 4777 4778
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4779
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4780 4781 4782 4783 4784
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4785
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4798
	kfree(phys_obj);
4799 4800 4801
	return ret;
}

4802
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4827
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4828 4829 4830 4831 4832 4833
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
4834 4835 4836
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	char *vaddr;
4837 4838 4839 4840 4841
	int i;
	int page_count;

	if (!obj_priv->phys_obj)
		return;
4842
	vaddr = obj_priv->phys_obj->handle->vaddr;
4843 4844 4845 4846

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4860 4861
	}
	drm_agp_chipset_flush(dev);
4862

4863 4864 4865 4866 4867 4868
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4869 4870 4871
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4872
{
4873
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4874 4875 4876 4877 4878 4879 4880 4881 4882
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4883
	obj_priv = to_intel_bo(obj);
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4894
						obj->size, align);
4895
		if (ret) {
4896
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4897
			return ret;
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4908 4909 4910 4911 4912 4913 4914
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4915

4916 4917
		src = kmap_atomic(obj_priv->pages[i]);
		dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4918
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4919
		kunmap_atomic(src);
4920

4921 4922 4923
		mark_page_accessed(page);
		page_cache_release(page);
	}
4924

4925 4926 4927 4928 4929 4930 4931 4932
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4933
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4934 4935 4936 4937 4938 4939 4940
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4941
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4942 4943 4944 4945 4946 4947 4948
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4949

4950
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4951
{
4952
	struct drm_i915_file_private *file_priv = file->driver_priv;
4953 4954 4955 4956 4957

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4958
	spin_lock(&file_priv->mm.lock);
4959 4960 4961 4962 4963 4964 4965 4966 4967
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4968
	spin_unlock(&file_priv->mm.lock);
4969
}
4970

4971 4972 4973 4974 4975 4976 4977
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4978
		      list_empty(&dev_priv->mm.active_list);
4979 4980 4981 4982

	return !lists_empty;
}

4983
static int
4984 4985 4986
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4987
{
4988 4989 4990 4991 4992 4993 4994 4995 4996
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4997
		return 0;
4998 4999 5000

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
5001 5002 5003 5004 5005 5006 5007
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
5008 5009
	}

5010
rescan:
5011
	/* first scan for clean buffers */
5012
	i915_gem_retire_requests(dev);
5013

5014 5015 5016 5017 5018 5019 5020
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
			i915_gem_object_unbind(&obj->base);
			if (--nr_to_scan == 0)
				break;
5021 5022 5023 5024
		}
	}

	/* second pass, evict/count anything still on the inactive list */
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (nr_to_scan) {
			i915_gem_object_unbind(&obj->base);
			nr_to_scan--;
		} else
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
5037 5038 5039 5040 5041 5042
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
5043
		if (i915_gpu_idle(dev) == 0)
5044 5045
			goto rescan;
	}
5046 5047
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
5048
}