i915_gem.c 129.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

64 65 66 67 68 69 70 71
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
72 73
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
74 75 76
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
77 78 79
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
80 81 82
		return -EINVAL;
	}

J
Jesse Barnes 已提交
83 84
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
85

J
Jesse Barnes 已提交
86 87 88 89
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
90

J
Jesse Barnes 已提交
91 92 93 94 95 96 97 98 99
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
100 101
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
102
	return ret;
103 104
}

105 106 107 108 109 110 111 112 113 114
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
115 116
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
117 118 119 120

	return 0;
}

121 122 123 124 125 126 127 128 129 130

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
131 132
	int ret;
	u32 handle;
133 134 135 136

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
137
	obj = i915_gem_alloc_object(dev, args->size);
138 139 140 141
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
142 143
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
144
		return ret;
145
	}
146

147 148
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
149

150
	args->handle = handle;
151 152 153
	return 0;
}

154 155 156 157 158 159 160
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
161
	int unwritten;
162 163 164 165

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
166
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
167 168
	kunmap_atomic(vaddr, KM_USER0);

169 170 171 172
	if (unwritten)
		return -EFAULT;

	return 0;
173 174
}

175 176 177
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
178
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
179 180 181 182 183

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

184
static inline void
185 186 187 188 189 190 191 192
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

193 194
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
195 196 197

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

198 199
	kunmap(src_page);
	kunmap(dst_page);
200 201
}

202
static inline void
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

222 223
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

247 248
	kunmap(cpu_page);
	kunmap(gpu_page);
249 250
}

251 252 253 254 255 256 257 258 259 260
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
261
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
262 263 264 265 266 267 268 269 270 271 272
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

273
	ret = i915_gem_object_get_pages(obj, 0);
274 275 276 277 278 279 280 281
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

282
	obj_priv = to_intel_bo(obj);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

317 318 319 320 321
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

322
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
323 324 325 326 327 328 329

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

330 331
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
332 333 334
		if (ret)
			return ret;

335
		ret = i915_gem_object_get_pages(obj, 0);
336 337 338 339 340
	}

	return ret;
}

341 342 343 344 345 346 347 348 349 350 351
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
352
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
353 354 355 356 357 358 359 360 361 362
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
363
	int do_bit17_swizzling;
364 365 366 367 368 369 370 371 372 373 374

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

375
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
376 377 378 379 380
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
381
				      num_pages, 1, 0, user_pages, NULL);
382 383 384 385 386 387
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

388 389
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

390 391
	mutex_lock(&dev->struct_mutex);

392 393
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
394 395 396 397 398 399 400
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

401
	obj_priv = to_intel_bo(obj);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

424
		if (do_bit17_swizzling) {
425
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
426
					      shmem_page_offset,
427 428 429 430 431 432 433 434 435 436
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
437
		}
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
453
	drm_free_large(user_pages);
454 455 456 457

	return ret;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
474
		return -ENOENT;
475
	obj_priv = to_intel_bo(obj);
476 477 478 479 480 481 482

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
483
		drm_gem_object_unreference_unlocked(obj);
484 485 486
		return -EINVAL;
	}

487
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
488
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
489 490 491 492 493 494
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
495

496
	drm_gem_object_unreference_unlocked(obj);
497

498
	return ret;
499 500
}

501 502
/* This is the fast write path which cannot handle
 * page faults in the source data
503
 */
504 505 506 507 508 509

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
510 511
{
	char *vaddr_atomic;
512
	unsigned long unwritten;
513

514
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
515 516
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
517
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
518 519 520 521 522 523 524 525 526
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

527
static inline void
528 529 530 531
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
532
{
533 534
	char __iomem *dst_vaddr;
	char *src_vaddr;
535

536 537 538 539 540 541 542 543 544
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
545 546
}

547 548 549 550 551 552 553
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
554
	unsigned long unwritten;
555 556 557 558

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
559
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
560 561
	kunmap_atomic(vaddr, KM_USER0);

562 563
	if (unwritten)
		return -EFAULT;
564 565 566
	return 0;
}

567 568 569 570
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
571
static int
572 573 574
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
575
{
576
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
577
	drm_i915_private_t *dev_priv = dev->dev_private;
578
	ssize_t remain;
579
	loff_t offset, page_base;
580
	char __user *user_data;
581 582
	int page_offset, page_length;
	int ret;
583 584 585 586 587 588 589 590 591 592 593 594 595

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
596
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
597 598 599
	if (ret)
		goto fail;

600
	obj_priv = to_intel_bo(obj);
601 602 603 604 605
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
606 607 608
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
609
		 */
610 611 612 613 614 615 616 617 618 619
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
620 621
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
622
		 */
623 624
		if (ret)
			goto fail;
625

626 627 628
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
629 630 631 632 633 634 635 636 637
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

638 639 640 641 642 643 644
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
645
static int
646 647 648
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
649
{
650
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
651 652 653 654 655 656 657 658
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
659
	int ret;
660 661 662 663 664 665 666 667 668 669 670 671
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

672
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
673 674 675 676 677 678 679 680 681 682 683
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
684 685

	mutex_lock(&dev->struct_mutex);
686 687 688 689 690 691 692 693
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

694
	obj_priv = to_intel_bo(obj);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

717 718 719 720 721
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
722 723 724 725 726 727 728 729 730 731 732 733 734

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
735
	drm_free_large(user_pages);
736 737 738 739

	return ret;
}

740 741 742 743
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
744
static int
745 746 747
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
748
{
749
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
750 751 752 753
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
754
	int ret;
755 756 757

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
758 759 760

	mutex_lock(&dev->struct_mutex);

761
	ret = i915_gem_object_get_pages(obj, 0);
762 763
	if (ret != 0)
		goto fail_unlock;
764

765
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
766 767 768
	if (ret != 0)
		goto fail_put_pages;

769
	obj_priv = to_intel_bo(obj);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
817
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 819 820 821 822 823 824 825 826 827
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
828
	int do_bit17_swizzling;
829 830 831 832 833 834 835 836 837 838 839

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

840
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
841 842 843 844 845 846 847 848 849 850
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
851 852
	}

853 854
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

855 856
	mutex_lock(&dev->struct_mutex);

857 858
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
859 860 861 862 863 864
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

865
	obj_priv = to_intel_bo(obj);
866
	offset = args->offset;
867
	obj_priv->dirty = 1;
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

889
		if (do_bit17_swizzling) {
890
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
891 892 893
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
894 895 896 897 898 899 900 901
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
902
		}
903 904 905 906

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
907 908
	}

909 910 911
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
912
	mutex_unlock(&dev->struct_mutex);
913 914 915
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
916
	drm_free_large(user_pages);
917

918
	return ret;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
937
		return -ENOENT;
938
	obj_priv = to_intel_bo(obj);
939 940 941 942 943 944 945

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
946
		drm_gem_object_unreference_unlocked(obj);
947 948 949 950 951 952 953 954 955
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
956 957 958
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
959 960
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
961 962 963 964 965
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
966 967
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
968 969 970 971 972 973 974
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
975 976 977 978 979 980

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

981
	drm_gem_object_unreference_unlocked(obj);
982 983 984 985 986

	return ret;
}

/**
987 988
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
989 990 991 992 993
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
994
	struct drm_i915_private *dev_priv = dev->dev_private;
995 996
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
997
	struct drm_i915_gem_object *obj_priv;
998 999
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1000 1001 1002 1003 1004
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1005
	/* Only handle setting domains to types used by the CPU. */
1006
	if (write_domain & I915_GEM_GPU_DOMAINS)
1007 1008
		return -EINVAL;

1009
	if (read_domains & I915_GEM_GPU_DOMAINS)
1010 1011 1012 1013 1014 1015 1016 1017
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1018 1019
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1020
		return -ENOENT;
1021
	obj_priv = to_intel_bo(obj);
1022 1023

	mutex_lock(&dev->struct_mutex);
1024 1025 1026

	intel_mark_busy(dev, obj);

1027
#if WATCH_BUF
1028
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1029
		 obj, obj->size, read_domains, write_domain);
1030
#endif
1031 1032
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1033

1034 1035 1036 1037
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1038 1039 1040
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1041 1042 1043
				       &dev_priv->mm.fence_list);
		}

1044 1045 1046 1047 1048 1049
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1050
	} else {
1051
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1052 1053
	}

1054 1055 1056 1057 1058
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1083
		return -ENOENT;
1084 1085 1086
	}

#if WATCH_BUF
1087
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1088 1089
		 __func__, args->handle, obj, obj->size);
#endif
1090
	obj_priv = to_intel_bo(obj);
1091 1092

	/* Pinned buffers may be scanout, so flush the cache */
1093 1094 1095
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1122
		return -ENOENT;
1123 1124 1125 1126 1127 1128 1129 1130

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1131
	drm_gem_object_unreference_unlocked(obj);
1132 1133 1134 1135 1136 1137 1138 1139
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1160
	drm_i915_private_t *dev_priv = dev->dev_private;
1161
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1162 1163 1164
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1165
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1166 1167 1168 1169 1170 1171 1172 1173

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1174
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1175 1176
		if (ret)
			goto unlock;
1177 1178

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1179 1180
		if (ret)
			goto unlock;
1181 1182 1183
	}

	/* Need a new fence register? */
1184
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1185
		ret = i915_gem_object_get_fence_reg(obj, true);
1186 1187
		if (ret)
			goto unlock;
1188
	}
1189

1190 1191 1192
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1193 1194 1195 1196 1197
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1198
unlock:
1199 1200 1201
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1202 1203 1204
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1205 1206 1207 1208
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1209
		return VM_FAULT_SIGBUS;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1229
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1230
	struct drm_map_list *list;
1231
	struct drm_local_map *map;
1232 1233 1234 1235
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1236
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1264
		ret = -ENOMEM;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1277
	kfree(list->map);
1278 1279 1280 1281

	return ret;
}

1282 1283 1284 1285
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1286
 * Preserve the reservation of the mmapping with the DRM core code, but
1287 1288 1289 1290 1291 1292 1293 1294 1295
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1296
void
1297 1298 1299
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1300
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1301 1302 1303 1304 1305 1306

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1307 1308 1309 1310
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1311
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1324
		kfree(list->map);
1325 1326 1327 1328 1329 1330
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1342
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1343 1344 1345 1346 1347 1348
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1349
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1350 1351 1352 1353 1354 1355
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1356
	if (INTEL_INFO(dev)->gen == 3)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1396
		return -ENOENT;
1397 1398 1399

	mutex_lock(&dev->struct_mutex);

1400
	obj_priv = to_intel_bo(obj);
1401

1402 1403 1404 1405 1406 1407 1408 1409
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1410 1411
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1412 1413 1414
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1415
			return ret;
1416
		}
1417 1418 1419 1420 1421 1422 1423 1424 1425
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1426
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1440
void
1441
i915_gem_object_put_pages(struct drm_gem_object *obj)
1442
{
1443
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1444 1445 1446
	int page_count = obj->size / PAGE_SIZE;
	int i;

1447
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1448
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1449

1450 1451
	if (--obj_priv->pages_refcount != 0)
		return;
1452

1453 1454 1455
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1456
	if (obj_priv->madv == I915_MADV_DONTNEED)
1457
		obj_priv->dirty = 0;
1458 1459 1460 1461 1462 1463

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1464
			mark_page_accessed(obj_priv->pages[i]);
1465 1466 1467

		page_cache_release(obj_priv->pages[i]);
	}
1468 1469
	obj_priv->dirty = 0;

1470
	drm_free_large(obj_priv->pages);
1471
	obj_priv->pages = NULL;
1472 1473
}

1474
static uint32_t
1475 1476
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
1477 1478 1479
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1480 1481
	ring->outstanding_lazy_request = true;

1482 1483 1484
	return dev_priv->next_seqno;
}

1485
static void
1486
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1487
			       struct intel_ring_buffer *ring)
1488 1489
{
	struct drm_device *dev = obj->dev;
1490
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 1492
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);

1493 1494
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1495 1496 1497 1498 1499 1500

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1501

1502
	/* Move from whatever list we were on to the tail of execution. */
1503
	list_move_tail(&obj_priv->list, &ring->active_list);
1504
	obj_priv->last_rendering_seqno = seqno;
1505 1506
}

1507 1508 1509 1510 1511
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 1514 1515 1516 1517

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1518

1519 1520 1521 1522
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1523
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1524
	struct inode *inode;
1525

1526 1527 1528 1529 1530 1531
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1532
	inode = obj->filp->f_path.dentry->d_inode;
1533 1534 1535
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1536 1537

	obj_priv->madv = __I915_MADV_PURGED;
1538 1539 1540 1541 1542 1543 1544 1545
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1546 1547 1548 1549 1550
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1551
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1552 1553 1554 1555 1556 1557 1558

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1559 1560
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1561
	obj_priv->last_rendering_seqno = 0;
1562
	obj_priv->ring = NULL;
1563 1564 1565 1566 1567 1568 1569
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1570
void
1571
i915_gem_process_flushing_list(struct drm_device *dev,
1572
			       uint32_t flush_domains,
1573
			       struct intel_ring_buffer *ring)
1574 1575 1576 1577 1578 1579 1580
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1581
		struct drm_gem_object *obj = &obj_priv->base;
1582

1583 1584
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1585 1586 1587 1588
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1589
			i915_gem_object_move_to_active(obj, ring);
1590 1591

			/* update the fence lru list */
1592 1593 1594 1595
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1596
						&dev_priv->mm.fence_list);
1597
			}
1598 1599 1600 1601 1602 1603 1604

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1605

1606
uint32_t
1607 1608
i915_add_request(struct drm_device *dev,
		 struct drm_file *file_priv,
C
Chris Wilson 已提交
1609
		 struct drm_i915_gem_request *request,
1610
		 struct intel_ring_buffer *ring)
1611 1612
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1613
	struct drm_i915_file_private *i915_file_priv = NULL;
1614 1615 1616
	uint32_t seqno;
	int was_empty;

1617 1618 1619
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

C
Chris Wilson 已提交
1620 1621 1622 1623 1624
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1625

1626
	seqno = ring->add_request(dev, ring, file_priv, 0);
1627 1628

	request->seqno = seqno;
1629
	request->ring = ring;
1630
	request->emitted_jiffies = jiffies;
1631 1632 1633
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1634 1635 1636 1637 1638 1639
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1640

B
Ben Gamari 已提交
1641
	if (!dev_priv->mm.suspended) {
1642 1643
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1644
		if (was_empty)
1645 1646
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1647
	}
1648 1649 1650 1651 1652 1653 1654 1655 1656
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1657
static void
1658
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1659 1660 1661 1662
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1663
	if (INTEL_INFO(dev)->gen >= 4)
1664
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1665 1666 1667

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1668 1669 1670 1671 1672
}

/**
 * Returns true if seq1 is later than seq2.
 */
1673
bool
1674 1675 1676 1677 1678 1679
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1680
i915_get_gem_seqno(struct drm_device *dev,
1681
		   struct intel_ring_buffer *ring)
1682
{
1683
	return ring->get_gem_seqno(dev, ring);
1684 1685 1686 1687 1688
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1689 1690 1691
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1692 1693 1694
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1695
	bool wedged;
1696

1697 1698
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1699 1700
		return;

1701
	seqno = i915_get_gem_seqno(dev, ring);
1702
	wedged = atomic_read(&dev_priv->mm.wedged);
1703

1704
	while (!list_empty(&ring->request_list)) {
1705 1706
		struct drm_i915_gem_request *request;

1707
		request = list_first_entry(&ring->request_list,
1708 1709 1710
					   struct drm_i915_gem_request,
					   list);

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		if (!wedged && !i915_seqno_passed(seqno, request->seqno))
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
		list_del(&request->client_list);
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1731

1732 1733
		if (!wedged &&
		    !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1734
			break;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

		obj = &obj_priv->base;

#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1747
	}
1748 1749 1750

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1751
		ring->user_irq_put(dev, ring);
1752 1753
		dev_priv->trace_irq_seqno = 0;
	}
1754 1755
}

1756 1757 1758 1759 1760
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1775 1776 1777 1778 1779
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1780
static void
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1791
	i915_gem_retire_requests(dev);
1792

1793
	if (!dev_priv->mm.suspended &&
1794 1795 1796
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1797
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1798 1799 1800
	mutex_unlock(&dev->struct_mutex);
}

1801
int
1802
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1803
		     bool interruptible, struct intel_ring_buffer *ring)
1804 1805
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1806
	u32 ier;
1807 1808 1809 1810
	int ret = 0;

	BUG_ON(seqno == 0);

1811
	if (seqno == dev_priv->next_seqno) {
C
Chris Wilson 已提交
1812
		seqno = i915_add_request(dev, NULL, NULL, ring);
1813 1814 1815 1816
		if (seqno == 0)
			return -ENOMEM;
	}

1817
	if (atomic_read(&dev_priv->mm.wedged))
1818 1819
		return -EIO;

1820
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1821
		if (HAS_PCH_SPLIT(dev))
1822 1823 1824
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1825 1826 1827 1828 1829 1830 1831
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1832 1833
		trace_i915_gem_request_wait_begin(dev, seqno);

1834
		ring->waiting_gem_seqno = seqno;
1835
		ring->user_irq_get(dev, ring);
1836
		if (interruptible)
1837 1838 1839 1840
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1841
		else
1842 1843 1844 1845
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1846

1847
		ring->user_irq_put(dev, ring);
1848
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1849 1850

		trace_i915_gem_request_wait_end(dev, seqno);
1851
	}
1852
	if (atomic_read(&dev_priv->mm.wedged))
1853 1854 1855
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
1856 1857 1858
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
			  dev_priv->next_seqno);
1859 1860 1861 1862 1863 1864 1865

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1866
		i915_gem_retire_requests_ring(dev, ring);
1867 1868 1869 1870

	return ret;
}

1871 1872 1873 1874 1875
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1876 1877
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1878
{
1879
	return i915_do_wait_request(dev, seqno, 1, ring);
1880 1881
}

1882 1883 1884 1885 1886 1887
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1888

1889 1890
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
1891

1892 1893 1894
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1895 1896 1897 1898 1899

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1900 1901
}

1902 1903 1904 1905 1906
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
1907 1908
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
1909 1910
{
	struct drm_device *dev = obj->dev;
1911
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1912 1913
	int ret;

1914 1915
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1916
	 */
1917
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1918 1919 1920 1921 1922 1923 1924 1925 1926

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1927 1928 1929 1930 1931
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
1932 1933 1934 1935 1936 1937 1938 1939 1940
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1941
int
1942 1943 1944
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1945
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1960 1961 1962
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1963 1964 1965 1966 1967 1968
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1969
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1970
	if (ret == -ERESTARTSYS)
1971
		return ret;
1972 1973 1974 1975
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
1976

1977 1978 1979 1980
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1981 1982 1983 1984 1985 1986
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1987
	i915_gem_object_put_pages(obj);
1988
	BUG_ON(obj_priv->pages_refcount);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

2002 2003 2004
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2005 2006
	trace_i915_gem_object_unbind(obj);

2007
	return ret;
2008 2009
}

2010
int
2011 2012 2013 2014
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2015
	int ret;
2016

2017 2018 2019 2020
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2021 2022 2023 2024 2025
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2026 2027 2028 2029

	ret = i915_wait_request(dev,
				i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
				&dev_priv->render_ring);
2030 2031
	if (ret)
		return ret;
2032 2033

	if (HAS_BSD(dev)) {
2034 2035 2036
		ret = i915_wait_request(dev,
					i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
					&dev_priv->bsd_ring);
2037 2038 2039 2040
		if (ret)
			return ret;
	}

2041
	return 0;
2042 2043
}

2044
int
2045 2046
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2047
{
2048
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2049 2050 2051 2052 2053
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2054 2055 2056
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2057
	if (obj_priv->pages_refcount++ != 0)
2058 2059 2060 2061 2062 2063
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2064
	BUG_ON(obj_priv->pages != NULL);
2065
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2066 2067
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2068 2069 2070 2071 2072 2073
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2074
		page = read_cache_page_gfp(mapping, i,
2075
					   GFP_HIGHUSER |
2076
					   __GFP_COLD |
2077
					   __GFP_RECLAIMABLE |
2078
					   gfpmask);
2079 2080 2081
		if (IS_ERR(page))
			goto err_pages;

2082
		obj_priv->pages[i] = page;
2083
	}
2084 2085 2086 2087

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2088
	return 0;
2089 2090 2091 2092 2093 2094 2095 2096 2097

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2098 2099
}

2100 2101 2102 2103 2104
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2105
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2122 2123 2124 2125 2126
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2127
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2147
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2148
	int regnum = obj_priv->fence_reg;
2149
	int tile_width;
2150
	uint32_t fence_reg, val;
2151 2152 2153 2154
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2155
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2156
		     __func__, obj_priv->gtt_offset, obj->size);
2157 2158 2159
		return;
	}

2160 2161 2162
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2163
	else
2164 2165 2166 2167 2168
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2169

2170 2171 2172 2173 2174 2175
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2176 2177 2178 2179 2180 2181 2182
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2183 2184 2185 2186 2187
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2188 2189 2190 2191 2192 2193 2194
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2195
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2196 2197 2198
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2199
	uint32_t fence_size_bits;
2200

2201
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2202
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2203
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2204
		     __func__, obj_priv->gtt_offset);
2205 2206 2207
		return;
	}

2208 2209 2210 2211
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2212 2213 2214
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2215 2216 2217
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2218 2219 2220 2221 2222 2223
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2224 2225
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2240
		obj_priv = to_intel_bo(reg->obj);
2241 2242 2243 2244 2245 2246 2247 2248 2249
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2250 2251 2252 2253
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2270
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2271 2272 2273 2274 2275 2276 2277
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2291
int
2292 2293
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2294 2295
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2296
	struct drm_i915_private *dev_priv = dev->dev_private;
2297
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2298
	struct drm_i915_fence_reg *reg = NULL;
2299
	int ret;
2300

2301 2302
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2303 2304
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2305 2306 2307
		return 0;
	}

2308 2309 2310 2311 2312
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2313 2314 2315 2316 2317
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2318 2319
		break;
	case I915_TILING_Y:
2320 2321 2322 2323 2324
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2325 2326 2327
		break;
	}

2328
	ret = i915_find_fence_reg(dev, interruptible);
2329 2330
	if (ret < 0)
		return ret;
2331

2332 2333
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2334
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2335

2336 2337
	reg->obj = obj;

2338 2339
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2340
		sandybridge_write_fence_reg(reg);
2341 2342 2343
		break;
	case 5:
	case 4:
2344
		i965_write_fence_reg(reg);
2345 2346
		break;
	case 3:
2347
		i915_write_fence_reg(reg);
2348 2349
		break;
	case 2:
2350
		i830_write_fence_reg(reg);
2351 2352
		break;
	}
2353

2354 2355
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2356

2357
	return 0;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2371
	drm_i915_private_t *dev_priv = dev->dev_private;
2372
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2373 2374
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2375
	uint32_t fence_reg;
2376

2377 2378
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2379 2380
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2381 2382 2383
		break;
	case 5:
	case 4:
2384
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2385 2386 2387 2388
		break;
	case 3:
		if (obj_priv->fence_reg > 8)
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2389
		else
2390 2391
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2392 2393

		I915_WRITE(fence_reg, 0);
2394
		break;
2395
	}
2396

2397
	reg->obj = NULL;
2398
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2399
	list_del_init(&reg->lru_list);
2400 2401
}

2402 2403 2404 2405
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2406
 * @bool: whether the wait upon the fence is interruptible
2407 2408 2409 2410 2411
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2412 2413
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2414 2415
{
	struct drm_device *dev = obj->dev;
2416
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2417 2418 2419 2420

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2421 2422 2423 2424 2425 2426
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2427 2428 2429 2430
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
2431
	if (INTEL_INFO(dev)->gen < 4) {
2432 2433
		int ret;

2434
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2435 2436 2437
		if (ret)
			return ret;

2438
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2439
		if (ret)
2440 2441 2442
			return ret;
	}

2443
	i915_gem_object_flush_gtt_write_domain(obj);
2444
	i915_gem_clear_fence_reg(obj);
2445 2446 2447 2448

	return 0;
}

2449 2450 2451 2452 2453 2454 2455 2456
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2457
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2458
	struct drm_mm_node *free_space;
2459
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2460
	int ret;
2461

C
Chris Wilson 已提交
2462
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2463 2464 2465 2466
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2467
	if (alignment == 0)
2468
		alignment = i915_gem_get_gtt_alignment(obj);
2469
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2470 2471 2472 2473
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2474 2475 2476 2477 2478 2479 2480 2481
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2482 2483 2484 2485 2486 2487
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2488
		if (obj_priv->gtt_space != NULL)
2489 2490 2491 2492 2493 2494 2495 2496 2497
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2498
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2499
		if (ret)
2500
			return ret;
2501

2502 2503 2504 2505
		goto search_free;
	}

#if WATCH_BUF
2506
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2507 2508
		 obj->size, obj_priv->gtt_offset);
#endif
2509
	ret = i915_gem_object_get_pages(obj, gfpmask);
2510 2511 2512
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2513 2514 2515

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2516 2517
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2518 2519
			if (ret) {
				/* now try to shrink everyone else */
2520 2521 2522
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2523 2524 2525 2526 2527 2528 2529 2530
				}

				return ret;
			}

			goto search_free;
		}

2531 2532 2533 2534 2535 2536 2537
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2538
					       obj_priv->pages,
2539
					       obj->size >> PAGE_SHIFT,
2540 2541
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2542
	if (obj_priv->agp_mem == NULL) {
2543
		i915_gem_object_put_pages(obj);
2544 2545
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2546

2547
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2548
		if (ret)
2549 2550 2551
			return ret;

		goto search_free;
2552 2553 2554 2555
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2556 2557 2558
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2559 2560 2561 2562
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2563 2564
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2565

C
Chris Wilson 已提交
2566 2567
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2568 2569 2570 2571 2572 2573
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2574
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2575 2576 2577 2578 2579

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2580
	if (obj_priv->pages == NULL)
2581 2582
		return;

C
Chris Wilson 已提交
2583
	trace_i915_gem_object_clflush(obj);
2584

2585
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2586 2587
}

2588
/** Flushes any GPU write domain for the object if it's dirty. */
2589
static int
2590 2591
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2592 2593
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2594
	uint32_t old_write_domain;
2595 2596

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2597
		return 0;
2598 2599

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2600
	old_write_domain = obj->write_domain;
2601
	i915_gem_flush(dev, 0, obj->write_domain);
2602
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2603 2604 2605 2606

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2607 2608 2609 2610

	if (pipelined)
		return 0;

2611
	return i915_gem_object_wait_rendering(obj, true);
2612 2613 2614 2615 2616 2617
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2618 2619
	uint32_t old_write_domain;

2620 2621 2622 2623 2624 2625 2626
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2627
	old_write_domain = obj->write_domain;
2628
	obj->write_domain = 0;
C
Chris Wilson 已提交
2629 2630 2631 2632

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2633 2634 2635 2636 2637 2638 2639
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2640
	uint32_t old_write_domain;
2641 2642 2643 2644 2645 2646

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2647
	old_write_domain = obj->write_domain;
2648
	obj->write_domain = 0;
C
Chris Wilson 已提交
2649 2650 2651 2652

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2653 2654
}

2655 2656 2657 2658 2659 2660
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2661
int
2662 2663
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2664
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2665
	uint32_t old_write_domain, old_read_domains;
2666
	int ret;
2667

2668 2669 2670 2671
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2672
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2673 2674 2675
	if (ret != 0)
		return ret;

2676
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2677

2678
	if (write) {
2679
		ret = i915_gem_object_wait_rendering(obj, true);
2680 2681 2682
		if (ret)
			return ret;
	}
2683

2684 2685
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2686

2687 2688 2689 2690 2691 2692
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2693
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2694 2695
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2696 2697
	}

C
Chris Wilson 已提交
2698 2699 2700 2701
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2702 2703 2704
	return 0;
}

2705 2706 2707 2708 2709
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2710 2711
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2712
{
2713
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2714
	uint32_t old_read_domains;
2715 2716 2717 2718 2719 2720
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2721 2722
	ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
	if (ret)
2723
		return ret;
2724

2725 2726
	i915_gem_object_flush_cpu_write_domain(obj);

2727
	old_read_domains = obj->read_domains;
2728
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2729 2730 2731

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2732
					    obj->write_domain);
2733 2734 2735 2736

	return 0;
}

2737 2738 2739 2740 2741 2742 2743 2744 2745
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2746
	uint32_t old_write_domain, old_read_domains;
2747 2748
	int ret;

2749
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2750 2751
	if (ret != 0)
		return ret;
2752

2753
	i915_gem_object_flush_gtt_write_domain(obj);
2754

2755 2756
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2757
	 */
2758
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2759

2760
	if (write) {
2761
		ret = i915_gem_object_wait_rendering(obj, true);
2762 2763 2764 2765
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2766 2767 2768
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2769 2770
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2771 2772
		i915_gem_clflush_object(obj);

2773
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2774 2775 2776 2777 2778
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2779 2780 2781 2782 2783 2784 2785 2786 2787
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2788

C
Chris Wilson 已提交
2789 2790 2791 2792
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2793 2794 2795
	return 0;
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2907
static void
2908
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2909 2910
{
	struct drm_device		*dev = obj->dev;
2911
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2912 2913
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2914
	uint32_t			old_read_domains;
2915

2916 2917
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2918

2919 2920
	intel_mark_busy(dev, obj);

2921 2922 2923
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2924 2925
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2926 2927 2928 2929 2930
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2931 2932
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2933 2934 2935 2936 2937 2938 2939 2940 2941
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2942 2943
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2944
		flush_domains |= obj->write_domain;
2945 2946
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2947 2948 2949 2950 2951
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2952
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2953 2954 2955 2956 2957 2958 2959 2960
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
2961 2962
	old_read_domains = obj->read_domains;

2963 2964 2965 2966 2967 2968 2969 2970
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
2971
	obj->read_domains = obj->pending_read_domains;
2972 2973 2974 2975 2976 2977 2978 2979 2980

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
2981 2982 2983 2984

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
2985 2986 2987
}

/**
2988
 * Moves the object from a partially CPU read to a full one.
2989
 *
2990 2991
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2992
 */
2993 2994
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2995
{
2996
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3009
			drm_clflush_pages(obj_priv->pages + i, 1);
3010 3011 3012 3013 3014 3015
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3016
	kfree(obj_priv->page_cpu_valid);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3036
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3037
	uint32_t old_read_domains;
3038
	int i, ret;
3039

3040 3041
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3042

3043
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3044
	if (ret != 0)
3045
		return ret;
3046 3047 3048 3049 3050 3051
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3052

3053 3054 3055
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3056
	if (obj_priv->page_cpu_valid == NULL) {
3057 3058
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3059 3060 3061 3062
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3063 3064 3065 3066

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3067 3068
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3069 3070 3071
		if (obj_priv->page_cpu_valid[i])
			continue;

3072
		drm_clflush_pages(obj_priv->pages + i, 1);
3073 3074 3075 3076

		obj_priv->page_cpu_valid[i] = 1;
	}

3077 3078 3079 3080 3081
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3082
	old_read_domains = obj->read_domains;
3083 3084
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3085 3086 3087 3088
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3089 3090 3091 3092 3093 3094 3095 3096 3097
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3098
				 struct drm_i915_gem_exec_object2 *entry,
3099
				 struct drm_i915_gem_relocation_entry *relocs)
3100 3101
{
	struct drm_device *dev = obj->dev;
3102
	drm_i915_private_t *dev_priv = dev->dev_private;
3103
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3104
	int i, ret;
3105
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3106 3107 3108 3109 3110 3111
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3112 3113 3114 3115 3116 3117 3118
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3119 3120 3121 3122 3123 3124

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3125 3126 3127 3128 3129
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
3130
		ret = i915_gem_object_get_fence_reg(obj, false);
J
Jesse Barnes 已提交
3131 3132 3133 3134 3135 3136
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3137 3138 3139 3140 3141 3142
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3143
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3144 3145
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3146 3147
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3148 3149

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3150
						   reloc->target_handle);
3151 3152
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3153
			return -ENOENT;
3154
		}
3155
		target_obj_priv = to_intel_bo(target_obj);
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3172 3173 3174 3175 3176
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3177
				  reloc->target_handle);
3178 3179 3180 3181 3182
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3183
		/* Validate that the target is in a valid r/w GPU domain */
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3194 3195
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3196 3197 3198
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3199 3200 3201 3202
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3203 3204
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3205 3206
			return -EINVAL;
		}
3207 3208
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3209 3210 3211
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3212 3213 3214
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3215 3216 3217 3218 3219 3220
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3221 3222
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3223 3224 3225 3226

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3227
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3228 3229 3230 3231
			drm_gem_object_unreference(target_obj);
			continue;
		}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3263 3264 3265 3266 3267
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3268 3269 3270 3271 3272
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3273
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3274 3275
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3276 3277
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3278
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3279
						   (reloc_offset & (PAGE_SIZE - 1)));
3280
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3281 3282 3283

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3284
			  obj, (unsigned int) reloc->offset,
3285 3286 3287
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3288
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3289

3290 3291
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3292
		 */
3293
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3308 3309 3310 3311
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3312 3313 3314 3315 3316 3317 3318 3319
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3320
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3321 3322

	mutex_lock(&dev->struct_mutex);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3333
		ret = i915_wait_request(dev, request->seqno, request->ring);
3334 3335 3336
		if (ret != 0)
			break;
	}
3337
	mutex_unlock(&dev->struct_mutex);
3338

3339 3340 3341
	return ret;
}

3342
static int
J
Jesse Barnes 已提交
3343
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3357
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3358 3359
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3360
		return -ENOMEM;
J
Jesse Barnes 已提交
3361
	}
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3373
			drm_free_large(*relocs);
3374
			*relocs = NULL;
3375
			return -EFAULT;
3376 3377 3378 3379 3380
		}

		reloc_index += exec_list[i].relocation_count;
	}

3381
	return 0;
3382 3383 3384
}

static int
J
Jesse Barnes 已提交
3385
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3386 3387 3388 3389
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3390
	int ret = 0;
3391

3392 3393 3394
	if (relocs == NULL)
	    return 0;

3395 3396
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3397
		int unwritten;
3398 3399 3400

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3401 3402 3403 3404 3405 3406 3407 3408
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3409 3410 3411 3412 3413
		}

		reloc_count += exec_list[i].relocation_count;
	}

3414
err:
3415
	drm_free_large(relocs);
3416 3417 3418 3419

	return ret;
}

3420
static int
J
Jesse Barnes 已提交
3421
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3452
			obj_priv = to_intel_bo(object_list[i]);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3473
static int
J
Jesse Barnes 已提交
3474 3475 3476 3477
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3478 3479 3480 3481
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3482
	struct drm_i915_gem_object *obj_priv;
3483
	struct drm_clip_rect *cliprects = NULL;
3484
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3485
	struct drm_i915_gem_request *request = NULL;
J
Jesse Barnes 已提交
3486
	int ret = 0, ret2, i, pinned = 0;
3487
	uint64_t exec_offset;
3488
	uint32_t seqno, reloc_index;
3489
	int pin_tries, flips;
3490

3491 3492
	struct intel_ring_buffer *ring = NULL;

3493 3494 3495 3496
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3507 3508 3509 3510
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3511
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3512 3513
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3514 3515 3516 3517 3518
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3519
	if (args->num_cliprects != 0) {
3520 3521
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3522 3523
		if (cliprects == NULL) {
			ret = -ENOMEM;
3524
			goto pre_mutex_err;
3525
		}
3526 3527 3528 3529 3530 3531 3532 3533

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3534
			ret = -EFAULT;
3535 3536 3537 3538
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3539 3540 3541 3542 3543 3544
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3545 3546 3547 3548 3549
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3550 3551 3552 3553
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3554
	if (atomic_read(&dev_priv->mm.wedged)) {
3555
		mutex_unlock(&dev->struct_mutex);
3556 3557
		ret = -EIO;
		goto pre_mutex_err;
3558 3559 3560 3561
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3562 3563
		ret = -EBUSY;
		goto pre_mutex_err;
3564 3565
	}

3566
	/* Look up object handles */
3567
	flips = 0;
3568 3569 3570 3571 3572 3573
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3574 3575
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3576
			ret = -ENOENT;
3577 3578
			goto err;
		}
3579

3580
		obj_priv = to_intel_bo(object_list[i]);
3581 3582 3583
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3584 3585
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3586
			ret = -EINVAL;
3587 3588 3589
			goto err;
		}
		obj_priv->in_execbuffer = true;
3590 3591 3592 3593 3594 3595 3596 3597
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3598
	}
3599

3600 3601 3602
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3603 3604
		reloc_index = 0;

3605 3606 3607 3608 3609
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3610 3611
							       &exec_list[i],
							       &relocs[reloc_index]);
3612 3613 3614
			if (ret)
				break;
			pinned = i + 1;
3615
			reloc_index += exec_list[i].relocation_count;
3616 3617 3618 3619 3620 3621
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3622
		if (ret != -ENOSPC || pin_tries >= 1) {
3623 3624
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3625 3626
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3627
					obj_priv = to_intel_bo(object_list[i]);
3628

3629
					total_size += object_list[i]->size;
3630 3631 3632 3633 3634
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3635
					  pinned+1, args->buffer_count,
3636 3637
					  total_size, num_fences,
					  ret);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3648 3649
			goto err;
		}
3650 3651 3652 3653

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3654
		pinned = 0;
3655 3656 3657

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3658
		if (ret && ret != -ENOSPC)
3659
			goto err;
3660 3661 3662 3663
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3664 3665 3666 3667 3668 3669
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3670

3671 3672 3673 3674 3675 3676 3677 3678
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3679 3680
	i915_verify_inactive(dev, __FILE__, __LINE__);

3681 3682 3683 3684 3685 3686 3687
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3688 3689 3690
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3691
		/* Compute new gpu domains and update invalidate/flush */
3692
		i915_gem_object_set_to_gpu_domain(obj);
3693 3694 3695 3696
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3707 3708 3709
	}

	if (dev_priv->render_ring.outstanding_lazy_request) {
C
Chris Wilson 已提交
3710
		(void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
3711 3712 3713
		dev_priv->render_ring.outstanding_lazy_request = false;
	}
	if (dev_priv->bsd_ring.outstanding_lazy_request) {
C
Chris Wilson 已提交
3714
		(void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
3715
		dev_priv->bsd_ring.outstanding_lazy_request = false;
3716
	}
3717

3718 3719
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3720
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3721
		uint32_t old_write_domain = obj->write_domain;
3722 3723

		obj->write_domain = obj->pending_write_domain;
3724 3725 3726 3727 3728 3729
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3730 3731 3732
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3733 3734
	}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3745
	i915_gem_dump_object(batch_obj,
3746 3747 3748 3749 3750 3751
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3752 3753
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3754 3755 3756 3757 3758 3759 3760 3761 3762
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3763
	i915_retire_commands(dev, ring);
3764 3765 3766

	i915_verify_inactive(dev, __FILE__, __LINE__);

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}

3777 3778 3779 3780 3781 3782 3783
	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
C
Chris Wilson 已提交
3784 3785
	seqno = i915_add_request(dev, file_priv, request, ring);
	request = NULL;
3786 3787 3788 3789 3790 3791 3792 3793

#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3794 3795 3796
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3797 3798
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3799
			obj_priv = to_intel_bo(object_list[i]);
3800 3801
			obj_priv->in_execbuffer = false;
		}
3802
		drm_gem_object_unreference(object_list[i]);
3803
	}
3804 3805 3806

	mutex_unlock(&dev->struct_mutex);

3807
pre_mutex_err:
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3822
	drm_free_large(object_list);
3823
	kfree(cliprects);
C
Chris Wilson 已提交
3824
	kfree(request);
3825 3826 3827 3828

	return ret;
}

J
Jesse Barnes 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3881
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3895
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

3974 3975 3976 3977
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
3978
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3979 3980
	int ret;

3981 3982
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

3983
	i915_verify_inactive(dev, __FILE__, __LINE__);
3984 3985 3986 3987 3988

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
3989 3990 3991 3992
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
3993 3994 3995 3996 3997 3998
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3999 4000
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4001
		if (ret)
4002
			return ret;
4003
	}
J
Jesse Barnes 已提交
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4014
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4027
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4040
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4065
		return -ENOENT;
4066
	}
4067
	obj_priv = to_intel_bo(obj);
4068

C
Chris Wilson 已提交
4069 4070
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4071 4072 4073 4074 4075
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4076 4077 4078
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4079
		drm_gem_object_unreference(obj);
4080
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4093 4094 4095 4096 4097
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4098
	i915_gem_object_flush_cpu_write_domain(obj);
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4112
	struct drm_i915_gem_object *obj_priv;
4113 4114 4115 4116 4117 4118 4119 4120

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4121
		return -ENOENT;
4122 4123
	}

4124
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4155
		return -ENOENT;
4156 4157
	}

4158
	mutex_lock(&dev->struct_mutex);
4159

4160 4161 4162 4163
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4164
	 */
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
		if (obj->write_domain) {
			i915_gem_flush(dev, 0, obj->write_domain);
C
Chris Wilson 已提交
4175
			(void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		}

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4220
		return -ENOENT;
4221 4222 4223
	}

	mutex_lock(&dev->struct_mutex);
4224
	obj_priv = to_intel_bo(obj);
4225 4226 4227 4228 4229 4230 4231 4232 4233

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4234 4235
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4236

4237 4238 4239 4240 4241
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4242 4243
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4244 4245 4246 4247 4248 4249
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4250 4251 4252
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4253
	struct drm_i915_gem_object *obj;
4254

4255 4256 4257
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4258

4259 4260 4261 4262
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4263

4264 4265
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4266

4267
	obj->agp_type = AGP_USER_MEMORY;
4268
	obj->base.driver_private = NULL;
4269 4270 4271 4272
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4273

4274 4275 4276 4277 4278 4279 4280 4281
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4282

4283 4284 4285
	return 0;
}

4286
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4287
{
4288
	struct drm_device *dev = obj->dev;
4289
	drm_i915_private_t *dev_priv = dev->dev_private;
4290
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4291
	int ret;
4292

4293 4294 4295 4296 4297 4298
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4299

4300 4301
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4302

4303 4304
	drm_gem_object_release(obj);

4305
	kfree(obj_priv->page_cpu_valid);
4306
	kfree(obj_priv->bit_17);
4307
	kfree(obj_priv);
4308 4309
}

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4326 4327 4328 4329 4330
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4331

4332
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4333

4334
	if (dev_priv->mm.suspended ||
4335 4336 4337
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4338 4339
		mutex_unlock(&dev->struct_mutex);
		return 0;
4340 4341
	}

4342
	ret = i915_gpu_idle(dev);
4343 4344
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4345
		return ret;
4346
	}
4347

4348 4349
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4350
		ret = i915_gem_evict_inactive(dev);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4362
	del_timer_sync(&dev_priv->hangcheck_timer);
4363 4364

	i915_kernel_lost_context(dev);
4365
	i915_gem_cleanup_ringbuffer(dev);
4366

4367 4368
	mutex_unlock(&dev->struct_mutex);

4369 4370 4371
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4372 4373 4374
	return 0;
}

4375 4376 4377 4378
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4379
static int
4380 4381 4382 4383 4384 4385 4386
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4387
	obj = i915_gem_alloc_object(dev, 4096);
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4418 4419

static void
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4434 4435
}

4436 4437 4438 4439 4440
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4441

4442
	dev_priv->render_ring = render_ring;
4443

4444 4445 4446 4447 4448 4449
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4450

4451 4452 4453 4454 4455
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4456

4457
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4458 4459 4460 4461
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4462 4463
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4464 4465
		if (ret)
			goto cleanup_render_ring;
4466
	}
4467

4468 4469
	dev_priv->next_seqno = 1;

4470 4471 4472 4473 4474 4475 4476
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4477 4478 4479 4480 4481 4482 4483 4484 4485
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4486 4487
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4488 4489 4490 4491
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4492 4493 4494 4495 4496 4497 4498
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4499 4500 4501
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4502
	if (atomic_read(&dev_priv->mm.wedged)) {
4503
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4504
		atomic_set(&dev_priv->mm.wedged, 0);
4505 4506 4507
	}

	mutex_lock(&dev->struct_mutex);
4508 4509 4510
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4511 4512
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4513
		return ret;
4514
	}
4515

4516
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4517
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4518 4519
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4520
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4521
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4522
	mutex_unlock(&dev->struct_mutex);
4523

4524 4525 4526
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4527

4528
	return 0;
4529 4530 4531 4532 4533 4534 4535 4536

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4537 4538 4539 4540 4541 4542
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4543 4544 4545
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4546
	drm_irq_uninstall(dev);
4547
	return i915_gem_idle(dev);
4548 4549 4550 4551 4552 4553 4554
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4555 4556 4557
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4558 4559 4560
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4561 4562 4563 4564 4565
}

void
i915_gem_load(struct drm_device *dev)
{
4566
	int i;
4567 4568 4569
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4570
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4571
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4572
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4573
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4574 4575
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4576 4577 4578 4579
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4580 4581
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4582 4583
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4584 4585 4586 4587
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4598
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4599 4600
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4601

4602
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4603 4604 4605 4606
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4607
	/* Initialize fence registers to zero */
4608 4609 4610 4611 4612 4613 4614
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4615 4616
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4617 4618
		break;
	case 3:
4619 4620 4621
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4622 4623 4624 4625
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4626
	}
4627
	i915_gem_detect_bit_6_swizzle(dev);
4628
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4629
}
4630 4631 4632 4633 4634

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4635 4636
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4637 4638 4639 4640 4641 4642 4643 4644
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4645
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4646 4647 4648 4649 4650
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4651
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4664
	kfree(phys_obj);
4665 4666 4667
	return ret;
}

4668
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4693
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4705
	obj_priv = to_intel_bo(obj);
4706 4707 4708
	if (!obj_priv->phys_obj)
		return;

4709
	ret = i915_gem_object_get_pages(obj, 0);
4710 4711 4712 4713 4714 4715
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4716
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4717 4718 4719 4720 4721
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4722
	drm_clflush_pages(obj_priv->pages, page_count);
4723
	drm_agp_chipset_flush(dev);
4724 4725

	i915_gem_object_put_pages(obj);
4726 4727 4728 4729 4730 4731 4732
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4733 4734 4735
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4746
	obj_priv = to_intel_bo(obj);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4757
						obj->size, align);
4758
		if (ret) {
4759
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4760 4761 4762 4763 4764 4765 4766 4767
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4768
	ret = i915_gem_object_get_pages(obj, 0);
4769 4770 4771 4772 4773 4774 4775 4776
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4777
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4778 4779 4780 4781 4782 4783
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4784 4785
	i915_gem_object_put_pages(obj);

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4796
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4797 4798 4799 4800 4801 4802 4803
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4804
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4805 4806 4807 4808 4809 4810 4811
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4826

4827 4828 4829 4830 4831 4832 4833
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4834
		      list_empty(&dev_priv->render_ring.active_list);
4835 4836
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4837 4838 4839 4840

	return !lists_empty;
}

4841
static int
4842
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4870
rescan:
4871 4872 4873 4874 4875 4876 4877 4878 4879
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4880
		i915_gem_retire_requests(dev);
4881 4882 4883 4884 4885

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4886
				i915_gem_object_unbind(&obj_priv->base);
4887 4888 4889 4890 4891 4892 4893 4894
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4895 4896
		would_deadlock = 0;

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4915
				i915_gem_object_unbind(&obj_priv->base);
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}