i915_gem.c 134.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38 39 40 41 42 43 44 45 46
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 49 50
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 54 55
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
56

57 58 59
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
60 61
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
62 63 64
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
65 66 67
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
68 69 70
		return -EINVAL;
	}

J
Jesse Barnes 已提交
71 72
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
73

J
Jesse Barnes 已提交
74 75 76 77
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
78

J
Jesse Barnes 已提交
79 80 81 82 83 84 85 86 87
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88 89
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
90
	return ret;
91 92
}

93 94 95 96 97 98 99 100 101 102
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
103 104
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
105 106 107 108

	return 0;
}

109 110 111 112 113 114 115 116 117 118

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
119 120
	int ret;
	u32 handle;
121 122 123 124

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
125
	obj = i915_gem_alloc_object(dev, args->size);
126 127 128 129
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
130
	drm_gem_object_handle_unreference_unlocked(obj);
131 132 133 134 135 136 137 138 139

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

140 141 142 143 144 145 146
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
147
	int unwritten;
148 149 150 151

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
152
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 154
	kunmap_atomic(vaddr, KM_USER0);

155 156 157 158
	if (unwritten)
		return -EFAULT;

	return 0;
159 160
}

161 162 163
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
164
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165 166 167 168 169

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

255 256 257 258 259 260 261 262 263 264
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
265
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
266 267 268 269 270 271 272 273 274 275 276
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

277
	ret = i915_gem_object_get_pages(obj, 0);
278 279 280 281 282 283 284 285
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

286
	obj_priv = to_intel_bo(obj);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

321 322 323 324 325
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

326
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
327 328 329 330 331 332 333 334 335 336 337

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

338
		ret = i915_gem_object_get_pages(obj, 0);
339 340 341 342 343
	}

	return ret;
}

344 345 346 347 348 349 350 351 352 353 354
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
355
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
356 357 358 359 360 361 362 363 364 365
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
366
	int do_bit17_swizzling;
367 368 369 370 371 372 373 374 375 376 377

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

378
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
379 380 381 382 383
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
384
				      num_pages, 1, 0, user_pages, NULL);
385 386 387 388 389 390
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

391 392
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

393 394
	mutex_lock(&dev->struct_mutex);

395 396
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
397 398 399 400 401 402 403
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

404
	obj_priv = to_intel_bo(obj);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

427 428 429 430 431 432 433 434 435 436 437 438 439 440
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
458
	drm_free_large(user_pages);
459 460 461 462

	return ret;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
480
	obj_priv = to_intel_bo(obj);
481 482 483 484 485 486 487

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
488
		drm_gem_object_unreference_unlocked(obj);
489 490 491
		return -EINVAL;
	}

492
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
493
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
494 495 496 497 498 499
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
500

501
	drm_gem_object_unreference_unlocked(obj);
502

503
	return ret;
504 505
}

506 507
/* This is the fast write path which cannot handle
 * page faults in the source data
508
 */
509 510 511 512 513 514

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
515 516
{
	char *vaddr_atomic;
517
	unsigned long unwritten;
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
533 534 535 536
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
537
{
538
	char *src_vaddr, *dst_vaddr;
539 540
	unsigned long unwritten;

541 542 543 544 545 546 547
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
548 549
	if (unwritten)
		return -EFAULT;
550 551 552
	return 0;
}

553 554 555 556 557 558 559
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
560
	unsigned long unwritten;
561 562 563 564

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
565
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
566 567
	kunmap_atomic(vaddr, KM_USER0);

568 569
	if (unwritten)
		return -EFAULT;
570 571 572
	return 0;
}

573 574 575 576
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
577
static int
578 579 580
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
581
{
582
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
583
	drm_i915_private_t *dev_priv = dev->dev_private;
584
	ssize_t remain;
585
	loff_t offset, page_base;
586
	char __user *user_data;
587 588
	int page_offset, page_length;
	int ret;
589 590 591 592 593 594 595 596 597 598 599 600 601

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
602
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
603 604 605
	if (ret)
		goto fail;

606
	obj_priv = to_intel_bo(obj);
607 608 609 610 611
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
612 613 614
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
615
		 */
616 617 618 619 620 621 622 623 624 625
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
626 627
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
628
		 */
629 630
		if (ret)
			goto fail;
631

632 633 634
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
635 636 637 638 639 640 641 642 643
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

644 645 646 647 648 649 650
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
651
static int
652 653 654
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
655
{
656
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
657 658 659 660 661 662 663 664
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
665
	int ret;
666 667 668 669 670 671 672 673 674 675 676 677
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

678
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
679 680 681 682 683 684 685 686 687 688 689
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
690 691

	mutex_lock(&dev->struct_mutex);
692 693 694 695 696 697 698 699
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

700
	obj_priv = to_intel_bo(obj);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
748
	drm_free_large(user_pages);
749 750 751 752

	return ret;
}

753 754 755 756
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
757
static int
758 759 760
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
761
{
762
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
763 764 765 766
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
767
	int ret;
768 769 770

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
771 772 773

	mutex_lock(&dev->struct_mutex);

774
	ret = i915_gem_object_get_pages(obj, 0);
775 776
	if (ret != 0)
		goto fail_unlock;
777

778
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
779 780 781
	if (ret != 0)
		goto fail_put_pages;

782
	obj_priv = to_intel_bo(obj);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
830
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
831 832 833 834 835 836 837 838 839 840
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
841
	int do_bit17_swizzling;
842 843 844 845 846 847 848 849 850 851 852

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

853
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
854 855 856 857 858 859 860 861 862 863
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
864 865
	}

866 867
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

868 869
	mutex_lock(&dev->struct_mutex);

870 871
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
872 873 874 875 876 877
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

878
	obj_priv = to_intel_bo(obj);
879
	offset = args->offset;
880
	obj_priv->dirty = 1;
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

902 903 904 905 906 907 908 909 910 911 912 913 914 915
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
916 917 918 919 920 921
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
922 923
	}

924 925 926
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
927
	mutex_unlock(&dev->struct_mutex);
928 929 930
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
931
	drm_free_large(user_pages);
932

933
	return ret;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
953
	obj_priv = to_intel_bo(obj);
954 955 956 957 958 959 960

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
961
		drm_gem_object_unreference_unlocked(obj);
962 963 964 965 966 967 968 969 970
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
971 972 973
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
974 975
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
976 977 978 979 980
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
981 982
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 984 985 986 987 988 989
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
990 991 992 993 994 995

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

996
	drm_gem_object_unreference_unlocked(obj);
997 998 999 1000 1001

	return ret;
}

/**
1002 1003
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1004 1005 1006 1007 1008
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1009
	struct drm_i915_private *dev_priv = dev->dev_private;
1010 1011
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1012
	struct drm_i915_gem_object *obj_priv;
1013 1014
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1015 1016 1017 1018 1019
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1020
	/* Only handle setting domains to types used by the CPU. */
1021
	if (write_domain & I915_GEM_GPU_DOMAINS)
1022 1023
		return -EINVAL;

1024
	if (read_domains & I915_GEM_GPU_DOMAINS)
1025 1026 1027 1028 1029 1030 1031 1032
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1033 1034 1035
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1036
	obj_priv = to_intel_bo(obj);
1037 1038

	mutex_lock(&dev->struct_mutex);
1039 1040 1041

	intel_mark_busy(dev, obj);

1042
#if WATCH_BUF
1043
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044
		 obj, obj->size, read_domains, write_domain);
1045
#endif
1046 1047
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048

1049 1050 1051 1052
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 1054 1055
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1056 1057 1058
				       &dev_priv->mm.fence_list);
		}

1059 1060 1061 1062 1063 1064
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1065
	} else {
1066
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1097
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098 1099
		 __func__, args->handle, obj, obj->size);
#endif
1100
	obj_priv = to_intel_bo(obj);
1101 1102

	/* Pinned buffers may be scanout, so flush the cache */
1103 1104 1105
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1141
	drm_gem_object_unreference_unlocked(obj);
1142 1143 1144 1145 1146 1147 1148 1149
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1171
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1172 1173 1174
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1175
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1176 1177 1178 1179 1180 1181 1182 1183

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1184
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1185 1186
		if (ret)
			goto unlock;
1187

J
Jesse Barnes 已提交
1188
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1189 1190

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1191 1192
		if (ret)
			goto unlock;
1193 1194 1195
	}

	/* Need a new fence register? */
1196
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1197
		ret = i915_gem_object_get_fence_reg(obj);
1198 1199
		if (ret)
			goto unlock;
1200
	}
1201 1202 1203 1204 1205 1206

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1207
unlock:
1208 1209 1210
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1211 1212 1213
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1214 1215 1216 1217
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1218
		return VM_FAULT_SIGBUS;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1238
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1239
	struct drm_map_list *list;
1240
	struct drm_local_map *map;
1241 1242 1243 1244
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1245
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1273
		ret = -ENOMEM;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1286
	kfree(list->map);
1287 1288 1289 1290

	return ret;
}

1291 1292 1293 1294
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1295
 * Preserve the reservation of the mmapping with the DRM core code, but
1296 1297 1298 1299 1300 1301 1302 1303 1304
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1305
void
1306 1307 1308
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1309
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1310 1311 1312 1313 1314 1315

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1316 1317 1318 1319
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1320
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1333
		kfree(list->map);
1334 1335 1336 1337 1338 1339
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1351
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

1410
	obj_priv = to_intel_bo(obj);
1411

1412 1413 1414 1415 1416 1417 1418 1419
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1420 1421
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1422 1423 1424
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1425
			return ret;
1426
		}
1427 1428 1429 1430 1431 1432 1433 1434 1435
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1436
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1437 1438 1439 1440 1441
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1442
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1443 1444 1445 1446 1447 1448 1449 1450
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1451
void
1452
i915_gem_object_put_pages(struct drm_gem_object *obj)
1453
{
1454
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1455 1456 1457
	int page_count = obj->size / PAGE_SIZE;
	int i;

1458
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1459
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1460

1461 1462
	if (--obj_priv->pages_refcount != 0)
		return;
1463

1464 1465 1466
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1467
	if (obj_priv->madv == I915_MADV_DONTNEED)
1468
		obj_priv->dirty = 0;
1469 1470 1471 1472 1473 1474

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1475
			mark_page_accessed(obj_priv->pages[i]);
1476 1477 1478

		page_cache_release(obj_priv->pages[i]);
	}
1479 1480
	obj_priv->dirty = 0;

1481
	drm_free_large(obj_priv->pages);
1482
	obj_priv->pages = NULL;
1483 1484 1485
}

static void
1486 1487
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1488 1489 1490
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1491
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1492 1493
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1494 1495 1496 1497 1498 1499 1500

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1501
	spin_lock(&dev_priv->mm.active_list_lock);
1502
	list_move_tail(&obj_priv->list, &ring->active_list);
1503
	spin_unlock(&dev_priv->mm.active_list_lock);
1504
	obj_priv->last_rendering_seqno = seqno;
1505 1506
}

1507 1508 1509 1510 1511
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 1514 1515 1516 1517

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1518

1519 1520 1521 1522
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1523
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1524
	struct inode *inode;
1525

C
Chris Wilson 已提交
1526 1527 1528 1529 1530
	inode = obj->filp->f_path.dentry->d_inode;
	if (inode->i_op->truncate)
		inode->i_op->truncate (inode);

	obj_priv->madv = __I915_MADV_PURGED;
1531 1532 1533 1534 1535 1536 1537 1538
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1539 1540 1541 1542 1543
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1544
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1545 1546 1547 1548 1549 1550 1551

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1552 1553
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1554
	obj_priv->last_rendering_seqno = 0;
1555
	obj_priv->ring = NULL;
1556 1557 1558 1559 1560 1561 1562
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1563 1564
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1565 1566
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1567 1568 1569 1570 1571 1572 1573
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1574
		struct drm_gem_object *obj = &obj_priv->base;
1575 1576

		if ((obj->write_domain & flush_domains) ==
1577 1578
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1579 1580 1581 1582
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1583
			i915_gem_object_move_to_active(obj, seqno, ring);
1584 1585

			/* update the fence lru list */
1586 1587 1588 1589
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1590
						&dev_priv->mm.fence_list);
1591
			}
1592 1593 1594 1595 1596 1597 1598

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1599

1600
uint32_t
1601
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1602
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1603 1604
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1605
	struct drm_i915_file_private *i915_file_priv = NULL;
1606 1607 1608 1609
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1610 1611 1612
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1613
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1614 1615 1616
	if (request == NULL)
		return 0;

1617
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1618 1619

	request->seqno = seqno;
1620
	request->ring = ring;
1621
	request->emitted_jiffies = jiffies;
1622 1623 1624
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1625 1626 1627 1628 1629 1630
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1631

1632 1633 1634
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
1635
	if (flush_domains != 0) 
1636
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1637

B
Ben Gamari 已提交
1638 1639 1640 1641 1642
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1652
static uint32_t
1653
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1654 1655 1656 1657 1658 1659
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1660 1661 1662

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1676 1677
	trace_i915_gem_request_retire(dev, request->seqno);

1678 1679 1680
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1681
	spin_lock(&dev_priv->mm.active_list_lock);
1682
	while (!list_empty(&request->ring->active_list)) {
1683 1684 1685
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1686
		obj_priv = list_first_entry(&request->ring->active_list,
1687 1688
					    struct drm_i915_gem_object,
					    list);
1689
		obj = &obj_priv->base;
1690 1691 1692 1693 1694 1695

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1696
			goto out;
1697

1698 1699 1700 1701 1702
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1703 1704
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1705 1706 1707 1708 1709 1710 1711 1712
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1713
			i915_gem_object_move_to_inactive(obj);
1714 1715 1716 1717
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1718
	}
1719 1720
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1721 1722 1723 1724 1725
}

/**
 * Returns true if seq1 is later than seq2.
 */
1726
bool
1727 1728 1729 1730 1731 1732
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1733
i915_get_gem_seqno(struct drm_device *dev,
1734
		   struct intel_ring_buffer *ring)
1735
{
1736
	return ring->get_gem_seqno(dev, ring);
1737 1738 1739 1740 1741 1742
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
1743 1744
i915_gem_retire_requests(struct drm_device *dev,
		struct intel_ring_buffer *ring)
1745 1746 1747 1748
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1749
	if (!ring->status_page.page_addr
1750
			|| list_empty(&ring->request_list))
1751 1752
		return;

1753
	seqno = i915_get_gem_seqno(dev, ring);
1754

1755
	while (!list_empty(&ring->request_list)) {
1756 1757 1758
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1759
		request = list_first_entry(&ring->request_list,
1760 1761 1762 1763 1764
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1765
		    atomic_read(&dev_priv->mm.wedged)) {
1766 1767 1768
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1769
			list_del(&request->client_list);
1770
			kfree(request);
1771 1772 1773
		} else
			break;
	}
1774 1775 1776

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1777 1778

		ring->user_irq_put(dev, ring);
1779 1780
		dev_priv->trace_irq_seqno = 0;
	}
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1794 1795
	i915_gem_retire_requests(dev, &dev_priv->render_ring);

1796 1797 1798
	if (HAS_BSD(dev))
		i915_gem_retire_requests(dev, &dev_priv->bsd_ring);

1799
	if (!dev_priv->mm.suspended &&
1800 1801 1802
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1803
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1804 1805 1806
	mutex_unlock(&dev->struct_mutex);
}

1807
int
1808 1809
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1810 1811
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1812
	u32 ier;
1813 1814 1815 1816
	int ret = 0;

	BUG_ON(seqno == 0);

1817
	if (atomic_read(&dev_priv->mm.wedged))
1818 1819
		return -EIO;

1820
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1821
		if (HAS_PCH_SPLIT(dev))
1822 1823 1824
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1825 1826 1827 1828 1829 1830 1831
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1832 1833
		trace_i915_gem_request_wait_begin(dev, seqno);

1834
		ring->waiting_gem_seqno = seqno;
1835
		ring->user_irq_get(dev, ring);
1836
		if (interruptible)
1837 1838 1839 1840
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1841
		else
1842 1843 1844 1845
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1846

1847
		ring->user_irq_put(dev, ring);
1848
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1849 1850

		trace_i915_gem_request_wait_end(dev, seqno);
1851
	}
1852
	if (atomic_read(&dev_priv->mm.wedged))
1853 1854 1855 1856
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1857
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1858 1859 1860 1861 1862 1863 1864

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1865
		i915_gem_retire_requests(dev, ring);
1866 1867 1868 1869

	return ret;
}

1870 1871 1872 1873 1874
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1875 1876
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1877
{
1878
	return i915_do_wait_request(dev, seqno, 1, ring);
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1892 1893 1894 1895 1896

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static void
i915_gem_flush_ring(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains,
	       struct intel_ring_buffer *ring)
{
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	ring->flush(dev, ring,
			invalidate_domains,
			flush_domains);
}

1912 1913 1914 1915 1916 1917 1918 1919
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1920
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1921 1922
	int ret;

1923 1924
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1925
	 */
1926
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1927 1928 1929 1930 1931 1932 1933 1934 1935

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1936 1937
		ret = i915_wait_request(dev,
				obj_priv->last_rendering_seqno, obj_priv->ring);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1948
int
1949 1950 1951
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1952
	drm_i915_private_t *dev_priv = dev->dev_private;
1953
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1968 1969 1970
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1971 1972 1973 1974 1975 1976
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1977
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1978
	if (ret) {
1979 1980
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1981 1982 1983
		return ret;
	}

1984 1985
	BUG_ON(obj_priv->active);

1986 1987 1988 1989
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1990 1991 1992 1993 1994 1995
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1996
	i915_gem_object_put_pages(obj);
1997
	BUG_ON(obj_priv->pages_refcount);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2008
	spin_lock(&dev_priv->mm.active_list_lock);
2009 2010
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2011
	spin_unlock(&dev_priv->mm.active_list_lock);
2012

2013 2014 2015
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2016 2017
	trace_i915_gem_object_unbind(obj);

2018 2019 2020
	return 0;
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2031
		struct drm_gem_object *obj = &obj_priv->base;
2032
		if (obj->size >= min_size) {
2033 2034
			if ((!obj_priv->dirty ||
			     i915_gem_object_is_purgeable(obj_priv)) &&
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

2048 2049 2050 2051 2052
static int
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2053
	uint32_t seqno1, seqno2;
2054
	int ret;
2055 2056

	spin_lock(&dev_priv->mm.active_list_lock);
2057 2058 2059 2060
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2061 2062 2063 2064 2065 2066 2067
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2068
	seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2069
			&dev_priv->render_ring);
2070
	if (seqno1 == 0)
2071
		return -ENOMEM;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);

	if (HAS_BSD(dev)) {
		seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
				&dev_priv->bsd_ring);
		if (seqno2 == 0)
			return -ENOMEM;

		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2085

2086
	return ret;
2087 2088
}

2089
static int
2090 2091 2092 2093 2094 2095 2096 2097 2098
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	bool lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2099 2100 2101
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev)
			|| list_empty(&dev_priv->bsd_ring.active_list)));
2102 2103
	spin_unlock(&dev_priv->mm.active_list_lock);

2104
	if (lists_empty)
2105 2106 2107
		return -ENOSPC;

	/* Flush everything (on to the inactive lists) and evict */
2108
	ret = i915_gpu_idle(dev);
2109 2110 2111
	if (ret)
		return ret;

2112 2113
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));

2114
	ret = i915_gem_evict_from_inactive_list(dev);
2115 2116 2117 2118 2119 2120
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2121 2122 2123
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev)
			|| list_empty(&dev_priv->bsd_ring.active_list)));
2124 2125 2126 2127 2128 2129
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2130
static int
2131
i915_gem_evict_something(struct drm_device *dev, int min_size)
2132 2133 2134
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2135
	int ret;
2136

2137
	struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2138
	struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2139
	for (;;) {
2140
		i915_gem_retire_requests(dev, render_ring);
2141

2142 2143 2144
		if (HAS_BSD(dev))
			i915_gem_retire_requests(dev, bsd_ring);

2145 2146 2147
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2148 2149 2150 2151
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2152 2153 2154
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2155
			obj_priv = to_intel_bo(obj);
2156
			BUG_ON(obj_priv->pin_count != 0);
2157 2158 2159
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2160
			return i915_gem_object_unbind(obj);
2161 2162 2163
		}

		/* If we didn't get anything, but the ring is still processing
2164 2165
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2166
		 */
2167
		if (!list_empty(&render_ring->request_list)) {
2168 2169
			struct drm_i915_gem_request *request;

2170
			request = list_first_entry(&render_ring->request_list,
2171 2172 2173
						   struct drm_i915_gem_request,
						   list);

2174 2175
			ret = i915_wait_request(dev,
					request->seqno, request->ring);
2176
			if (ret)
2177
				return ret;
2178

2179
			continue;
2180 2181
		}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&bsd_ring->request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev,
					request->seqno, request->ring);
			if (ret)
				return ret;

			continue;
		}

2197 2198 2199 2200 2201 2202
		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2203
			struct drm_i915_gem_object *obj_priv;
2204

2205 2206
			/* Find an object that we can immediately reuse */
			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2207
				obj = &obj_priv->base;
2208 2209
				if (obj->size >= min_size)
					break;
2210

2211 2212
				obj = NULL;
			}
2213

2214 2215
			if (obj != NULL) {
				uint32_t seqno;
2216

2217 2218
				i915_gem_flush_ring(dev,
					       obj->write_domain,
2219
					       obj->write_domain,
2220 2221 2222 2223
					       obj_priv->ring);
				seqno = i915_add_request(dev, NULL,
						obj->write_domain,
						obj_priv->ring);
2224 2225 2226 2227
				if (seqno == 0)
					return -ENOMEM;
				continue;
			}
2228 2229
		}

2230 2231 2232
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2233
		 */
2234
		if (!list_empty (&dev_priv->mm.inactive_list))
2235
			return i915_gem_evict_from_inactive_list(dev);
2236
		else
2237
			return i915_gem_evict_everything(dev);
2238 2239 2240
	}
}

2241
int
2242 2243
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2244
{
2245
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2246 2247 2248 2249 2250
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2251 2252 2253
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2254
	if (obj_priv->pages_refcount++ != 0)
2255 2256 2257 2258 2259 2260
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2261
	BUG_ON(obj_priv->pages != NULL);
2262
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2263 2264
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2265 2266 2267 2268 2269 2270
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2271 2272 2273 2274
		page = read_cache_page_gfp(mapping, i,
					   mapping_gfp_mask (mapping) |
					   __GFP_COLD |
					   gfpmask);
2275 2276 2277
		if (IS_ERR(page))
			goto err_pages;

2278
		obj_priv->pages[i] = page;
2279
	}
2280 2281 2282 2283

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2284
	return 0;
2285 2286 2287 2288 2289 2290 2291 2292 2293

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2294 2295
}

2296 2297 2298 2299 2300
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2301
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2318 2319 2320 2321 2322
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2323
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2343
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2344
	int regnum = obj_priv->fence_reg;
2345
	int tile_width;
2346
	uint32_t fence_reg, val;
2347 2348 2349 2350
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2351
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2352
		     __func__, obj_priv->gtt_offset, obj->size);
2353 2354 2355
		return;
	}

2356 2357 2358
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2359
	else
2360 2361 2362 2363 2364
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2365

2366 2367 2368 2369 2370 2371
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2372 2373 2374 2375 2376 2377 2378
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2379 2380 2381 2382 2383
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2384 2385 2386 2387 2388 2389 2390
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2391
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2392 2393 2394
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2395
	uint32_t fence_size_bits;
2396

2397
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2398
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2399
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2400
		     __func__, obj_priv->gtt_offset);
2401 2402 2403
		return;
	}

2404 2405 2406 2407
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2408 2409 2410
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2411 2412 2413
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2414 2415 2416 2417 2418 2419
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2435
		obj_priv = to_intel_bo(reg->obj);
2436 2437 2438 2439 2440 2441 2442 2443 2444
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2445 2446 2447 2448
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2486 2487
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2488 2489
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2490
	struct drm_i915_private *dev_priv = dev->dev_private;
2491
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2492
	struct drm_i915_fence_reg *reg = NULL;
2493
	int ret;
2494

2495 2496
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2497 2498
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499 2500 2501
		return 0;
	}

2502 2503 2504 2505 2506
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2507 2508 2509 2510 2511
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2512 2513
		break;
	case I915_TILING_Y:
2514 2515 2516 2517 2518
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2519 2520 2521
		break;
	}

2522 2523 2524
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2525

2526 2527
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2528
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2529

2530 2531
	reg->obj = obj;

2532 2533 2534
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2535 2536 2537 2538 2539
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2540

2541 2542
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2543

2544
	return 0;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2558
	drm_i915_private_t *dev_priv = dev->dev_private;
2559
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2560 2561
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2562

2563 2564 2565 2566
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2567
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2568
	} else {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2579

2580
	reg->obj = NULL;
2581
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2582
	list_del_init(&reg->lru_list);
2583 2584
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2597
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2598 2599 2600 2601

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2602 2603 2604 2605 2606 2607
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

2621
	i915_gem_object_flush_gtt_write_domain(obj);
2622 2623 2624 2625 2626
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2627 2628 2629 2630 2631 2632 2633 2634
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2635
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2636
	struct drm_mm_node *free_space;
2637
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2638
	int ret;
2639

C
Chris Wilson 已提交
2640
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2641 2642 2643 2644
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2645
	if (alignment == 0)
2646
		alignment = i915_gem_get_gtt_alignment(obj);
2647
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2648 2649 2650 2651
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2652 2653 2654 2655 2656 2657 2658 2659
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2678
		ret = i915_gem_evict_something(dev, obj->size);
2679
		if (ret)
2680
			return ret;
2681

2682 2683 2684 2685
		goto search_free;
	}

#if WATCH_BUF
2686
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2687 2688
		 obj->size, obj_priv->gtt_offset);
#endif
2689
	ret = i915_gem_object_get_pages(obj, gfpmask);
2690 2691 2692
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2693 2694 2695 2696 2697 2698

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				/* now try to shrink everyone else */
2699 2700 2701
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2702 2703 2704 2705 2706 2707 2708 2709
				}

				return ret;
			}

			goto search_free;
		}

2710 2711 2712 2713 2714 2715 2716
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2717
					       obj_priv->pages,
2718
					       obj->size >> PAGE_SHIFT,
2719 2720
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2721
	if (obj_priv->agp_mem == NULL) {
2722
		i915_gem_object_put_pages(obj);
2723 2724
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2725 2726

		ret = i915_gem_evict_something(dev, obj->size);
2727
		if (ret)
2728 2729 2730
			return ret;

		goto search_free;
2731 2732 2733 2734 2735 2736 2737 2738
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2739 2740
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2741

C
Chris Wilson 已提交
2742 2743
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2744 2745 2746 2747 2748 2749
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2750
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2751 2752 2753 2754 2755

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2756
	if (obj_priv->pages == NULL)
2757 2758
		return;

C
Chris Wilson 已提交
2759
	trace_i915_gem_object_clflush(obj);
2760

2761
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2762 2763
}

2764 2765 2766 2767 2768
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2769
	uint32_t old_write_domain;
2770
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2771 2772 2773 2774 2775

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2776
	old_write_domain = obj->write_domain;
2777
	i915_gem_flush(dev, 0, obj->write_domain);
2778
	(void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2779
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2780 2781 2782 2783

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2784 2785 2786 2787 2788 2789
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2790 2791
	uint32_t old_write_domain;

2792 2793 2794 2795 2796 2797 2798
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2799
	old_write_domain = obj->write_domain;
2800
	obj->write_domain = 0;
C
Chris Wilson 已提交
2801 2802 2803 2804

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2805 2806 2807 2808 2809 2810 2811
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2812
	uint32_t old_write_domain;
2813 2814 2815 2816 2817 2818

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2819
	old_write_domain = obj->write_domain;
2820
	obj->write_domain = 0;
C
Chris Wilson 已提交
2821 2822 2823 2824

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2825 2826
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
void
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
		i915_gem_object_flush_gpu_write_domain(obj);
		break;
	}
}

2843 2844 2845 2846 2847 2848
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2849
int
2850 2851
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2852
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2853
	uint32_t old_write_domain, old_read_domains;
2854
	int ret;
2855

2856 2857 2858 2859
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2860 2861 2862 2863 2864 2865
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2866 2867 2868
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2869 2870
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2871
	 */
2872 2873
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2874

2875
	i915_gem_object_flush_cpu_write_domain(obj);
2876

2877 2878 2879 2880 2881 2882 2883 2884
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2885 2886
	}

C
Chris Wilson 已提交
2887 2888 2889 2890
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2891 2892 2893
	return 0;
}

2894 2895 2896 2897 2898 2899 2900 2901
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2902
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

	i915_gem_object_flush_gpu_write_domain(obj);

	/* Wait on any GPU rendering and flushing to occur. */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
2918 2919 2920 2921
		ret = i915_do_wait_request(dev,
				obj_priv->last_rendering_seqno,
				0,
				obj_priv->ring);
2922 2923 2924 2925
		if (ret != 0)
			return ret;
	}

2926 2927
	i915_gem_object_flush_cpu_write_domain(obj);

2928 2929 2930 2931 2932 2933 2934
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2935
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2955
	uint32_t old_write_domain, old_read_domains;
2956 2957 2958
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2959
	/* Wait on any GPU rendering and flushing to occur. */
2960 2961 2962
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2963

2964
	i915_gem_object_flush_gtt_write_domain(obj);
2965

2966 2967
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2968
	 */
2969
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2970

C
Chris Wilson 已提交
2971 2972 2973
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2974 2975
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2976 2977
		i915_gem_clflush_object(obj);

2978
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2979 2980 2981 2982 2983
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2984 2985 2986 2987 2988 2989 2990 2991 2992
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2993

C
Chris Wilson 已提交
2994 2995 2996 2997
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2998 2999 3000
	return 0;
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3112
static void
3113
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3114 3115
{
	struct drm_device		*dev = obj->dev;
3116
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3117 3118
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3119
	uint32_t			old_read_domains;
3120

3121 3122
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3123

3124 3125
	intel_mark_busy(dev, obj);

3126 3127 3128
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
3129 3130
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3131 3132 3133 3134 3135
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3136 3137
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3138 3139 3140 3141 3142 3143 3144 3145 3146
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3147 3148
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3149
		flush_domains |= obj->write_domain;
3150 3151
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3152 3153 3154 3155 3156
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3157
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3158 3159 3160 3161 3162 3163 3164 3165
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3166 3167
	old_read_domains = obj->read_domains;

3168 3169 3170 3171 3172 3173 3174 3175
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3176
	obj->read_domains = obj->pending_read_domains;
3177 3178 3179 3180 3181 3182 3183 3184 3185

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3186 3187 3188 3189

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3190 3191 3192
}

/**
3193
 * Moves the object from a partially CPU read to a full one.
3194
 *
3195 3196
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3197
 */
3198 3199
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3200
{
3201
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3214
			drm_clflush_pages(obj_priv->pages + i, 1);
3215 3216 3217 3218 3219 3220
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3221
	kfree(obj_priv->page_cpu_valid);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3241
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3242
	uint32_t old_read_domains;
3243
	int i, ret;
3244

3245 3246
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3247

3248 3249
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3250
	ret = i915_gem_object_wait_rendering(obj);
3251
	if (ret != 0)
3252
		return ret;
3253 3254 3255 3256 3257 3258
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3259

3260 3261 3262
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3263
	if (obj_priv->page_cpu_valid == NULL) {
3264 3265
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3266 3267 3268 3269
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3270 3271 3272 3273

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3274 3275
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3276 3277 3278
		if (obj_priv->page_cpu_valid[i])
			continue;

3279
		drm_clflush_pages(obj_priv->pages + i, 1);
3280 3281 3282 3283

		obj_priv->page_cpu_valid[i] = 1;
	}

3284 3285 3286 3287 3288
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3289
	old_read_domains = obj->read_domains;
3290 3291
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3292 3293 3294 3295
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3296 3297 3298 3299 3300 3301 3302 3303 3304
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3305
				 struct drm_i915_gem_exec_object2 *entry,
3306
				 struct drm_i915_gem_relocation_entry *relocs)
3307 3308
{
	struct drm_device *dev = obj->dev;
3309
	drm_i915_private_t *dev_priv = dev->dev_private;
3310
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3311
	int i, ret;
3312
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3313 3314 3315 3316 3317 3318
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3319 3320 3321 3322 3323 3324 3325
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3326 3327 3328 3329 3330 3331

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3344 3345 3346 3347 3348 3349
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3350
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3351 3352
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3353 3354
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3355 3356

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3357
						   reloc->target_handle);
3358 3359 3360 3361
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
3362
		target_obj_priv = to_intel_bo(target_obj);
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3379 3380 3381 3382 3383
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3384
				  reloc->target_handle);
3385 3386 3387 3388 3389
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3390
		/* Validate that the target is in a valid r/w GPU domain */
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3401 3402
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3403 3404 3405
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3406 3407 3408 3409
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3410 3411
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3412 3413
			return -EINVAL;
		}
3414 3415
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3416 3417 3418
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3419 3420 3421
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3422 3423 3424 3425 3426 3427
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3428 3429
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3430 3431 3432 3433

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3434
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3435 3436 3437 3438
			drm_gem_object_unreference(target_obj);
			continue;
		}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3470 3471 3472 3473 3474
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3475 3476 3477 3478 3479
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3480
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3481 3482 3483
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3484
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3485
						   (reloc_offset & (PAGE_SIZE - 1)));
3486
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3487 3488 3489

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3490
			  obj, (unsigned int) reloc->offset,
3491 3492 3493
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3494
		io_mapping_unmap_atomic(reloc_page);
3495

3496 3497
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3498
		 */
3499
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3514 3515 3516 3517
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3518 3519 3520 3521 3522 3523 3524 3525
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3526
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3527 3528

	mutex_lock(&dev->struct_mutex);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3539
		ret = i915_wait_request(dev, request->seqno, request->ring);
3540 3541 3542
		if (ret != 0)
			break;
	}
3543
	mutex_unlock(&dev->struct_mutex);
3544

3545 3546 3547
	return ret;
}

3548
static int
J
Jesse Barnes 已提交
3549
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3563
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3564 3565
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3566
		return -ENOMEM;
J
Jesse Barnes 已提交
3567
	}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3579
			drm_free_large(*relocs);
3580
			*relocs = NULL;
3581
			return -EFAULT;
3582 3583 3584 3585 3586
		}

		reloc_index += exec_list[i].relocation_count;
	}

3587
	return 0;
3588 3589 3590
}

static int
J
Jesse Barnes 已提交
3591
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3592 3593 3594 3595
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3596
	int ret = 0;
3597

3598 3599 3600
	if (relocs == NULL)
	    return 0;

3601 3602
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3603
		int unwritten;
3604 3605 3606

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3607 3608 3609 3610 3611 3612 3613 3614
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3615 3616 3617 3618 3619
		}

		reloc_count += exec_list[i].relocation_count;
	}

3620
err:
3621
	drm_free_large(relocs);
3622 3623 3624 3625

	return ret;
}

3626
static int
J
Jesse Barnes 已提交
3627
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3658
			obj_priv = to_intel_bo(object_list[i]);
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3679
int
J
Jesse Barnes 已提交
3680 3681 3682 3683
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3684 3685 3686 3687
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3688
	struct drm_i915_gem_object *obj_priv;
3689
	struct drm_clip_rect *cliprects = NULL;
3690
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3691
	int ret = 0, ret2, i, pinned = 0;
3692
	uint64_t exec_offset;
3693
	uint32_t seqno, flush_domains, reloc_index;
3694
	int pin_tries, flips;
3695

3696 3697
	struct intel_ring_buffer *ring = NULL;

3698 3699 3700 3701
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3712

3713 3714 3715 3716
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3717
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3718 3719
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3720 3721 3722 3723 3724
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3725
	if (args->num_cliprects != 0) {
3726 3727
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3728 3729
		if (cliprects == NULL) {
			ret = -ENOMEM;
3730
			goto pre_mutex_err;
3731
		}
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3744 3745 3746 3747 3748
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3749 3750 3751 3752
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3753
	if (atomic_read(&dev_priv->mm.wedged)) {
3754
		mutex_unlock(&dev->struct_mutex);
3755 3756
		ret = -EIO;
		goto pre_mutex_err;
3757 3758 3759 3760
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3761 3762
		ret = -EBUSY;
		goto pre_mutex_err;
3763 3764
	}

3765
	/* Look up object handles */
3766
	flips = 0;
3767 3768 3769 3770 3771 3772
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3773 3774
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3775 3776 3777
			ret = -EBADF;
			goto err;
		}
3778

3779
		obj_priv = to_intel_bo(object_list[i]);
3780 3781 3782
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3783 3784
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3785 3786 3787 3788
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3789 3790 3791 3792 3793 3794 3795 3796
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3797
	}
3798

3799 3800 3801
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3802 3803
		reloc_index = 0;

3804 3805 3806 3807 3808
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3809 3810
							       &exec_list[i],
							       &relocs[reloc_index]);
3811 3812 3813
			if (ret)
				break;
			pinned = i + 1;
3814
			reloc_index += exec_list[i].relocation_count;
3815 3816 3817 3818 3819 3820
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3821
		if (ret != -ENOSPC || pin_tries >= 1) {
3822 3823
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3824 3825 3826 3827
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
					obj_priv = object_list[i]->driver_private;

3828
					total_size += object_list[i]->size;
3829 3830 3831 3832 3833
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3834
					  pinned+1, args->buffer_count,
3835 3836
					  total_size, num_fences,
					  ret);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3847 3848
			goto err;
		}
3849 3850 3851 3852

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3853
		pinned = 0;
3854 3855 3856

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3857
		if (ret && ret != -ENOSPC)
3858
			goto err;
3859 3860 3861 3862
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3863 3864 3865 3866 3867 3868
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3869

3870 3871 3872 3873 3874 3875 3876 3877
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3878 3879
	i915_verify_inactive(dev, __FILE__, __LINE__);

3880 3881 3882 3883 3884 3885 3886
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3887 3888 3889
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3890
		/* Compute new gpu domains and update invalidate/flush */
3891
		i915_gem_object_set_to_gpu_domain(obj);
3892 3893 3894 3895
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3906
		if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3907
			(void)i915_add_request(dev, file_priv,
3908 3909 3910
					dev->flush_domains,
					&dev_priv->render_ring);

3911 3912 3913 3914
			if (HAS_BSD(dev))
				(void)i915_add_request(dev, file_priv,
						dev->flush_domains,
						&dev_priv->bsd_ring);
3915
		}
3916
	}
3917

3918 3919
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3920
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3921
		uint32_t old_write_domain = obj->write_domain;
3922 3923

		obj->write_domain = obj->pending_write_domain;
3924 3925 3926 3927 3928 3929
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3930 3931 3932
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3933 3934
	}

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3945
	i915_gem_dump_object(batch_obj,
3946 3947 3948 3949 3950 3951
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3952 3953
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3954 3955 3956 3957 3958 3959 3960 3961 3962
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3963
	flush_domains = i915_retire_commands(dev, ring);
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3974
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3975 3976 3977
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3978
		obj_priv = to_intel_bo(obj);
3979

3980
		i915_gem_object_move_to_active(obj, seqno, ring);
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3992 3993 3994
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3995 3996
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3997
			obj_priv = to_intel_bo(object_list[i]);
3998 3999
			obj_priv->in_execbuffer = false;
		}
4000
		drm_gem_object_unreference(object_list[i]);
4001
	}
4002 4003 4004

	mutex_unlock(&dev->struct_mutex);

4005
pre_mutex_err:
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

4020
	drm_free_large(object_list);
4021
	kfree(cliprects);
4022 4023 4024 4025

	return ret;
}

J
Jesse Barnes 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4092
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4171 4172 4173 4174
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4175
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4176 4177
	int ret;

4178 4179
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4180
	i915_verify_inactive(dev, __FILE__, __LINE__);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4192 4193
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4194
		if (ret)
4195
			return ret;
4196
	}
J
Jesse Barnes 已提交
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4207
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4221
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4234
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
4261
	obj_priv = to_intel_bo(obj);
4262

C
Chris Wilson 已提交
4263 4264
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4265 4266 4267 4268 4269
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4270 4271 4272
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4273
		drm_gem_object_unreference(obj);
4274
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4287 4288 4289 4290 4291
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4292
	i915_gem_object_flush_cpu_write_domain(obj);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4306
	struct drm_i915_gem_object *obj_priv;
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

4318
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4344
	drm_i915_private_t *dev_priv = dev->dev_private;
4345 4346 4347 4348 4349 4350 4351 4352

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4353
	mutex_lock(&dev->struct_mutex);
4354 4355 4356 4357 4358
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
4359
	i915_gem_retire_requests(dev, &dev_priv->render_ring);
4360

4361 4362 4363
	if (HAS_BSD(dev))
		i915_gem_retire_requests(dev, &dev_priv->bsd_ring);

4364
	obj_priv = to_intel_bo(obj);
4365 4366 4367 4368 4369 4370 4371 4372
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
4410
	obj_priv = to_intel_bo(obj);
4411 4412 4413 4414 4415 4416 4417 4418 4419

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4420 4421
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4422

4423 4424 4425 4426 4427
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4428 4429
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4430 4431 4432 4433 4434 4435
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4436 4437 4438
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4439
	struct drm_i915_gem_object *obj;
4440

4441 4442 4443
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4444

4445 4446 4447 4448
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4449

4450 4451
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4452

4453
	obj->agp_type = AGP_USER_MEMORY;
4454
	obj->base.driver_private = NULL;
4455 4456 4457 4458
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4459

4460 4461 4462 4463 4464 4465 4466 4467
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4468

4469 4470 4471 4472 4473
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4474
	struct drm_device *dev = obj->dev;
4475
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4476

C
Chris Wilson 已提交
4477 4478
	trace_i915_gem_object_destroy(obj);

4479 4480 4481
	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4482 4483 4484
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4485 4486
	i915_gem_object_unbind(obj);

4487 4488
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4489

4490 4491
	drm_gem_object_release(obj);

4492
	kfree(obj_priv->page_cpu_valid);
4493
	kfree(obj_priv->bit_17);
4494
	kfree(obj_priv);
4495 4496
}

4497
/** Unbinds all inactive objects. */
4498
static int
4499
i915_gem_evict_from_inactive_list(struct drm_device *dev)
4500
{
4501
	drm_i915_private_t *dev_priv = dev->dev_private;
4502

4503 4504 4505
	while (!list_empty(&dev_priv->mm.inactive_list)) {
		struct drm_gem_object *obj;
		int ret;
4506

4507 4508 4509
		obj = &list_first_entry(&dev_priv->mm.inactive_list,
					struct drm_i915_gem_object,
					list)->base;
4510 4511 4512

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
4513
			DRM_ERROR("Error unbinding object: %d\n", ret);
4514 4515 4516 4517 4518 4519 4520
			return ret;
		}
	}

	return 0;
}

4521 4522 4523 4524 4525
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4526

4527
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4528

4529
	if (dev_priv->mm.suspended ||
4530 4531 4532
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4533 4534
		mutex_unlock(&dev->struct_mutex);
		return 0;
4535 4536
	}

4537
	ret = i915_gpu_idle(dev);
4538 4539
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4540
		return ret;
4541
	}
4542

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
		ret = i915_gem_evict_from_inactive_list(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
	del_timer(&dev_priv->hangcheck_timer);

	i915_kernel_lost_context(dev);
4560
	i915_gem_cleanup_ringbuffer(dev);
4561

4562 4563
	mutex_unlock(&dev->struct_mutex);

4564 4565 4566
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4567 4568 4569
	return 0;
}

4570 4571 4572 4573
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4574
static int
4575 4576 4577 4578 4579 4580 4581
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4582
	obj = i915_gem_alloc_object(dev, 4096);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4613 4614

static void
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4629 4630
}

4631 4632 4633 4634 4635
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4636

4637
	dev_priv->render_ring = render_ring;
4638

4639 4640 4641 4642 4643 4644
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4645

4646 4647 4648 4649 4650
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4651

4652
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4653 4654 4655 4656
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4657 4658
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4659 4660
		if (ret)
			goto cleanup_render_ring;
4661
	}
4662 4663 4664 4665 4666 4667 4668 4669

	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4670 4671 4672 4673 4674 4675 4676 4677 4678
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4679 4680
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4681 4682 4683 4684
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4685 4686 4687 4688 4689 4690 4691
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4692 4693 4694
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4695
	if (atomic_read(&dev_priv->mm.wedged)) {
4696
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4697
		atomic_set(&dev_priv->mm.wedged, 0);
4698 4699 4700
	}

	mutex_lock(&dev->struct_mutex);
4701 4702 4703
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4704 4705
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4706
		return ret;
4707
	}
4708

4709
	spin_lock(&dev_priv->mm.active_list_lock);
4710
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4711
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4712 4713
	spin_unlock(&dev_priv->mm.active_list_lock);

4714 4715
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4716
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4717
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4718
	mutex_unlock(&dev->struct_mutex);
4719 4720 4721

	drm_irq_install(dev);

4722 4723 4724 4725 4726 4727 4728
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4729 4730 4731
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4732
	drm_irq_uninstall(dev);
4733
	return i915_gem_idle(dev);
4734 4735 4736 4737 4738 4739 4740
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4741 4742 4743
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4744 4745 4746
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4747 4748 4749 4750 4751
}

void
i915_gem_load(struct drm_device *dev)
{
4752
	int i;
4753 4754
	drm_i915_private_t *dev_priv = dev->dev_private;

4755
	spin_lock_init(&dev_priv->mm.active_list_lock);
4756
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4757
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4758
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4759
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4760 4761
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4762 4763 4764 4765
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4766 4767
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4768 4769
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4770 4771 4772 4773
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4774
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4775 4776
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4777

4778
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4779 4780 4781 4782
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4794
	i915_gem_detect_bit_6_swizzle(dev);
4795
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4796
}
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4812
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4813 4814 4815 4816 4817
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4818
	phys_obj->handle = drm_pci_alloc(dev, size, 0);
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4831
	kfree(phys_obj);
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4860
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4872
	obj_priv = to_intel_bo(obj);
4873 4874 4875
	if (!obj_priv->phys_obj)
		return;

4876
	ret = i915_gem_object_get_pages(obj, 0);
4877 4878 4879 4880 4881 4882
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4883
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4884 4885 4886 4887 4888
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4889
	drm_clflush_pages(obj_priv->pages, page_count);
4890
	drm_agp_chipset_flush(dev);
4891 4892

	i915_gem_object_put_pages(obj);
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4911
	obj_priv = to_intel_bo(obj);
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4925
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4926 4927 4928 4929 4930 4931 4932 4933
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4934
	ret = i915_gem_object_get_pages(obj, 0);
4935 4936 4937 4938 4939 4940 4941 4942
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4943
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4944 4945 4946 4947 4948 4949
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4950 4951
	i915_gem_object_put_pages(obj);

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4962
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4963 4964 4965 4966 4967 4968 4969
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4970
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4971 4972 4973 4974 4975 4976 4977
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4992

4993 4994 4995 4996 4997 4998 4999 5000
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5001
		      list_empty(&dev_priv->render_ring.active_list);
5002 5003
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5004 5005 5006 5007 5008
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

5038
rescan:
5039 5040 5041 5042 5043 5044 5045 5046 5047
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5048
		i915_gem_retire_requests(dev, &dev_priv->render_ring);
5049 5050 5051

		if (HAS_BSD(dev))
			i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5052 5053 5054 5055 5056

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5057
				i915_gem_object_unbind(&obj_priv->base);
5058 5059 5060 5061 5062 5063 5064 5065
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5066 5067
		would_deadlock = 0;

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5086
				i915_gem_object_unbind(&obj_priv->base);
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}