i915_gem.c 129.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247
	if (ret) {
248 249 250
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
251
		return ret;
252
	}
253

254 255 256 257
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

258
	args->handle = handle;
259 260 261
	return 0;
}

262 263 264 265 266 267
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
268
	char *vaddr;
269
	int ret;
270 271

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272
	ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 274
	kunmap_atomic(vaddr, KM_USER0);

275
	return ret;
276 277
}

278 279 280
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
281
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282 283 284 285 286

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

287
static inline void
288 289 290 291 292 293 294 295
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

296 297
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
298 299 300

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

301 302
	kunmap(src_page);
	kunmap(dst_page);
303 304
}

305
static inline void
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

325 326
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

350 351
	kunmap(cpu_page);
	kunmap(gpu_page);
352 353
}

354 355 356 357 358 359 360 361 362 363
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
364
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 366 367 368 369 370 371 372
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

373
	obj_priv = to_intel_bo(obj);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

389 390 391 392
		if (fast_shmem_read(obj_priv->pages,
				    page_base, page_offset,
				    user_data, page_length))
			return -EFAULT;
393 394 395 396 397 398

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

399
	return 0;
400 401
}

402 403 404 405 406
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

407
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408 409 410 411 412 413 414

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

415 416
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
417 418 419
		if (ret)
			return ret;

420
		ret = i915_gem_object_get_pages(obj, 0);
421 422 423 424 425
	}

	return ret;
}

426 427 428 429 430 431 432 433 434 435 436
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 439 440 441 442 443 444 445 446 447
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
448
	int do_bit17_swizzling;
449 450 451 452 453 454 455 456 457 458 459

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

460
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 462 463
	if (user_pages == NULL)
		return -ENOMEM;

464
	mutex_unlock(&dev->struct_mutex);
465 466
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467
				      num_pages, 1, 0, user_pages, NULL);
468
	up_read(&mm->mmap_sem);
469
	mutex_lock(&dev->struct_mutex);
470 471
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
472
		goto out;
473 474
	}

475 476 477
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
478
	if (ret)
479
		goto out;
480

481
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482

483
	obj_priv = to_intel_bo(obj);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

506
		if (do_bit17_swizzling) {
507
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508
					      shmem_page_offset,
509 510 511 512 513 514 515 516 517 518
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
519
		}
520 521 522 523 524 525

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

526
out:
527 528 529 530
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
531
	drm_free_large(user_pages);
532 533 534 535

	return ret;
}

536 537 538 539 540 541 542 543 544 545 546 547
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
548
	int ret = 0;
549

550
	ret = i915_mutex_lock_interruptible(dev);
551
	if (ret)
552
		return ret;
553 554 555 556 557

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
558
	}
559
	obj_priv = to_intel_bo(obj);
560

561 562
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
563
		ret = -EINVAL;
564
		goto out;
C
Chris Wilson 已提交
565 566
	}

567 568 569
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
570 571 572 573
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
574
		goto out;
575 576
	}

577 578 579 580 581 582 583
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
		goto out;

	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
		goto out_put;

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
596
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 598
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599

600 601
out_put:
	i915_gem_object_put_pages(obj);
602
out:
603
	drm_gem_object_unreference(obj);
604
unlock:
605
	mutex_unlock(&dev->struct_mutex);
606
	return ret;
607 608
}

609 610
/* This is the fast write path which cannot handle
 * page faults in the source data
611
 */
612 613 614 615 616 617

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
618 619
{
	char *vaddr_atomic;
620
	unsigned long unwritten;
621

622
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
623 624
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
625
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
626
	return unwritten;
627 628 629 630 631 632
}

/* Here's the write path which can sleep for
 * page faults
 */

633
static inline void
634 635 636 637
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
638
{
639 640
	char __iomem *dst_vaddr;
	char *src_vaddr;
641

642 643 644 645 646 647 648 649 650
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
651 652
}

653 654 655 656 657 658
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
659
	char *vaddr;
660
	int ret;
661 662

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
663
	ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 665
	kunmap_atomic(vaddr, KM_USER0);

666
	return ret;
667 668
}

669 670 671 672
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
673
static int
674 675 676
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
677
{
678
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679
	drm_i915_private_t *dev_priv = dev->dev_private;
680
	ssize_t remain;
681
	loff_t offset, page_base;
682
	char __user *user_data;
683
	int page_offset, page_length;
684 685 686 687

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

688
	obj_priv = to_intel_bo(obj);
689 690 691 692 693
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
694 695 696
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
697
		 */
698 699 700 701 702 703 704
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
705 706
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
707
		 */
708 709 710 711
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
712

713 714 715
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
716 717
	}

718
	return 0;
719 720
}

721 722 723 724 725 726 727
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
728
static int
729 730 731
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
732
{
733
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 735 736 737 738 739 740 741
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
742
	int ret;
743 744 745 746 747 748 749 750 751 752 753 754
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

755
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 757 758
	if (user_pages == NULL)
		return -ENOMEM;

759
	mutex_unlock(&dev->struct_mutex);
760 761 762 763
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
764
	mutex_lock(&dev->struct_mutex);
765 766 767 768
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
769

770 771
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
772
		goto out_unpin_pages;
773

774
	obj_priv = to_intel_bo(obj);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

797 798 799 800 801
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
802 803 804 805 806 807 808 809 810

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
811
	drm_free_large(user_pages);
812 813 814 815

	return ret;
}

816 817 818 819
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
820
static int
821 822 823
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
824
{
825
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 827 828 829 830 831 832
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
833

834
	obj_priv = to_intel_bo(obj);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

851
		if (fast_shmem_write(obj_priv->pages,
852
				       page_base, page_offset,
853 854
				       user_data, page_length))
			return -EFAULT;
855 856 857 858 859 860

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

861
	return 0;
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
876
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 878 879 880 881 882 883 884 885 886
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
887
	int do_bit17_swizzling;
888 889 890 891 892 893 894 895 896 897 898

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

899
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 901 902
	if (user_pages == NULL)
		return -ENOMEM;

903
	mutex_unlock(&dev->struct_mutex);
904 905 906 907
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
908
	mutex_lock(&dev->struct_mutex);
909 910
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
911
		goto out;
912 913
	}

914
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915
	if (ret)
916
		goto out;
917

918
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919

920
	obj_priv = to_intel_bo(obj);
921
	offset = args->offset;
922
	obj_priv->dirty = 1;
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

944
		if (do_bit17_swizzling) {
945
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 947 948
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
949 950 951 952 953 954 955 956
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
957
		}
958 959 960 961

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
962 963
	}

964
out:
965 966
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
967
	drm_free_large(user_pages);
968

969
	return ret;
970 971 972 973 974 975 976 977 978
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979
		      struct drm_file *file)
980 981 982 983 984 985
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

986
	ret = i915_mutex_lock_interruptible(dev);
987
	if (ret)
988
		return ret;
989 990 991 992 993

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
994
	}
995 996
	obj_priv = to_intel_bo(obj);

997

998 999
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1000
		ret = -EINVAL;
1001
		goto out;
C
Chris Wilson 已提交
1002 1003
	}

1004 1005 1006
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1007 1008 1009 1010
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1011
		goto out;
1012 1013
	}

1014 1015 1016 1017 1018 1019 1020
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

1021 1022 1023 1024 1025 1026
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1027
	if (obj_priv->phys_obj)
1028
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030
		 obj_priv->gtt_space &&
1031
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		ret = i915_gem_object_pin(obj, 0);
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1046
	} else {
1047 1048 1049
		ret = i915_gem_object_get_pages_or_evict(obj);
		if (ret)
			goto out;
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			goto out_put;

		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);

out_put:
		i915_gem_object_put_pages(obj);
	}
1064

1065
out:
1066
	drm_gem_object_unreference(obj);
1067
unlock:
1068
	mutex_unlock(&dev->struct_mutex);
1069 1070 1071 1072
	return ret;
}

/**
1073 1074
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1075 1076 1077 1078 1079
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1080
	struct drm_i915_private *dev_priv = dev->dev_private;
1081 1082
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1083
	struct drm_i915_gem_object *obj_priv;
1084 1085
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1086 1087 1088 1089 1090
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1091
	/* Only handle setting domains to types used by the CPU. */
1092
	if (write_domain & I915_GEM_GPU_DOMAINS)
1093 1094
		return -EINVAL;

1095
	if (read_domains & I915_GEM_GPU_DOMAINS)
1096 1097 1098 1099 1100 1101 1102 1103
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1104
	ret = i915_mutex_lock_interruptible(dev);
1105
	if (ret)
1106
		return ret;
1107 1108 1109 1110 1111

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1112
	}
1113
	obj_priv = to_intel_bo(obj);
1114 1115 1116

	intel_mark_busy(dev, obj);

1117 1118
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119

1120 1121 1122 1123
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 1125 1126
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1127 1128 1129
				       &dev_priv->mm.fence_list);
		}

1130 1131 1132 1133 1134 1135
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1136
	} else {
1137
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 1139
	}

1140 1141 1142 1143
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1144
	drm_gem_object_unreference(obj);
1145
unlock:
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1164
	ret = i915_mutex_lock_interruptible(dev);
1165
	if (ret)
1166
		return ret;
1167 1168 1169 1170 1171

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1172 1173 1174
	}

	/* Pinned buffers may be scanout, so flush the cache */
1175
	if (to_intel_bo(obj)->pin_count)
1176 1177
		i915_gem_object_flush_cpu_write_domain(obj);

1178
	drm_gem_object_unreference(obj);
1179
unlock:
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1205
		return -ENOENT;
1206 1207 1208 1209 1210 1211 1212 1213

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1214
	drm_gem_object_unreference_unlocked(obj);
1215 1216 1217 1218 1219 1220 1221 1222
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1243
	drm_i915_private_t *dev_priv = dev->dev_private;
1244
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 1246 1247
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1248
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249 1250 1251 1252 1253 1254 1255 1256

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1257
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 1259
		if (ret)
			goto unlock;
1260 1261

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 1263
		if (ret)
			goto unlock;
1264 1265 1266
	}

	/* Need a new fence register? */
1267
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268
		ret = i915_gem_object_get_fence_reg(obj, true);
1269 1270
		if (ret)
			goto unlock;
1271
	}
1272

1273 1274 1275
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1276 1277 1278 1279 1280
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281
unlock:
1282 1283 1284
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1285 1286 1287
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1288 1289 1290 1291
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1292
		return VM_FAULT_SIGBUS;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1312
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313
	struct drm_map_list *list;
1314
	struct drm_local_map *map;
1315 1316 1317 1318
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1319
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333
		ret = -ENOSPC;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1345 1346
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1360
	kfree(list->map);
1361 1362 1363 1364

	return ret;
}

1365 1366 1367 1368
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1369
 * Preserve the reservation of the mmapping with the DRM core code, but
1370 1371 1372 1373 1374 1375 1376 1377 1378
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1379
void
1380 1381 1382
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1383
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384 1385 1386 1387 1388 1389

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1390 1391 1392 1393
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1394
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1407
		kfree(list->map);
1408 1409 1410 1411 1412 1413
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1425
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 1427 1428 1429 1430 1431
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1432
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 1434 1435 1436 1437 1438
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1439
	if (INTEL_INFO(dev)->gen == 3)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1477
	ret = i915_mutex_lock_interruptible(dev);
1478
	if (ret)
1479
		return ret;
1480

1481 1482 1483 1484 1485
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1486
	obj_priv = to_intel_bo(obj);
1487

1488 1489
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 1491
		ret = -EINVAL;
		goto out;
1492 1493
	}

1494 1495
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1496 1497
		if (ret)
			goto out;
1498 1499 1500 1501 1502 1503 1504 1505 1506
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1507
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 1509
		if (ret)
			goto out;
1510 1511
	}

1512
out:
1513
	drm_gem_object_unreference(obj);
1514
unlock:
1515
	mutex_unlock(&dev->struct_mutex);
1516
	return ret;
1517 1518
}

1519
static void
1520
i915_gem_object_put_pages(struct drm_gem_object *obj)
1521
{
1522
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 1524 1525
	int page_count = obj->size / PAGE_SIZE;
	int i;

1526
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1527
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528

1529 1530
	if (--obj_priv->pages_refcount != 0)
		return;
1531

1532 1533 1534
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1535
	if (obj_priv->madv == I915_MADV_DONTNEED)
1536
		obj_priv->dirty = 0;
1537 1538 1539 1540 1541 1542

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1543
			mark_page_accessed(obj_priv->pages[i]);
1544 1545 1546

		page_cache_release(obj_priv->pages[i]);
	}
1547 1548
	obj_priv->dirty = 0;

1549
	drm_free_large(obj_priv->pages);
1550
	obj_priv->pages = NULL;
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1563
static void
1564
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565
			       struct intel_ring_buffer *ring)
1566
{
1567
	struct drm_device *dev = obj->dev;
1568
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1570

1571 1572
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1573 1574 1575 1576 1577 1578

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1579

1580
	/* Move from whatever list we were on to the tail of execution. */
1581
	list_move_tail(&obj_priv->list, &ring->active_list);
1582
	obj_priv->last_rendering_seqno = seqno;
1583 1584
}

1585 1586 1587 1588 1589
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1590
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1591 1592 1593 1594 1595

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1596

1597 1598 1599 1600
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1601
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1602
	struct inode *inode;
1603

1604 1605 1606 1607 1608 1609
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1610
	inode = obj->filp->f_path.dentry->d_inode;
1611 1612 1613
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1614 1615

	obj_priv->madv = __I915_MADV_PURGED;
1616 1617 1618 1619 1620 1621 1622 1623
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1624 1625 1626 1627 1628
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1629
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1630 1631

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1632
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1633 1634 1635
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1636 1637
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1638
	obj_priv->last_rendering_seqno = 0;
1639
	obj_priv->ring = NULL;
1640 1641 1642 1643
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1644
	WARN_ON(i915_verify_lists(dev));
1645 1646
}

1647
static void
1648
i915_gem_process_flushing_list(struct drm_device *dev,
1649
			       uint32_t flush_domains,
1650
			       struct intel_ring_buffer *ring)
1651 1652 1653 1654 1655 1656 1657
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1658
		struct drm_gem_object *obj = &obj_priv->base;
1659

1660 1661
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1662 1663 1664 1665
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1666
			i915_gem_object_move_to_active(obj, ring);
1667 1668

			/* update the fence lru list */
1669 1670 1671 1672
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1673
						&dev_priv->mm.fence_list);
1674
			}
1675 1676 1677 1678 1679 1680 1681

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1682

1683
uint32_t
1684
i915_add_request(struct drm_device *dev,
1685
		 struct drm_file *file,
C
Chris Wilson 已提交
1686
		 struct drm_i915_gem_request *request,
1687
		 struct intel_ring_buffer *ring)
1688 1689
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1690
	struct drm_i915_file_private *file_priv = NULL;
1691 1692 1693
	uint32_t seqno;
	int was_empty;

1694 1695
	if (file != NULL)
		file_priv = file->driver_priv;
1696

C
Chris Wilson 已提交
1697 1698 1699 1700 1701
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1702

1703
	seqno = ring->add_request(dev, ring, 0);
1704
	ring->outstanding_lazy_request = false;
1705 1706

	request->seqno = seqno;
1707
	request->ring = ring;
1708
	request->emitted_jiffies = jiffies;
1709 1710 1711
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1712
	if (file_priv) {
1713
		spin_lock(&file_priv->mm.lock);
1714
		request->file_priv = file_priv;
1715
		list_add_tail(&request->client_list,
1716
			      &file_priv->mm.request_list);
1717
		spin_unlock(&file_priv->mm.lock);
1718
	}
1719

B
Ben Gamari 已提交
1720
	if (!dev_priv->mm.suspended) {
1721 1722
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1723
		if (was_empty)
1724 1725
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1726
	}
1727 1728 1729 1730 1731 1732 1733 1734 1735
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1736
static void
1737
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1738 1739 1740 1741
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1742
	if (INTEL_INFO(dev)->gen >= 4)
1743
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1744 1745 1746

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1747 1748
}

1749 1750
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1751
{
1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1761 1762
}

1763 1764
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1765
{
1766 1767
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1768

1769 1770 1771 1772 1773
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1774
		i915_gem_request_remove_from_client(request);
1775 1776 1777 1778
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1779 1780
		struct drm_i915_gem_object *obj_priv;

1781
		obj_priv = list_first_entry(&ring->active_list,
1782 1783 1784 1785
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1786
		list_del_init(&obj_priv->gpu_write_list);
1787 1788 1789 1790
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1791
void i915_gem_reset(struct drm_device *dev)
1792 1793 1794
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1795
	int i;
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1818 1819 1820 1821 1822 1823
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1835 1836
}

1837 1838 1839
/**
 * This function clears the request list as sequence numbers are passed.
 */
1840 1841 1842
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1843 1844 1845 1846
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1847 1848
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1849 1850
		return;

1851 1852
	WARN_ON(i915_verify_lists(dev));

1853
	seqno = ring->get_seqno(dev, ring);
1854
	while (!list_empty(&ring->request_list)) {
1855 1856
		struct drm_i915_gem_request *request;

1857
		request = list_first_entry(&ring->request_list,
1858 1859 1860
					   struct drm_i915_gem_request,
					   list);

1861
		if (!i915_seqno_passed(seqno, request->seqno))
1862 1863 1864 1865 1866
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1867
		i915_gem_request_remove_from_client(request);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1881

1882
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1883
			break;
1884 1885 1886 1887 1888 1889

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1890
	}
1891 1892 1893

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1894
		ring->user_irq_put(dev, ring);
1895 1896
		dev_priv->trace_irq_seqno = 0;
	}
1897 1898

	WARN_ON(i915_verify_lists(dev));
1899 1900
}

1901 1902 1903 1904 1905
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1920 1921 1922 1923 1924
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1925
static void
1926 1927 1928 1929 1930 1931 1932 1933 1934
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1935 1936 1937 1938 1939 1940
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1941
	i915_gem_retire_requests(dev);
1942

1943
	if (!dev_priv->mm.suspended &&
1944 1945 1946
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1947
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1948 1949 1950
	mutex_unlock(&dev->struct_mutex);
}

1951
int
1952
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1953
		     bool interruptible, struct intel_ring_buffer *ring)
1954 1955
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1956
	u32 ier;
1957 1958 1959 1960
	int ret = 0;

	BUG_ON(seqno == 0);

1961 1962 1963
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1964
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1965
		seqno = i915_add_request(dev, NULL, NULL, ring);
1966 1967 1968
		if (seqno == 0)
			return -ENOMEM;
	}
1969
	BUG_ON(seqno == dev_priv->next_seqno);
1970

1971
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1972
		if (HAS_PCH_SPLIT(dev))
1973 1974 1975
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1976 1977 1978 1979 1980 1981 1982
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1983 1984
		trace_i915_gem_request_wait_begin(dev, seqno);

1985
		ring->waiting_gem_seqno = seqno;
1986
		ring->user_irq_get(dev, ring);
1987
		if (interruptible)
1988 1989
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1990
					ring->get_seqno(dev, ring), seqno)
1991
				|| atomic_read(&dev_priv->mm.wedged));
1992
		else
1993 1994
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1995
					ring->get_seqno(dev, ring), seqno)
1996
				|| atomic_read(&dev_priv->mm.wedged));
1997

1998
		ring->user_irq_put(dev, ring);
1999
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2000 2001

		trace_i915_gem_request_wait_end(dev, seqno);
2002
	}
2003
	if (atomic_read(&dev_priv->mm.wedged))
2004
		ret = -EAGAIN;
2005 2006

	if (ret && ret != -ERESTARTSYS)
2007
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2008
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2009
			  dev_priv->next_seqno);
2010 2011 2012 2013 2014 2015 2016

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2017
		i915_gem_retire_requests_ring(dev, ring);
2018 2019 2020 2021

	return ret;
}

2022 2023 2024 2025 2026
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2027
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2028
		  struct intel_ring_buffer *ring)
2029
{
2030
	return i915_do_wait_request(dev, seqno, 1, ring);
2031 2032
}

2033
static void
2034
i915_gem_flush_ring(struct drm_device *dev,
2035
		    struct drm_file *file_priv,
2036 2037 2038 2039 2040 2041 2042 2043
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2044 2045
static void
i915_gem_flush(struct drm_device *dev,
2046
	       struct drm_file *file_priv,
2047
	       uint32_t invalidate_domains,
2048 2049
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2050 2051
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2052

2053 2054
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2055

2056 2057
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2058
			i915_gem_flush_ring(dev, file_priv,
2059 2060 2061
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2062
			i915_gem_flush_ring(dev, file_priv,
2063 2064 2065
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2066 2067
}

2068 2069 2070 2071 2072
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2073 2074
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2075 2076
{
	struct drm_device *dev = obj->dev;
2077
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2078 2079
	int ret;

2080 2081
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2082
	 */
2083
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2084 2085 2086 2087 2088

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2089 2090 2091 2092 2093
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2094 2095 2096 2097 2098 2099 2100 2101 2102
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2103
int
2104 2105 2106
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2107
	struct drm_i915_private *dev_priv = dev->dev_private;
2108
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2119 2120 2121
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2122 2123 2124 2125 2126 2127
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2128
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2129
	if (ret == -ERESTARTSYS)
2130
		return ret;
2131 2132 2133 2134
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2135 2136 2137 2138
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2139

2140 2141 2142 2143
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2144 2145
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2146

2147
	i915_gem_object_put_pages(obj);
2148
	BUG_ON(obj_priv->pages_refcount);
2149

2150
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2151
	list_del_init(&obj_priv->list);
2152

2153 2154 2155
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;

2156 2157 2158
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2159 2160
	trace_i915_gem_object_unbind(obj);

2161
	return ret;
2162 2163
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2174
int
2175 2176 2177 2178
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2179
	int ret;
2180

2181 2182 2183 2184
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2185 2186 2187 2188
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2189
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2190 2191
	if (ret)
		return ret;
2192 2193

	if (HAS_BSD(dev)) {
2194
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2195 2196 2197 2198
		if (ret)
			return ret;
	}

2199
	return 0;
2200 2201
}

2202
static int
2203 2204
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2205
{
2206
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2207 2208 2209 2210 2211
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2212 2213 2214
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2215
	if (obj_priv->pages_refcount++ != 0)
2216 2217 2218 2219 2220 2221
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2222
	BUG_ON(obj_priv->pages != NULL);
2223
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2224 2225
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2226 2227 2228 2229 2230 2231
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2232
		page = read_cache_page_gfp(mapping, i,
2233
					   GFP_HIGHUSER |
2234
					   __GFP_COLD |
2235
					   __GFP_RECLAIMABLE |
2236
					   gfpmask);
2237 2238 2239
		if (IS_ERR(page))
			goto err_pages;

2240
		obj_priv->pages[i] = page;
2241
	}
2242 2243 2244 2245

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2246
	return 0;
2247 2248 2249 2250 2251 2252 2253 2254 2255

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2256 2257
}

2258 2259 2260 2261 2262
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2263
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2280 2281 2282 2283 2284
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2285
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2305
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2306
	int regnum = obj_priv->fence_reg;
2307
	int tile_width;
2308
	uint32_t fence_reg, val;
2309 2310 2311 2312
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2313
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2314
		     __func__, obj_priv->gtt_offset, obj->size);
2315 2316 2317
		return;
	}

2318 2319 2320
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2321
	else
2322 2323 2324 2325 2326
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2327

2328 2329 2330 2331 2332 2333
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2334 2335 2336 2337 2338 2339 2340
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2341 2342 2343 2344 2345
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2346 2347 2348 2349 2350 2351 2352
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2353
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2354 2355 2356
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2357
	uint32_t fence_size_bits;
2358

2359
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2360
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2361
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2362
		     __func__, obj_priv->gtt_offset);
2363 2364 2365
		return;
	}

2366 2367 2368 2369
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2370 2371 2372
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2373 2374 2375
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2376 2377 2378 2379 2380 2381
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2382 2383
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2398
		obj_priv = to_intel_bo(reg->obj);
2399 2400 2401 2402 2403 2404 2405 2406 2407
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2408 2409 2410 2411
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2428
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2429 2430 2431 2432 2433 2434 2435
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2449
int
2450 2451
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2452 2453
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2454
	struct drm_i915_private *dev_priv = dev->dev_private;
2455
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2456
	struct drm_i915_fence_reg *reg = NULL;
2457
	int ret;
2458

2459 2460
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2461 2462
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2463 2464 2465
		return 0;
	}

2466 2467 2468 2469 2470
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2471 2472 2473 2474 2475
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2476 2477
		break;
	case I915_TILING_Y:
2478 2479 2480 2481 2482
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2483 2484 2485
		break;
	}

2486
	ret = i915_find_fence_reg(dev, interruptible);
2487 2488
	if (ret < 0)
		return ret;
2489

2490 2491
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2492
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2493

2494 2495
	reg->obj = obj;

2496 2497
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2498
		sandybridge_write_fence_reg(reg);
2499 2500 2501
		break;
	case 5:
	case 4:
2502
		i965_write_fence_reg(reg);
2503 2504
		break;
	case 3:
2505
		i915_write_fence_reg(reg);
2506 2507
		break;
	case 2:
2508
		i830_write_fence_reg(reg);
2509 2510
		break;
	}
2511

2512 2513
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2514

2515
	return 0;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2529
	drm_i915_private_t *dev_priv = dev->dev_private;
2530
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2531 2532
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2533
	uint32_t fence_reg;
2534

2535 2536
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2537 2538
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2539 2540 2541
		break;
	case 5:
	case 4:
2542
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2543 2544
		break;
	case 3:
2545
		if (obj_priv->fence_reg >= 8)
2546
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2547
		else
2548 2549
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2550 2551

		I915_WRITE(fence_reg, 0);
2552
		break;
2553
	}
2554

2555
	reg->obj = NULL;
2556
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2557
	list_del_init(&reg->lru_list);
2558 2559
}

2560 2561 2562 2563
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2564
 * @bool: whether the wait upon the fence is interruptible
2565 2566 2567 2568 2569
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2570 2571
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2572 2573
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2574
	struct drm_i915_private *dev_priv = dev->dev_private;
2575
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2576
	struct drm_i915_fence_reg *reg;
2577 2578 2579 2580

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2581 2582 2583 2584 2585 2586
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2587 2588 2589 2590
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2591 2592
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2593 2594
		int ret;

2595
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2596 2597 2598
		if (ret)
			return ret;

2599
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2600
		if (ret)
2601
			return ret;
C
Chris Wilson 已提交
2602 2603

		reg->gpu = false;
2604 2605
	}

2606
	i915_gem_object_flush_gtt_write_domain(obj);
2607
	i915_gem_clear_fence_reg(obj);
2608 2609 2610 2611

	return 0;
}

2612 2613 2614 2615 2616 2617 2618 2619
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2620
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2621
	struct drm_mm_node *free_space;
2622
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2623
	int ret;
2624

C
Chris Wilson 已提交
2625
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2626 2627 2628 2629
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2630
	if (alignment == 0)
2631
		alignment = i915_gem_get_gtt_alignment(obj);
2632
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2633 2634 2635 2636
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2637 2638 2639
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2640
	if (obj->size > dev_priv->mm.gtt_total) {
2641 2642 2643 2644
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2645 2646 2647 2648 2649 2650
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2651
		if (obj_priv->gtt_space != NULL)
2652 2653 2654 2655 2656 2657
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2658
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2659
		if (ret)
2660
			return ret;
2661

2662 2663 2664
		goto search_free;
	}

2665
	ret = i915_gem_object_get_pages(obj, gfpmask);
2666 2667 2668
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2669 2670 2671

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2672 2673
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2674 2675
			if (ret) {
				/* now try to shrink everyone else */
2676 2677 2678
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2679 2680 2681 2682 2683 2684 2685 2686
				}

				return ret;
			}

			goto search_free;
		}

2687 2688 2689 2690 2691 2692 2693
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2694
					       obj_priv->pages,
2695
					       obj->size >> PAGE_SHIFT,
2696 2697
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2698
	if (obj_priv->agp_mem == NULL) {
2699
		i915_gem_object_put_pages(obj);
2700 2701
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2702

2703
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2704
		if (ret)
2705 2706 2707
			return ret;

		goto search_free;
2708 2709
	}

2710 2711
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2712
	i915_gem_info_add_gtt(dev_priv, obj->size);
2713

2714 2715 2716 2717
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2718 2719
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2720

C
Chris Wilson 已提交
2721 2722
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2723 2724 2725 2726 2727 2728
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2729
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2730 2731 2732 2733 2734

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2735
	if (obj_priv->pages == NULL)
2736 2737
		return;

C
Chris Wilson 已提交
2738
	trace_i915_gem_object_clflush(obj);
2739

2740
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2741 2742
}

2743
/** Flushes any GPU write domain for the object if it's dirty. */
2744
static int
2745 2746
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2747 2748
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2749
	uint32_t old_write_domain;
2750 2751

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2752
		return 0;
2753 2754

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2755
	old_write_domain = obj->write_domain;
2756
	i915_gem_flush_ring(dev, NULL,
2757 2758
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2759
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2760 2761 2762 2763

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2764 2765 2766 2767

	if (pipelined)
		return 0;

2768
	return i915_gem_object_wait_rendering(obj, true);
2769 2770 2771 2772 2773 2774
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2775 2776
	uint32_t old_write_domain;

2777 2778 2779 2780 2781 2782 2783
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2784
	old_write_domain = obj->write_domain;
2785
	obj->write_domain = 0;
C
Chris Wilson 已提交
2786 2787 2788 2789

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2790 2791 2792 2793 2794 2795 2796
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2797
	uint32_t old_write_domain;
2798 2799 2800 2801 2802 2803

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2804
	old_write_domain = obj->write_domain;
2805
	obj->write_domain = 0;
C
Chris Wilson 已提交
2806 2807 2808 2809

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2810 2811
}

2812 2813 2814 2815 2816 2817
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2818
int
2819 2820
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2821
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2822
	uint32_t old_write_domain, old_read_domains;
2823
	int ret;
2824

2825 2826 2827 2828
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2829
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2830 2831 2832
	if (ret != 0)
		return ret;

2833
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2834

2835
	if (write) {
2836
		ret = i915_gem_object_wait_rendering(obj, true);
2837 2838 2839
		if (ret)
			return ret;
	}
2840

2841 2842
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2843

2844 2845 2846 2847 2848 2849
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2850
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2851 2852
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2853 2854
	}

C
Chris Wilson 已提交
2855 2856 2857 2858
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2859 2860 2861
	return 0;
}

2862 2863 2864 2865 2866
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2867 2868
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2869
{
2870
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2871
	uint32_t old_read_domains;
2872 2873 2874 2875 2876 2877
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2878
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2879
	if (ret)
2880
		return ret;
2881

2882 2883 2884 2885 2886 2887 2888
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2889 2890
	i915_gem_object_flush_cpu_write_domain(obj);

2891
	old_read_domains = obj->read_domains;
2892
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2893 2894 2895

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2896
					    obj->write_domain);
2897 2898 2899 2900

	return 0;
}

2901 2902 2903 2904 2905 2906 2907 2908 2909
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2910
	uint32_t old_write_domain, old_read_domains;
2911 2912
	int ret;

2913
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2914 2915
	if (ret != 0)
		return ret;
2916

2917
	i915_gem_object_flush_gtt_write_domain(obj);
2918

2919 2920
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2921
	 */
2922
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2923

2924
	if (write) {
2925
		ret = i915_gem_object_wait_rendering(obj, true);
2926 2927 2928 2929
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2930 2931 2932
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2933 2934
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2935 2936
		i915_gem_clflush_object(obj);

2937
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2938 2939 2940 2941 2942
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2943 2944 2945 2946 2947 2948
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2949
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2950 2951
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2952

C
Chris Wilson 已提交
2953 2954 2955 2956
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2957 2958 2959
	return 0;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3071
static void
3072
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3073 3074
{
	struct drm_device		*dev = obj->dev;
3075
	struct drm_i915_private		*dev_priv = dev->dev_private;
3076
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3077 3078
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3079
	uint32_t			old_read_domains;
3080

3081 3082
	intel_mark_busy(dev, obj);

3083 3084 3085 3086
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3087 3088
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3089 3090 3091 3092 3093 3094 3095 3096 3097
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3098 3099
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3100
		flush_domains |= obj->write_domain;
3101 3102
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3103 3104 3105 3106 3107
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3108
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3109
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3110 3111
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3112 3113
	old_read_domains = obj->read_domains;

3114 3115 3116 3117 3118 3119 3120 3121
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3122
	obj->read_domains = obj->pending_read_domains;
3123 3124 3125

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3126 3127
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3128 3129 3130 3131

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3132 3133 3134
}

/**
3135
 * Moves the object from a partially CPU read to a full one.
3136
 *
3137 3138
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3139
 */
3140 3141
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3142
{
3143
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3156
			drm_clflush_pages(obj_priv->pages + i, 1);
3157 3158 3159 3160 3161 3162
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3163
	kfree(obj_priv->page_cpu_valid);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3183
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3184
	uint32_t old_read_domains;
3185
	int i, ret;
3186

3187 3188
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3189

3190
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3191
	if (ret != 0)
3192
		return ret;
3193 3194 3195 3196 3197 3198
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3199

3200 3201 3202
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3203
	if (obj_priv->page_cpu_valid == NULL) {
3204 3205
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3206 3207 3208 3209
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3210 3211 3212 3213

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3214 3215
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3216 3217 3218
		if (obj_priv->page_cpu_valid[i])
			continue;

3219
		drm_clflush_pages(obj_priv->pages + i, 1);
3220 3221 3222 3223

		obj_priv->page_cpu_valid[i] = 1;
	}

3224 3225 3226 3227 3228
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3229
	old_read_domains = obj->read_domains;
3230 3231
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3232 3233 3234 3235
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3236 3237 3238 3239 3240 3241 3242 3243 3244
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3245
				 struct drm_i915_gem_exec_object2 *entry)
3246 3247
{
	struct drm_device *dev = obj->dev;
3248
	drm_i915_private_t *dev_priv = dev->dev_private;
3249
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3250
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3251
	int i, ret;
J
Jesse Barnes 已提交
3252 3253 3254 3255 3256 3257
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3258 3259 3260 3261 3262 3263 3264
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3265 3266 3267 3268 3269 3270

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3271 3272 3273 3274 3275
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3276
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3277 3278 3279 3280
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3281 3282

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3283 3284
	}

3285 3286 3287 3288 3289
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
3290
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3291
	for (i = 0; i < entry->relocation_count; i++) {
3292
		struct drm_i915_gem_relocation_entry reloc;
3293 3294 3295
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;

3296 3297 3298 3299 3300 3301 3302 3303
		ret = __copy_from_user_inatomic(&reloc,
						user_relocs+i,
						sizeof(reloc));
		if (ret) {
			i915_gem_object_unpin(obj);
			return -EFAULT;
		}

3304
		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3305
						   reloc.target_handle);
3306 3307
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3308
			return -ENOENT;
3309
		}
3310
		target_obj_priv = to_intel_bo(target_obj);
3311

3312 3313 3314 3315 3316 3317
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3318 3319 3320 3321
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3322
			 (int) target_obj_priv->gtt_offset,
3323 3324
			 (int) reloc.presumed_offset,
			 reloc.delta);
3325 3326
#endif

3327 3328 3329 3330 3331
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3332
				  reloc.target_handle);
3333 3334 3335 3336 3337
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3338
		/* Validate that the target is in a valid r/w GPU domain */
3339
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3340 3341 3342
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3343 3344 3345 3346
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3347 3348
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3349 3350
			return -EINVAL;
		}
3351 3352
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3353 3354 3355
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3356 3357 3358 3359
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3360 3361
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3362 3363
			return -EINVAL;
		}
3364 3365
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3366 3367 3368
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3369 3370 3371
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3372 3373 3374 3375 3376 3377
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3378 3379
		target_obj->pending_read_domains |= reloc.read_domains;
		target_obj->pending_write_domain |= reloc.write_domain;
3380 3381 3382 3383

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3384
		if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3385 3386 3387 3388
			drm_gem_object_unreference(target_obj);
			continue;
		}

3389
		/* Check that the relocation address is valid... */
3390
		if (reloc.offset > obj->size - 4) {
3391 3392
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3393 3394
				  obj, reloc.target_handle,
				  (int) reloc.offset, (int) obj->size);
3395 3396 3397 3398
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3399
		if (reloc.offset & 3) {
3400 3401
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3402 3403
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3404 3405 3406 3407 3408 3409
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
3410
		if (reloc.delta >= target_obj->size) {
3411 3412
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3413 3414
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3415 3416 3417 3418 3419
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3420 3421 3422 3423
		reloc.delta += target_obj_priv->gtt_offset;
		if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
			vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
			kunmap_atomic(vaddr, KM_USER0);
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
			int ret;

			ret = i915_gem_object_set_to_gtt_domain(obj, 1);
			if (ret) {
				drm_gem_object_unreference(target_obj);
				i915_gem_object_unpin(obj);
				return ret;
			}

			/* Map the page containing the relocation we're going to perform.  */
			reloc.offset += obj_priv->gtt_offset;
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
							      reloc.offset & PAGE_MASK,
							      KM_USER0);
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
			io_mapping_unmap_atomic(reloc_page, KM_USER0);
		}
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3460 3461 3462 3463
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3464 3465 3466 3467
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3468
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3469
{
3470 3471
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3472
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3473 3474 3475 3476
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3477

3478
	spin_lock(&file_priv->mm.lock);
3479
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3480 3481 3482
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3483 3484
		ring = request->ring;
		seqno = request->seqno;
3485
	}
3486
	spin_unlock(&file_priv->mm.lock);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3510

3511 3512 3513
	return ret;
}

3514
static int
3515 3516
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3517
{
3518
	uint32_t exec_start, exec_len;
3519

3520 3521
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3522

3523 3524
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3525

3526 3527
	if (!exec_start)
		return -EINVAL;
3528

3529
	return 0;
3530 3531 3532
}

static int
3533 3534
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3535
{
3536
	int i;
3537

3538 3539 3540
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3541

3542 3543
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3544

3545 3546
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3547 3548
	}

3549 3550 3551
	return 0;
}

C
Chris Wilson 已提交
3552
static int
J
Jesse Barnes 已提交
3553 3554 3555 3556
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3557 3558 3559 3560
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3561
	struct drm_i915_gem_object *obj_priv;
3562
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3563
	struct drm_i915_gem_request *request = NULL;
3564
	int ret, i, pinned = 0;
3565
	uint64_t exec_offset;
3566
	int pin_tries, flips;
3567

3568 3569
	struct intel_ring_buffer *ring = NULL;

3570 3571 3572 3573
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3574 3575 3576 3577
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3578 3579 3580 3581
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3592 3593 3594 3595
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3596
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3597 3598
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3599 3600 3601 3602 3603
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3604
	if (args->num_cliprects != 0) {
3605 3606
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3607 3608
		if (cliprects == NULL) {
			ret = -ENOMEM;
3609
			goto pre_mutex_err;
3610
		}
3611 3612 3613 3614 3615 3616 3617 3618

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3619
			ret = -EFAULT;
3620 3621 3622 3623
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3624 3625 3626 3627 3628 3629
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3630 3631 3632
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3633 3634 3635

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3636 3637
		ret = -EBUSY;
		goto pre_mutex_err;
3638 3639
	}

3640
	/* Look up object handles */
3641 3642 3643 3644 3645 3646
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3647 3648
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3649
			ret = -ENOENT;
3650 3651
			goto err;
		}
3652

3653
		obj_priv = to_intel_bo(object_list[i]);
3654 3655 3656
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3657 3658
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3659
			ret = -EINVAL;
3660 3661 3662
			goto err;
		}
		obj_priv->in_execbuffer = true;
3663
	}
3664

3665 3666 3667
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3668

3669 3670 3671 3672 3673
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3674
							       &exec_list[i]);
3675 3676 3677 3678 3679 3680 3681 3682 3683
			if (ret)
				break;
			pinned = i + 1;
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3684
		if (ret != -ENOSPC || pin_tries >= 1) {
3685 3686
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3687 3688
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3689
					obj_priv = to_intel_bo(object_list[i]);
3690

3691
					total_size += object_list[i]->size;
3692 3693 3694 3695 3696
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3697
					  pinned+1, args->buffer_count,
3698 3699
					  total_size, num_fences,
					  ret);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
				DRM_ERROR("%u objects [%u pinned, %u GTT], "
					  "%zu object bytes [%zu pinned], "
					  "%zu /%zu gtt bytes\n",
					  dev_priv->mm.object_count,
					  dev_priv->mm.pin_count,
					  dev_priv->mm.gtt_count,
					  dev_priv->mm.object_memory,
					  dev_priv->mm.pin_memory,
					  dev_priv->mm.gtt_memory,
					  dev_priv->mm.gtt_total);
3710
			}
3711 3712
			goto err;
		}
3713 3714 3715 3716

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3717
		pinned = 0;
3718 3719 3720

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3721
		if (ret && ret != -ENOSPC)
3722
			goto err;
3723 3724 3725 3726
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3727 3728 3729 3730 3731 3732
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3733

3734 3735 3736 3737 3738 3739 3740 3741
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3742 3743 3744 3745 3746 3747
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3748
	dev_priv->mm.flush_rings = 0;
3749

3750 3751 3752
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3753
		/* Compute new gpu domains and update invalidate/flush */
3754
		i915_gem_object_set_to_gpu_domain(obj);
3755 3756
	}

3757 3758 3759 3760 3761 3762 3763
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3764
		i915_gem_flush(dev, file_priv,
3765
			       dev->invalidate_domains,
3766 3767
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3768 3769
	}

3770 3771
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3772
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3773
		uint32_t old_write_domain = obj->write_domain;
3774 3775

		obj->write_domain = obj->pending_write_domain;
3776 3777 3778 3779
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3780 3781 3782
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3783 3784
	}

3785 3786 3787 3788 3789 3790 3791 3792
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3793
	i915_gem_dump_object(batch_obj,
3794 3795 3796 3797 3798
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3828
	/* Exec the batchbuffer */
3829
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3830
					    cliprects, exec_offset);
3831 3832 3833 3834 3835 3836 3837 3838 3839
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3840
	i915_retire_commands(dev, ring);
3841

3842 3843 3844 3845 3846 3847
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3848

C
Chris Wilson 已提交
3849
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3850
	request = NULL;
3851 3852

err:
3853 3854 3855
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3856 3857
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3858
			obj_priv = to_intel_bo(object_list[i]);
3859 3860
			obj_priv->in_execbuffer = false;
		}
3861
		drm_gem_object_unreference(object_list[i]);
3862
	}
3863 3864 3865

	mutex_unlock(&dev->struct_mutex);

3866
pre_mutex_err:
3867
	drm_free_large(object_list);
3868
	kfree(cliprects);
C
Chris Wilson 已提交
3869
	kfree(request);
3870 3871 3872 3873

	return ret;
}

J
Jesse Barnes 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3926
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3940
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4019 4020 4021 4022
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4023
	struct drm_i915_private *dev_priv = dev->dev_private;
4024
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4025 4026
	int ret;

4027
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4028
	WARN_ON(i915_verify_lists(dev));
4029 4030 4031 4032 4033

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4034 4035 4036 4037
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4038 4039 4040 4041 4042 4043
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4044 4045
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4046
		if (ret)
4047
			return ret;
4048
	}
J
Jesse Barnes 已提交
4049

4050 4051 4052 4053 4054 4055
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4056
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4057 4058 4059
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4060 4061
	}

4062
	WARN_ON(i915_verify_lists(dev));
4063 4064 4065 4066 4067 4068 4069 4070
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4071
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4072

4073
	WARN_ON(i915_verify_lists(dev));
4074 4075 4076 4077 4078 4079 4080 4081 4082
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4083
		if (!obj_priv->active)
4084 4085
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4086
		i915_gem_info_remove_pin(dev_priv, obj->size);
4087
	}
4088
	WARN_ON(i915_verify_lists(dev));
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4100 4101 4102 4103
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4104 4105
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4106 4107
		ret = -ENOENT;
		goto unlock;
4108
	}
4109
	obj_priv = to_intel_bo(obj);
4110

C
Chris Wilson 已提交
4111 4112
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4113 4114
		ret = -EINVAL;
		goto out;
4115 4116
	}

J
Jesse Barnes 已提交
4117 4118 4119
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4120 4121
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4122 4123 4124 4125 4126 4127
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
4128 4129
		if (ret)
			goto out;
4130 4131 4132 4133 4134
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4135
	i915_gem_object_flush_cpu_write_domain(obj);
4136
	args->offset = obj_priv->gtt_offset;
4137
out:
4138
	drm_gem_object_unreference(obj);
4139
unlock:
4140
	mutex_unlock(&dev->struct_mutex);
4141
	return ret;
4142 4143 4144 4145 4146 4147 4148 4149
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4150
	struct drm_i915_gem_object *obj_priv;
4151
	int ret;
4152

4153 4154 4155 4156
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4157 4158
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4159 4160
		ret = -ENOENT;
		goto unlock;
4161
	}
4162
	obj_priv = to_intel_bo(obj);
4163

J
Jesse Barnes 已提交
4164 4165 4166
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4167 4168
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4169 4170 4171 4172 4173 4174
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4175

4176
out:
4177
	drm_gem_object_unreference(obj);
4178
unlock:
4179
	mutex_unlock(&dev->struct_mutex);
4180
	return ret;
4181 4182 4183 4184 4185 4186 4187 4188 4189
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4190 4191
	int ret;

4192
	ret = i915_mutex_lock_interruptible(dev);
4193
	if (ret)
4194
		return ret;
4195 4196 4197 4198 4199

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
4200
	}
4201
	obj_priv = to_intel_bo(obj);
4202

4203 4204 4205 4206
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4207
	 */
4208 4209 4210 4211 4212 4213 4214
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4215 4216
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4217 4218
					    obj_priv->ring,
					    0, obj->write_domain);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4229 4230

	drm_gem_object_unreference(obj);
4231
unlock:
4232
	mutex_unlock(&dev->struct_mutex);
4233
	return ret;
4234 4235 4236 4237 4238 4239 4240 4241 4242
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4243 4244 4245 4246 4247 4248 4249
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4250
	int ret;
4251 4252 4253 4254 4255 4256 4257 4258 4259

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4260 4261 4262 4263
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4264 4265
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4266 4267
		ret = -ENOENT;
		goto unlock;
4268
	}
4269
	obj_priv = to_intel_bo(obj);
4270 4271

	if (obj_priv->pin_count) {
4272 4273
		ret = -EINVAL;
		goto out;
4274 4275
	}

C
Chris Wilson 已提交
4276 4277
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4278

4279 4280 4281 4282 4283
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4284 4285
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4286
out:
4287
	drm_gem_object_unreference(obj);
4288
unlock:
4289
	mutex_unlock(&dev->struct_mutex);
4290
	return ret;
4291 4292
}

4293 4294 4295
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4296
	struct drm_i915_private *dev_priv = dev->dev_private;
4297
	struct drm_i915_gem_object *obj;
4298

4299 4300 4301
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4302

4303 4304 4305 4306
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4307

4308 4309
	i915_gem_info_add_obj(dev_priv, size);

4310 4311
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4312

4313
	obj->agp_type = AGP_USER_MEMORY;
4314
	obj->base.driver_private = NULL;
4315 4316 4317 4318
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4319

4320 4321 4322 4323 4324 4325
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4326

4327 4328 4329
	return 0;
}

4330
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4331
{
4332
	struct drm_device *dev = obj->dev;
4333
	drm_i915_private_t *dev_priv = dev->dev_private;
4334
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4335
	int ret;
4336

4337 4338 4339 4340 4341 4342
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4343

4344 4345
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4346

4347
	drm_gem_object_release(obj);
4348
	i915_gem_info_remove_obj(dev_priv, obj->size);
4349

4350
	kfree(obj_priv->page_cpu_valid);
4351
	kfree(obj_priv->bit_17);
4352
	kfree(obj_priv);
4353 4354
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4371 4372 4373 4374 4375
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4376

4377
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4378

4379
	if (dev_priv->mm.suspended ||
4380 4381 4382
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4383 4384
		mutex_unlock(&dev->struct_mutex);
		return 0;
4385 4386
	}

4387
	ret = i915_gpu_idle(dev);
4388 4389
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4390
		return ret;
4391
	}
4392

4393 4394
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4395
		ret = i915_gem_evict_inactive(dev);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4407
	del_timer_sync(&dev_priv->hangcheck_timer);
4408 4409

	i915_kernel_lost_context(dev);
4410
	i915_gem_cleanup_ringbuffer(dev);
4411

4412 4413
	mutex_unlock(&dev->struct_mutex);

4414 4415 4416
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4417 4418 4419
	return 0;
}

4420 4421 4422 4423
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4424
static int
4425 4426 4427 4428 4429 4430 4431
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4432
	obj = i915_gem_alloc_object(dev, 4096);
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4463 4464

static void
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4479 4480
}

4481 4482 4483 4484 4485
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4486

4487 4488 4489 4490 4491
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4492

4493
	ret = intel_init_render_ring_buffer(dev);
4494 4495 4496 4497
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4498
		ret = intel_init_bsd_ring_buffer(dev);
4499 4500
		if (ret)
			goto cleanup_render_ring;
4501
	}
4502

4503 4504
	dev_priv->next_seqno = 1;

4505 4506 4507 4508 4509 4510 4511
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4512 4513 4514 4515 4516 4517 4518 4519 4520
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4521 4522
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4523 4524 4525 4526
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4527 4528 4529 4530 4531 4532 4533
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4534 4535 4536
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4537
	if (atomic_read(&dev_priv->mm.wedged)) {
4538
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4539
		atomic_set(&dev_priv->mm.wedged, 0);
4540 4541 4542
	}

	mutex_lock(&dev->struct_mutex);
4543 4544 4545
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4546 4547
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4548
		return ret;
4549
	}
4550

4551
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4552
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4553 4554
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4555
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4556
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4557
	mutex_unlock(&dev->struct_mutex);
4558

4559 4560 4561
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4562

4563
	return 0;
4564 4565 4566 4567 4568 4569 4570 4571

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4572 4573 4574 4575 4576 4577
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4578 4579 4580
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4581
	drm_irq_uninstall(dev);
4582
	return i915_gem_idle(dev);
4583 4584 4585 4586 4587 4588 4589
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4590 4591 4592
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4593 4594 4595
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4596 4597 4598 4599 4600
}

void
i915_gem_load(struct drm_device *dev)
{
4601
	int i;
4602 4603 4604
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4605
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4606
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4607
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4608
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4609
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4610 4611
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4612 4613 4614 4615
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4616 4617
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4618 4619
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4620
	init_completion(&dev_priv->error_completion);
4621 4622 4623 4624
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4635
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4636 4637
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4638

4639
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4640 4641 4642 4643
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4644
	/* Initialize fence registers to zero */
4645 4646 4647 4648 4649 4650 4651
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4652 4653
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4654 4655
		break;
	case 3:
4656 4657 4658
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4659 4660 4661 4662
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4663
	}
4664
	i915_gem_detect_bit_6_swizzle(dev);
4665
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4666
}
4667 4668 4669 4670 4671

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4672 4673
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4674 4675 4676 4677 4678 4679 4680 4681
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4682
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4683 4684 4685 4686 4687
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4688
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4701
	kfree(phys_obj);
4702 4703 4704
	return ret;
}

4705
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4730
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4742
	obj_priv = to_intel_bo(obj);
4743 4744 4745
	if (!obj_priv->phys_obj)
		return;

4746
	ret = i915_gem_object_get_pages(obj, 0);
4747 4748 4749 4750 4751 4752
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4753
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4754 4755 4756 4757 4758
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4759
	drm_clflush_pages(obj_priv->pages, page_count);
4760
	drm_agp_chipset_flush(dev);
4761 4762

	i915_gem_object_put_pages(obj);
4763 4764 4765 4766 4767 4768 4769
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4770 4771 4772
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4783
	obj_priv = to_intel_bo(obj);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4794
						obj->size, align);
4795
		if (ret) {
4796
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4797 4798 4799 4800 4801 4802 4803 4804
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4805
	ret = i915_gem_object_get_pages(obj, 0);
4806 4807 4808 4809 4810 4811 4812 4813
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4814
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4815 4816 4817 4818 4819 4820
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4821 4822
	i915_gem_object_put_pages(obj);

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4833
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4834 4835 4836 4837 4838 4839 4840
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4841
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4842 4843 4844 4845 4846 4847 4848
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4849

4850
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4851
{
4852
	struct drm_i915_file_private *file_priv = file->driver_priv;
4853 4854 4855 4856 4857

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4858
	spin_lock(&file_priv->mm.lock);
4859 4860 4861 4862 4863 4864 4865 4866 4867
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4868
	spin_unlock(&file_priv->mm.lock);
4869
}
4870

4871 4872 4873 4874 4875 4876 4877
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4878
		      list_empty(&dev_priv->render_ring.active_list);
4879 4880
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4881 4882 4883 4884

	return !lists_empty;
}

4885
static int
4886
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4914
rescan:
4915 4916 4917 4918 4919 4920 4921 4922 4923
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4924
		i915_gem_retire_requests(dev);
4925 4926 4927 4928 4929

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4930
				i915_gem_object_unbind(&obj_priv->base);
4931 4932 4933 4934 4935 4936 4937 4938
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4939 4940
		would_deadlock = 0;

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4959
				i915_gem_object_unbind(&obj_priv->base);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}