i915_gem.c 103.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

126
	WARN_ON(i915_verify_lists(dev));
127 128
	return 0;
}
129

130
static inline bool
131
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132
{
133
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 135
}

136 137 138 139
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
140 141 142
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
143 144
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
145

146
	dev_priv->mm.gtt_total = end - start;
147
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
148
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
149
}
150

J
Jesse Barnes 已提交
151 152
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
153
		    struct drm_file *file)
J
Jesse Barnes 已提交
154 155
{
	struct drm_i915_gem_init *args = data;
156 157 158 159

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
160 161

	mutex_lock(&dev->struct_mutex);
162
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
163 164
	mutex_unlock(&dev->struct_mutex);

165
	return 0;
166 167
}

168 169
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170
			    struct drm_file *file)
171
{
172
	struct drm_i915_private *dev_priv = dev->dev_private;
173
	struct drm_i915_gem_get_aperture *args = data;
174 175
	struct drm_i915_gem_object *obj;
	size_t pinned;
176 177 178 179

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

180
	pinned = 0;
181
	mutex_lock(&dev->struct_mutex);
182 183
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
184
	mutex_unlock(&dev->struct_mutex);
185

186 187 188
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

189 190 191
	return 0;
}

192 193 194 195 196
/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
197
		      struct drm_file *file)
198 199
{
	struct drm_i915_gem_create *args = data;
200
	struct drm_i915_gem_object *obj;
201 202
	int ret;
	u32 handle;
203 204 205 206

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
207
	obj = i915_gem_alloc_object(dev, args->size);
208 209 210
	if (obj == NULL)
		return -ENOMEM;

211
	ret = drm_gem_handle_create(file, &obj->base, &handle);
212
	if (ret) {
213 214
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
215
		kfree(obj);
216
		return ret;
217
	}
218

219
	/* drop reference from allocate - handle holds it now */
220
	drm_gem_object_unreference(&obj->base);
221 222
	trace_i915_gem_object_create(obj);

223
	args->handle = handle;
224 225 226
	return 0;
}

227
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
228
{
229
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
230 231

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232
		obj->tiling_mode != I915_TILING_NONE;
233 234
}

235
static inline void
236 237 238 239 240 241 242 243
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

244 245
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
246 247 248

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

249 250
	kunmap(src_page);
	kunmap(dst_page);
251 252
}

253
static inline void
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

273 274
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

298 299
	kunmap(cpu_page);
	kunmap(gpu_page);
300 301
}

302 303 304 305 306 307
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
308 309
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
310
			  struct drm_i915_gem_pread *args,
311
			  struct drm_file *file)
312
{
313
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
314
	ssize_t remain;
315
	loff_t offset;
316 317 318 319 320 321 322 323 324
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
325 326 327 328
		struct page *page;
		char *vaddr;
		int ret;

329 330 331 332 333 334 335 336 337 338
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

339 340 341 342 343 344 345 346 347 348 349 350 351 352
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
353
			return -EFAULT;
354 355 356 357 358 359

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

360
	return 0;
361 362 363 364 365 366 367 368 369
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
370 371
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
372
			  struct drm_i915_gem_pread *args,
373
			  struct drm_file *file)
374
{
375
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
376 377 378 379 380
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
381 382
	int shmem_page_offset;
	int data_page_index, data_page_offset;
383 384 385
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
386
	int do_bit17_swizzling;
387 388 389 390 391 392 393 394 395 396 397

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

398
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
399 400 401
	if (user_pages == NULL)
		return -ENOMEM;

402
	mutex_unlock(&dev->struct_mutex);
403 404
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
405
				      num_pages, 1, 0, user_pages, NULL);
406
	up_read(&mm->mmap_sem);
407
	mutex_lock(&dev->struct_mutex);
408 409
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
410
		goto out;
411 412
	}

413 414 415
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
416
	if (ret)
417
		goto out;
418

419
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 421 422 423

	offset = args->offset;

	while (remain > 0) {
424 425
		struct page *page;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

443 444 445 446 447
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

448
		if (do_bit17_swizzling) {
449
			slow_shmem_bit17_copy(page,
450
					      shmem_page_offset,
451 452 453 454 455 456 457
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
458
					page,
459 460
					shmem_page_offset,
					page_length);
461
		}
462

463 464 465
		mark_page_accessed(page);
		page_cache_release(page);

466 467 468 469 470
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

471
out:
472 473
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
474
		mark_page_accessed(user_pages[i]);
475 476
		page_cache_release(user_pages[i]);
	}
477
	drm_free_large(user_pages);
478 479 480 481

	return ret;
}

482 483 484 485 486 487 488
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489
		     struct drm_file *file)
490 491
{
	struct drm_i915_gem_pread *args = data;
492
	struct drm_i915_gem_object *obj;
493
	int ret = 0;
494

495 496 497 498 499 500 501 502 503 504 505 506 507
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

508
	ret = i915_mutex_lock_interruptible(dev);
509
	if (ret)
510
		return ret;
511

512
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
513 514 515
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
516
	}
517

518
	/* Bounds check source.  */
519 520
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
521
		ret = -EINVAL;
522
		goto out;
C
Chris Wilson 已提交
523 524
	}

525 526 527 528
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
529
		goto out;
530 531 532

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
533
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
534
	if (ret == -EFAULT)
535
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
536

537
out:
538
	drm_gem_object_unreference(&obj->base);
539
unlock:
540
	mutex_unlock(&dev->struct_mutex);
541
	return ret;
542 543
}

544 545
/* This is the fast write path which cannot handle
 * page faults in the source data
546
 */
547 548 549 550 551 552

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
553 554
{
	char *vaddr_atomic;
555
	unsigned long unwritten;
556

P
Peter Zijlstra 已提交
557
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
558 559
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
560
	io_mapping_unmap_atomic(vaddr_atomic);
561
	return unwritten;
562 563 564 565 566 567
}

/* Here's the write path which can sleep for
 * page faults
 */

568
static inline void
569 570 571 572
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
573
{
574 575
	char __iomem *dst_vaddr;
	char *src_vaddr;
576

577 578 579 580 581 582 583 584 585
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
586 587
}

588 589 590 591
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
592
static int
593 594
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
595
			 struct drm_i915_gem_pwrite *args,
596
			 struct drm_file *file)
597
{
598
	drm_i915_private_t *dev_priv = dev->dev_private;
599
	ssize_t remain;
600
	loff_t offset, page_base;
601
	char __user *user_data;
602
	int page_offset, page_length;
603 604 605 606

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

607
	offset = obj->gtt_offset + args->offset;
608 609 610 611

	while (remain > 0) {
		/* Operation in this page
		 *
612 613 614
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
615
		 */
616 617 618 619 620 621 622
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
623 624
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
625
		 */
626 627 628 629
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
630

631 632 633
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
634 635
	}

636
	return 0;
637 638
}

639 640 641 642 643 644 645
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
646
static int
647 648
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
649
			 struct drm_i915_gem_pwrite *args,
650
			 struct drm_file *file)
651
{
652 653 654 655 656 657 658 659
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
660
	int ret;
661 662 663 664 665 666 667 668 669 670 671 672
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

673
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
674 675 676
	if (user_pages == NULL)
		return -ENOMEM;

677
	mutex_unlock(&dev->struct_mutex);
678 679 680 681
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
682
	mutex_lock(&dev->struct_mutex);
683 684 685 686
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
687

688 689 690 691 692
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
693
	if (ret)
694
		goto out_unpin_pages;
695

696
	offset = obj->gtt_offset + args->offset;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

718 719 720 721 722
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
723 724 725 726 727 728 729 730 731

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
732
	drm_free_large(user_pages);
733 734 735 736

	return ret;
}

737 738 739 740
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
741
static int
742 743
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
744
			   struct drm_i915_gem_pwrite *args,
745
			   struct drm_file *file)
746
{
747
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
748
	ssize_t remain;
749
	loff_t offset;
750 751 752 753 754
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
755

756
	offset = args->offset;
757
	obj->dirty = 1;
758 759

	while (remain > 0) {
760 761 762 763
		struct page *page;
		char *vaddr;
		int ret;

764 765 766 767 768 769 770 771 772 773
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
794
			return -EFAULT;
795 796 797 798 799 800

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

801
	return 0;
802 803 804 805 806 807 808 809 810 811
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
812 813
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
814
			   struct drm_i915_gem_pwrite *args,
815
			   struct drm_file *file)
816
{
817
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
818 819 820 821 822
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
823
	int shmem_page_offset;
824 825 826 827
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
828
	int do_bit17_swizzling;
829 830 831 832 833 834 835 836 837 838 839

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

840
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
841 842 843
	if (user_pages == NULL)
		return -ENOMEM;

844
	mutex_unlock(&dev->struct_mutex);
845 846 847 848
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
849
	mutex_lock(&dev->struct_mutex);
850 851
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
852
		goto out;
853 854
	}

855
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
856
	if (ret)
857
		goto out;
858

859
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
860

861
	offset = args->offset;
862
	obj->dirty = 1;
863

864
	while (remain > 0) {
865 866
		struct page *page;

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

884 885 886 887 888 889 890
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

891
		if (do_bit17_swizzling) {
892
			slow_shmem_bit17_copy(page,
893 894 895
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
896 897 898
					      page_length,
					      0);
		} else {
899
			slow_shmem_copy(page,
900 901 902 903
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
904
		}
905

906 907 908 909
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

910 911 912
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
913 914
	}

915
out:
916 917
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
918
	drm_free_large(user_pages);
919

920
	return ret;
921 922 923 924 925 926 927 928 929
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
930
		      struct drm_file *file)
931 932
{
	struct drm_i915_gem_pwrite *args = data;
933
	struct drm_i915_gem_object *obj;
934 935 936 937 938 939 940 941 942 943 944 945 946 947
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
948

949
	ret = i915_mutex_lock_interruptible(dev);
950
	if (ret)
951
		return ret;
952

953
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
954 955 956
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
957
	}
958

959
	/* Bounds check destination. */
960 961
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
962
		ret = -EINVAL;
963
		goto out;
C
Chris Wilson 已提交
964 965
	}

966 967 968 969 970 971
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
972
	if (obj->phys_obj)
973
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
974
	else if (obj->gtt_space &&
975
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976
		ret = i915_gem_object_pin(obj, 0, true);
977 978 979
		if (ret)
			goto out;

980 981 982 983 984
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
985 986 987 988 989 990 991 992 993
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
994
	} else {
995 996
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
997
			goto out;
998

999 1000 1001 1002 1003 1004
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1005

1006
out:
1007
	drm_gem_object_unreference(&obj->base);
1008
unlock:
1009
	mutex_unlock(&dev->struct_mutex);
1010 1011 1012 1013
	return ret;
}

/**
1014 1015
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1016 1017 1018
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1019
			  struct drm_file *file)
1020 1021
{
	struct drm_i915_gem_set_domain *args = data;
1022
	struct drm_i915_gem_object *obj;
1023 1024
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1025 1026 1027 1028 1029
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1030
	/* Only handle setting domains to types used by the CPU. */
1031
	if (write_domain & I915_GEM_GPU_DOMAINS)
1032 1033
		return -EINVAL;

1034
	if (read_domains & I915_GEM_GPU_DOMAINS)
1035 1036 1037 1038 1039 1040 1041 1042
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1043
	ret = i915_mutex_lock_interruptible(dev);
1044
	if (ret)
1045
		return ret;
1046

1047
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1048 1049 1050
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1051
	}
1052

1053 1054
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1055 1056 1057 1058 1059 1060 1061

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1062
	} else {
1063
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1064 1065
	}

1066
	drm_gem_object_unreference(&obj->base);
1067
unlock:
1068 1069 1070 1071 1072 1073 1074 1075 1076
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077
			 struct drm_file *file)
1078 1079
{
	struct drm_i915_gem_sw_finish *args = data;
1080
	struct drm_i915_gem_object *obj;
1081 1082 1083 1084 1085
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1086
	ret = i915_mutex_lock_interruptible(dev);
1087
	if (ret)
1088
		return ret;
1089

1090
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1091
	if (obj == NULL) {
1092 1093
		ret = -ENOENT;
		goto unlock;
1094 1095 1096
	}

	/* Pinned buffers may be scanout, so flush the cache */
1097
	if (obj->pin_count)
1098 1099
		i915_gem_object_flush_cpu_write_domain(obj);

1100
	drm_gem_object_unreference(&obj->base);
1101
unlock:
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1115
		    struct drm_file *file)
1116
{
1117
	struct drm_i915_private *dev_priv = dev->dev_private;
1118 1119 1120 1121 1122 1123 1124 1125
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1126
	obj = drm_gem_object_lookup(dev, file, args->handle);
1127
	if (obj == NULL)
1128
		return -ENOENT;
1129

1130 1131 1132 1133 1134
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1135 1136 1137 1138 1139 1140 1141
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1142
	drm_gem_object_unreference_unlocked(obj);
1143 1144 1145 1146 1147 1148 1149 1150
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1169 1170
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1171
	drm_i915_private_t *dev_priv = dev->dev_private;
1172 1173 1174
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1175
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1176 1177 1178 1179 1180 1181 1182

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1183

1184 1185 1186 1187
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1188
	}
1189
	if (!obj->gtt_space) {
1190
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1191 1192
		if (ret)
			goto unlock;
1193 1194
	}

1195 1196 1197 1198
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1199 1200 1201 1202 1203 1204
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
		ret = i915_gem_object_get_fence(obj, NULL, true);
	if (ret)
		goto unlock;
1205

1206 1207
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1208

1209 1210
	obj->fault_mappable = true;

1211
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1212 1213 1214 1215
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1216
unlock:
1217 1218 1219
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1220 1221
	case -EAGAIN:
		set_need_resched();
1222 1223 1224
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1225 1226 1227
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1228
		return VM_FAULT_SIGBUS;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1244
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1245
{
1246
	struct drm_device *dev = obj->base.dev;
1247 1248
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1249
	struct drm_local_map *map;
1250 1251 1252
	int ret = 0;

	/* Set the object up for mmap'ing */
1253
	list = &obj->base.map_list;
1254
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1255 1256 1257 1258 1259
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1260
	map->size = obj->base.size;
1261 1262 1263 1264
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1265 1266
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1267
	if (!list->file_offset_node) {
1268 1269
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1270
		ret = -ENOSPC;
1271 1272 1273 1274
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1275 1276
						  obj->base.size / PAGE_SIZE,
						  0);
1277 1278 1279 1280 1281 1282
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1283 1284
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1285 1286 1287 1288 1289 1290 1291 1292 1293
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1294
	kfree(list->map);
C
Chris Wilson 已提交
1295
	list->map = NULL;
1296 1297 1298 1299

	return ret;
}

1300 1301 1302 1303
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1304
 * Preserve the reservation of the mmapping with the DRM core code, but
1305 1306 1307 1308 1309 1310 1311 1312 1313
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1314
void
1315
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1316
{
1317 1318
	if (!obj->fault_mappable)
		return;
1319

1320 1321 1322
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1323

1324
	obj->fault_mappable = false;
1325 1326
}

1327
static void
1328
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1329
{
1330
	struct drm_device *dev = obj->base.dev;
1331
	struct drm_gem_mm *mm = dev->mm_private;
1332
	struct drm_map_list *list = &obj->base.map_list;
1333 1334

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1335 1336 1337
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1362 1363 1364 1365 1366
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1367
 * potential fence register mapping.
1368 1369
 */
static uint32_t
1370
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1371
{
1372
	struct drm_device *dev = obj->base.dev;
1373 1374 1375 1376 1377

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1378
	if (INTEL_INFO(dev)->gen >= 4 ||
1379
	    obj->tiling_mode == I915_TILING_NONE)
1380 1381
		return 4096;

1382 1383 1384 1385
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1386
	return i915_gem_get_gtt_size(obj);
1387 1388
}

1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
1398
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1399
{
1400
	struct drm_device *dev = obj->base.dev;
1401 1402 1403 1404 1405 1406
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1407
	    obj->tiling_mode == I915_TILING_NONE)
1408 1409 1410 1411 1412 1413 1414 1415
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1416
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1417 1418 1419 1420
		tile_height = 32;
	else
		tile_height = 8;

1421
	return tile_height * obj->stride * 2;
1422 1423
}

1424 1425 1426 1427
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
1428
 * @file: GEM object info
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1441
			struct drm_file *file)
1442
{
1443
	struct drm_i915_private *dev_priv = dev->dev_private;
1444
	struct drm_i915_gem_mmap_gtt *args = data;
1445
	struct drm_i915_gem_object *obj;
1446 1447 1448 1449 1450
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1451
	ret = i915_mutex_lock_interruptible(dev);
1452
	if (ret)
1453
		return ret;
1454

1455
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1456 1457 1458 1459
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1460

1461
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1462 1463 1464 1465
		ret = -E2BIG;
		goto unlock;
	}

1466
	if (obj->madv != I915_MADV_WILLNEED) {
1467
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1468 1469
		ret = -EINVAL;
		goto out;
1470 1471
	}

1472
	if (!obj->base.map_list.map) {
1473
		ret = i915_gem_create_mmap_offset(obj);
1474 1475
		if (ret)
			goto out;
1476 1477
	}

1478
	args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1479

1480
out:
1481
	drm_gem_object_unreference(&obj->base);
1482
unlock:
1483
	mutex_unlock(&dev->struct_mutex);
1484
	return ret;
1485 1486
}

1487
static int
1488
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1499 1500 1501 1502
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1503 1504
		return -ENOMEM;

1505
	inode = obj->base.filp->f_path.dentry->d_inode;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1516
		obj->pages[i] = page;
1517 1518
	}

1519
	if (obj->tiling_mode != I915_TILING_NONE)
1520 1521 1522 1523 1524 1525
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1526
		page_cache_release(obj->pages[i]);
1527

1528 1529
	drm_free_large(obj->pages);
	obj->pages = NULL;
1530 1531 1532
	return PTR_ERR(page);
}

1533
static void
1534
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1535
{
1536
	int page_count = obj->base.size / PAGE_SIZE;
1537 1538
	int i;

1539
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1540

1541
	if (obj->tiling_mode != I915_TILING_NONE)
1542 1543
		i915_gem_object_save_bit_17_swizzle(obj);

1544 1545
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1546 1547

	for (i = 0; i < page_count; i++) {
1548 1549
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1550

1551 1552
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1553

1554
		page_cache_release(obj->pages[i]);
1555
	}
1556
	obj->dirty = 0;
1557

1558 1559
	drm_free_large(obj->pages);
	obj->pages = NULL;
1560 1561
}

1562
void
1563
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1564 1565
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1566
{
1567
	struct drm_device *dev = obj->base.dev;
1568
	struct drm_i915_private *dev_priv = dev->dev_private;
1569

1570
	BUG_ON(ring == NULL);
1571
	obj->ring = ring;
1572 1573

	/* Add a reference if we're newly entering the active list. */
1574 1575 1576
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1577
	}
1578

1579
	/* Move from whatever list we were on to the tail of execution. */
1580 1581
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1582

1583
	obj->last_rendering_seqno = seqno;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1602 1603
}

1604
static void
1605
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1606
{
1607
	struct drm_device *dev = obj->base.dev;
1608 1609
	drm_i915_private_t *dev_priv = dev->dev_private;

1610 1611
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1635
	obj->pending_gpu_write = false;
1636 1637 1638
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1639
}
1640

1641 1642
/* Immediately discard the backing storage */
static void
1643
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1644
{
C
Chris Wilson 已提交
1645
	struct inode *inode;
1646

1647 1648 1649 1650 1651 1652
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1653
	inode = obj->base.filp->f_path.dentry->d_inode;
1654 1655 1656
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1657

1658
	obj->madv = __I915_MADV_PURGED;
1659 1660 1661
}

static inline int
1662
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1663
{
1664
	return obj->madv == I915_MADV_DONTNEED;
1665 1666
}

1667 1668
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1669
			       uint32_t flush_domains,
1670
			       struct intel_ring_buffer *ring)
1671
{
1672
	struct drm_i915_gem_object *obj, *next;
1673

1674
	list_for_each_entry_safe(obj, next,
1675
				 &ring->gpu_write_list,
1676
				 gpu_write_list) {
1677 1678
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1679

1680 1681
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1682 1683
			i915_gem_object_move_to_active(obj, ring,
						       i915_gem_next_request_seqno(dev, ring));
1684 1685

			trace_i915_gem_object_change_domain(obj,
1686
							    obj->base.read_domains,
1687 1688 1689 1690
							    old_write_domain);
		}
	}
}
1691

1692
int
1693
i915_add_request(struct drm_device *dev,
1694
		 struct drm_file *file,
C
Chris Wilson 已提交
1695
		 struct drm_i915_gem_request *request,
1696
		 struct intel_ring_buffer *ring)
1697 1698
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1699
	struct drm_i915_file_private *file_priv = NULL;
1700 1701
	uint32_t seqno;
	int was_empty;
1702 1703 1704
	int ret;

	BUG_ON(request == NULL);
1705

1706 1707
	if (file != NULL)
		file_priv = file->driver_priv;
1708

1709 1710 1711
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1712

1713
	ring->outstanding_lazy_request = false;
1714 1715

	request->seqno = seqno;
1716
	request->ring = ring;
1717
	request->emitted_jiffies = jiffies;
1718 1719 1720
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1721
	if (file_priv) {
1722
		spin_lock(&file_priv->mm.lock);
1723
		request->file_priv = file_priv;
1724
		list_add_tail(&request->client_list,
1725
			      &file_priv->mm.request_list);
1726
		spin_unlock(&file_priv->mm.lock);
1727
	}
1728

B
Ben Gamari 已提交
1729
	if (!dev_priv->mm.suspended) {
1730 1731
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1732
		if (was_empty)
1733 1734
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1735
	}
1736
	return 0;
1737 1738
}

1739 1740
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1741
{
1742
	struct drm_i915_file_private *file_priv = request->file_priv;
1743

1744 1745
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1746

1747 1748 1749 1750
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1751 1752
}

1753 1754
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1755
{
1756 1757
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1758

1759 1760 1761
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1762

1763
		list_del(&request->list);
1764
		i915_gem_request_remove_from_client(request);
1765 1766
		kfree(request);
	}
1767

1768
	while (!list_empty(&ring->active_list)) {
1769
		struct drm_i915_gem_object *obj;
1770

1771 1772 1773
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1774

1775 1776 1777
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1778 1779 1780
	}
}

1781 1782 1783 1784 1785 1786 1787
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1788 1789 1790 1791 1792 1793 1794 1795
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1796 1797 1798 1799 1800
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1801 1802 1803
	}
}

1804
void i915_gem_reset(struct drm_device *dev)
1805
{
1806
	struct drm_i915_private *dev_priv = dev->dev_private;
1807
	struct drm_i915_gem_object *obj;
1808
	int i;
1809

1810 1811
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1812 1813 1814 1815 1816 1817

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1818 1819 1820
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1821

1822 1823 1824
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1825 1826 1827 1828 1829
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1830
	list_for_each_entry(obj,
1831
			    &dev_priv->mm.inactive_list,
1832
			    mm_list)
1833
	{
1834
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1835
	}
1836 1837

	/* The fence registers are invalidated so clear them out */
1838
	i915_gem_reset_fences(dev);
1839 1840 1841 1842 1843
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1844 1845 1846
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1847 1848 1849
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1850
	int i;
1851

1852 1853
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1854 1855
		return;

1856
	WARN_ON(i915_verify_lists(dev));
1857

1858
	seqno = ring->get_seqno(ring);
1859

1860
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1861 1862 1863
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1864
	while (!list_empty(&ring->request_list)) {
1865 1866
		struct drm_i915_gem_request *request;

1867
		request = list_first_entry(&ring->request_list,
1868 1869 1870
					   struct drm_i915_gem_request,
					   list);

1871
		if (!i915_seqno_passed(seqno, request->seqno))
1872 1873 1874 1875 1876
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1877
		i915_gem_request_remove_from_client(request);
1878 1879
		kfree(request);
	}
1880

1881 1882 1883 1884
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1885
		struct drm_i915_gem_object *obj;
1886

1887 1888 1889
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1890

1891
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1892
			break;
1893

1894
		if (obj->base.write_domain != 0)
1895 1896 1897
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1898
	}
1899 1900 1901

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1902
		ring->irq_put(ring);
1903 1904
		dev_priv->trace_irq_seqno = 0;
	}
1905 1906

	WARN_ON(i915_verify_lists(dev));
1907 1908
}

1909 1910 1911 1912
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1913
	int i;
1914

1915
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1916
	    struct drm_i915_gem_object *obj, *next;
1917 1918 1919 1920 1921 1922

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1923
	    list_for_each_entry_safe(obj, next,
1924
				     &dev_priv->mm.deferred_free_list,
1925
				     mm_list)
1926
		    i915_gem_free_object_tail(obj);
1927 1928
	}

1929 1930
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1931 1932
}

1933
static void
1934 1935 1936 1937
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1938 1939
	bool idle;
	int i;
1940 1941 1942 1943 1944

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1945 1946 1947 1948 1949 1950
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1951
	i915_gem_retire_requests(dev);
1952

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

			ret = i915_gem_flush_ring(dev, ring, 0,
						  I915_GEM_GPU_DOMAINS);
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
			    i915_add_request(dev, NULL, request, ring))
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1976
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1977

1978 1979 1980
	mutex_unlock(&dev->struct_mutex);
}

1981
int
1982
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1983
		     bool interruptible, struct intel_ring_buffer *ring)
1984 1985
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1986
	u32 ier;
1987 1988 1989 1990
	int ret = 0;

	BUG_ON(seqno == 0);

1991
	if (atomic_read(&dev_priv->mm.wedged))
1992 1993
		return -EAGAIN;

1994
	if (seqno == ring->outstanding_lazy_request) {
1995 1996 1997 1998
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1999
			return -ENOMEM;
2000 2001 2002 2003 2004 2005 2006 2007

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2008
	}
2009

2010
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2011
		if (HAS_PCH_SPLIT(dev))
2012 2013 2014
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2015 2016 2017 2018 2019 2020 2021
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2022 2023
		trace_i915_gem_request_wait_begin(dev, seqno);

2024
		ring->waiting_seqno = seqno;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		if (ring->irq_get(ring)) {
			if (interruptible)
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2036 2037 2038 2039
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2040
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2041 2042

		trace_i915_gem_request_wait_end(dev, seqno);
2043
	}
2044
	if (atomic_read(&dev_priv->mm.wedged))
2045
		ret = -EAGAIN;
2046 2047

	if (ret && ret != -ERESTARTSYS)
2048
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2049
			  __func__, ret, seqno, ring->get_seqno(ring),
2050
			  dev_priv->next_seqno);
2051 2052 2053 2054 2055 2056 2057

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2058
		i915_gem_retire_requests_ring(dev, ring);
2059 2060 2061 2062

	return ret;
}

2063 2064 2065 2066 2067
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2068
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2069
		  struct intel_ring_buffer *ring)
2070
{
2071
	return i915_do_wait_request(dev, seqno, 1, ring);
2072 2073
}

2074 2075 2076 2077
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2078
int
2079
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2080
			       bool interruptible)
2081
{
2082
	struct drm_device *dev = obj->base.dev;
2083 2084
	int ret;

2085 2086
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2087
	 */
2088
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2089 2090 2091 2092

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2093
	if (obj->active) {
2094
		ret = i915_do_wait_request(dev,
2095
					   obj->last_rendering_seqno,
2096
					   interruptible,
2097
					   obj->ring);
2098
		if (ret)
2099 2100 2101 2102 2103 2104 2105 2106 2107
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2108
int
2109
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2110 2111 2112
{
	int ret = 0;

2113
	if (obj->gtt_space == NULL)
2114 2115
		return 0;

2116
	if (obj->pin_count != 0) {
2117 2118 2119 2120
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2121 2122 2123
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2124 2125 2126 2127 2128 2129
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2130
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2131
	if (ret == -ERESTARTSYS)
2132
		return ret;
2133 2134 2135 2136
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2137 2138
	if (ret) {
		i915_gem_clflush_object(obj);
2139
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140
	}
2141

2142
	/* release the fence reg _after_ flushing */
2143 2144 2145
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2146

2147
	i915_gem_gtt_unbind_object(obj);
2148
	i915_gem_object_put_pages_gtt(obj);
2149

2150
	list_del_init(&obj->gtt_list);
2151
	list_del_init(&obj->mm_list);
2152
	/* Avoid an unnecessary call to unbind on rebind. */
2153
	obj->map_and_fenceable = true;
2154

2155 2156 2157
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2158

2159
	if (i915_gem_object_is_purgeable(obj))
2160 2161
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2162 2163
	trace_i915_gem_object_unbind(obj);

2164
	return ret;
2165 2166
}

2167
int
2168 2169 2170 2171 2172
i915_gem_flush_ring(struct drm_device *dev,
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2173 2174 2175 2176 2177 2178 2179 2180
	int ret;

	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

	i915_gem_process_flushing_list(dev, flush_domains, ring);
	return 0;
2181 2182
}

2183 2184 2185
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2186 2187
	int ret;

2188
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2189 2190
		return 0;

2191 2192
	if (!list_empty(&ring->gpu_write_list)) {
		ret = i915_gem_flush_ring(dev, ring,
2193
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2194 2195 2196 2197
		if (ret)
			return ret;
	}

2198 2199 2200 2201 2202
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2203
int
2204 2205 2206 2207
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2208
	int ret, i;
2209

2210
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2211
		       list_empty(&dev_priv->mm.active_list));
2212 2213 2214 2215
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2216 2217 2218 2219 2220
	for (i = 0; i < I915_NUM_RINGS; i++) {
		ret = i915_ring_idle(dev, &dev_priv->ring[i]);
		if (ret)
			return ret;
	}
2221

2222
	return 0;
2223 2224
}

2225 2226
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2227
{
2228
	struct drm_device *dev = obj->base.dev;
2229
	drm_i915_private_t *dev_priv = dev->dev_private;
2230 2231
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2232 2233
	uint64_t val;

2234
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2235
			 0xfffff000) << 32;
2236 2237
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2238 2239
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2240
	if (obj->tiling_mode == I915_TILING_Y)
2241 2242 2243
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2260 2261
}

2262 2263
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2264
{
2265
	struct drm_device *dev = obj->base.dev;
2266
	drm_i915_private_t *dev_priv = dev->dev_private;
2267 2268
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2269 2270
	uint64_t val;

2271
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2272
		    0xfffff000) << 32;
2273 2274 2275
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2276 2277 2278
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2295 2296
}

2297 2298
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2299
{
2300
	struct drm_device *dev = obj->base.dev;
2301
	drm_i915_private_t *dev_priv = dev->dev_private;
2302
	u32 size = obj->gtt_space->size;
2303
	u32 fence_reg, val, pitch_val;
2304
	int tile_width;
2305

2306 2307 2308 2309 2310 2311
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2312

2313
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2314
		tile_width = 128;
2315
	else
2316 2317 2318
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2319
	pitch_val = obj->stride / tile_width;
2320
	pitch_val = ffs(pitch_val) - 1;
2321

2322 2323
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2324
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2325
	val |= I915_FENCE_SIZE_BITS(size);
2326 2327 2328
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2329
	fence_reg = obj->fence_reg;
2330 2331
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2332
	else
2333
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2349 2350
}

2351 2352
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2353
{
2354
	struct drm_device *dev = obj->base.dev;
2355
	drm_i915_private_t *dev_priv = dev->dev_private;
2356 2357
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2358 2359 2360
	uint32_t val;
	uint32_t pitch_val;

2361 2362 2363 2364 2365 2366
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2367

2368
	pitch_val = obj->stride / 128;
2369 2370
	pitch_val = ffs(pitch_val) - 1;

2371 2372
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2373
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2374
	val |= I830_FENCE_SIZE_BITS(size);
2375 2376 2377
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
			    struct intel_ring_buffer *pipelined,
			    bool interruptible)
{
	int ret;

	if (obj->fenced_gpu_access) {
2407 2408 2409 2410 2411 2412 2413
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
			ret = i915_gem_flush_ring(obj->base.dev,
						  obj->last_fenced_ring,
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
			ret = i915_do_wait_request(obj->base.dev,
						   obj->last_fenced_seqno,
						   interruptible,
						   obj->last_fenced_ring);
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2433 2434 2435 2436 2437 2438
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	ret = i915_gem_object_flush_fence(obj, NULL, true);
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2468 2469
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2470 2471
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2472 2473

	/* First try to find a free reg */
2474
	avail = NULL;
2475 2476 2477
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2478
			return reg;
2479

2480
		if (!reg->obj->pin_count)
2481
			avail = reg;
2482 2483
	}

2484 2485
	if (avail == NULL)
		return NULL;
2486 2487

	/* None available, try to steal one or wait for a user to finish */
2488 2489 2490
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2491 2492
			continue;

2493 2494 2495 2496 2497 2498 2499 2500 2501
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2502 2503
	}

2504 2505
	if (avail == NULL)
		avail = first;
2506

2507
	return avail;
2508 2509
}

2510
/**
2511
 * i915_gem_object_get_fence - set up a fence reg for an object
2512
 * @obj: object to map through a fence reg
2513 2514
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2525
int
2526 2527 2528
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
			  struct intel_ring_buffer *pipelined,
			  bool interruptible)
2529
{
2530
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2531
	struct drm_i915_private *dev_priv = dev->dev_private;
2532
	struct drm_i915_fence_reg *reg;
2533
	int ret;
2534

2535 2536 2537
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2538
	/* Just update our place in the LRU if our fence is getting reused. */
2539 2540
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2541
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
					ret = i915_do_wait_request(obj->base.dev,
								   reg->setup_seqno,
								   interruptible,
								   obj->last_fenced_ring);
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
			ret = i915_gem_object_flush_fence(obj,
							  pipelined,
							  interruptible);
			if (ret)
				return ret;
		} else if (obj->tiling_changed) {
			if (obj->fenced_gpu_access) {
2569 2570 2571 2572 2573 2574
				if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
					ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
								  0, obj->base.write_domain);
					if (ret)
						return ret;
				}
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

				obj->fenced_gpu_access = false;
			}
		}

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;
		BUG_ON(!pipelined && reg->setup_seqno);

		if (obj->tiling_changed) {
			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(dev, pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}
			goto update;
		}

2594 2595 2596
		return 0;
	}

2597 2598 2599
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2600

2601 2602
	ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
	if (ret)
2603
		return ret;
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

		ret = i915_gem_object_flush_fence(old,
2614
						  pipelined,
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
						  interruptible);
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
			pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2632

2633
	reg->obj = obj;
2634 2635 2636
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2637

2638 2639 2640 2641 2642 2643
	reg->setup_seqno =
		pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2644 2645
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2646
		ret = sandybridge_write_fence_reg(obj, pipelined);
2647 2648 2649
		break;
	case 5:
	case 4:
2650
		ret = i965_write_fence_reg(obj, pipelined);
2651 2652
		break;
	case 3:
2653
		ret = i915_write_fence_reg(obj, pipelined);
2654 2655
		break;
	case 2:
2656
		ret = i830_write_fence_reg(obj, pipelined);
2657 2658
		break;
	}
2659

2660
	return ret;
2661 2662 2663 2664 2665 2666 2667
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2668
 * data structures in dev_priv and obj.
2669 2670
 */
static void
2671 2672
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2673
{
J
Jesse Barnes 已提交
2674
	drm_i915_private_t *dev_priv = dev->dev_private;
2675
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2676

2677 2678
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2679
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2680 2681 2682
		break;
	case 5:
	case 4:
2683
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2684 2685
		break;
	case 3:
2686 2687
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2688
		else
2689
	case 2:
2690
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2691 2692

		I915_WRITE(fence_reg, 0);
2693
		break;
2694
	}
2695

2696
	list_del_init(&reg->lru_list);
2697 2698
	reg->obj = NULL;
	reg->setup_seqno = 0;
2699 2700
}

2701 2702 2703 2704
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2705
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2706
			    unsigned alignment,
2707
			    bool map_and_fenceable)
2708
{
2709
	struct drm_device *dev = obj->base.dev;
2710 2711
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2712
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2713
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2714
	bool mappable, fenceable;
2715
	int ret;
2716

2717
	if (obj->madv != I915_MADV_WILLNEED) {
2718 2719 2720 2721
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2722 2723 2724
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2725

2726
	if (alignment == 0)
2727 2728
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2729
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2730 2731 2732 2733
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2734
	size = map_and_fenceable ? fence_size : obj->base.size;
2735

2736 2737 2738
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2739
	if (obj->base.size >
2740
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2741 2742 2743 2744
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2745
 search_free:
2746
	if (map_and_fenceable)
2747 2748
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2749
						    size, alignment, 0,
2750 2751 2752 2753
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2754
						size, alignment, 0);
2755 2756

	if (free_space != NULL) {
2757
		if (map_and_fenceable)
2758
			obj->gtt_space =
2759
				drm_mm_get_block_range_generic(free_space,
2760
							       size, alignment, 0,
2761 2762 2763
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2764
			obj->gtt_space =
2765
				drm_mm_get_block(free_space, size, alignment);
2766
	}
2767
	if (obj->gtt_space == NULL) {
2768 2769 2770
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2771 2772
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2773
		if (ret)
2774
			return ret;
2775

2776 2777 2778
		goto search_free;
	}

2779
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2780
	if (ret) {
2781 2782
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2783 2784

		if (ret == -ENOMEM) {
2785 2786
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2787 2788
			if (ret) {
				/* now try to shrink everyone else */
2789 2790 2791
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2792 2793
				}

2794
				return -ENOMEM;
2795 2796 2797 2798 2799
			}

			goto search_free;
		}

2800 2801 2802
		return ret;
	}

2803 2804
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2805
		i915_gem_object_put_pages_gtt(obj);
2806 2807
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2808

2809
		if (i915_gem_evict_everything(dev, false))
2810 2811 2812
			return ret;

		goto search_free;
2813 2814
	}

2815
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2816
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2817

2818 2819 2820 2821
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2822 2823
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2824

2825
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2826

2827
	fenceable =
2828 2829
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2830

2831
	mappable =
2832
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2833

2834
	obj->map_and_fenceable = mappable && fenceable;
2835

2836
	trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2837 2838 2839 2840
	return 0;
}

void
2841
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2842 2843 2844 2845 2846
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2847
	if (obj->pages == NULL)
2848 2849
		return;

C
Chris Wilson 已提交
2850
	trace_i915_gem_object_clflush(obj);
2851

2852
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2853 2854
}

2855
/** Flushes any GPU write domain for the object if it's dirty. */
2856
static int
2857
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2858
{
2859
	struct drm_device *dev = obj->base.dev;
2860

2861
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2862
		return 0;
2863 2864

	/* Queue the GPU write cache flushing we need. */
2865
	return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2866 2867 2868 2869
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2870
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2871
{
C
Chris Wilson 已提交
2872 2873
	uint32_t old_write_domain;

2874
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2875 2876
		return;

2877
	/* No actual flushing is required for the GTT write domain.  Writes
2878 2879
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2880 2881 2882 2883
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2884
	 */
2885 2886
	wmb();

2887 2888
	i915_gem_release_mmap(obj);

2889 2890
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2891 2892

	trace_i915_gem_object_change_domain(obj,
2893
					    obj->base.read_domains,
C
Chris Wilson 已提交
2894
					    old_write_domain);
2895 2896 2897 2898
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2899
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2900
{
C
Chris Wilson 已提交
2901
	uint32_t old_write_domain;
2902

2903
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2904 2905 2906
		return;

	i915_gem_clflush_object(obj);
2907
	intel_gtt_chipset_flush();
2908 2909
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2910 2911

	trace_i915_gem_object_change_domain(obj,
2912
					    obj->base.read_domains,
C
Chris Wilson 已提交
2913
					    old_write_domain);
2914 2915
}

2916 2917 2918 2919 2920 2921
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2922
int
2923
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2924
{
C
Chris Wilson 已提交
2925
	uint32_t old_write_domain, old_read_domains;
2926
	int ret;
2927

2928
	/* Not valid to be called on unbound objects. */
2929
	if (obj->gtt_space == NULL)
2930 2931
		return -EINVAL;

2932 2933 2934 2935
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2936 2937 2938 2939 2940
	if (obj->pending_gpu_write || write) {
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}
2941

2942
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2943

2944 2945
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2946

2947 2948 2949
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2950 2951
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2952
	if (write) {
2953 2954 2955
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2956 2957
	}

C
Chris Wilson 已提交
2958 2959 2960 2961
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2962 2963 2964
	return 0;
}

2965 2966 2967 2968 2969
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2970
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2971
				     struct intel_ring_buffer *pipelined)
2972
{
2973
	uint32_t old_read_domains;
2974 2975 2976
	int ret;

	/* Not valid to be called on unbound objects. */
2977
	if (obj->gtt_space == NULL)
2978 2979
		return -EINVAL;

2980 2981 2982 2983
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2984

2985
	/* Currently, we are always called from an non-interruptible context. */
2986
	if (pipelined != obj->ring) {
2987 2988
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2989 2990 2991
			return ret;
	}

2992 2993
	i915_gem_object_flush_cpu_write_domain(obj);

2994 2995
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2996 2997 2998

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2999
					    obj->base.write_domain);
3000 3001 3002 3003

	return 0;
}

3004 3005 3006 3007
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
3008 3009
	int ret;

3010 3011 3012
	if (!obj->active)
		return 0;

3013 3014 3015 3016 3017 3018
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
		ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
					  0, obj->base.write_domain);
		if (ret)
			return ret;
	}
3019

3020
	return i915_gem_object_wait_rendering(obj, interruptible);
3021 3022
}

3023 3024 3025 3026 3027 3028 3029
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3030
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3031
{
C
Chris Wilson 已提交
3032
	uint32_t old_write_domain, old_read_domains;
3033 3034
	int ret;

3035 3036 3037 3038
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3039 3040
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3041
		return ret;
3042

3043
	i915_gem_object_flush_gtt_write_domain(obj);
3044

3045 3046
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3047
	 */
3048
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3049

3050 3051
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3052

3053
	/* Flush the CPU cache if it's still invalid. */
3054
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3055 3056
		i915_gem_clflush_object(obj);

3057
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3058 3059 3060 3061 3062
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3063
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3064 3065 3066 3067 3068

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3069 3070
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3071
	}
3072

C
Chris Wilson 已提交
3073 3074 3075 3076
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3077 3078 3079
	return 0;
}

3080
/**
3081
 * Moves the object from a partially CPU read to a full one.
3082
 *
3083 3084
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3085
 */
3086
static void
3087
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3088
{
3089
	if (!obj->page_cpu_valid)
3090 3091 3092 3093
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3094
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3095 3096
		int i;

3097 3098
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3099
				continue;
3100
			drm_clflush_pages(obj->pages + i, 1);
3101 3102 3103 3104 3105 3106
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3107 3108
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3124
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3125 3126
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3127
	uint32_t old_read_domains;
3128
	int i, ret;
3129

3130
	if (offset == 0 && size == obj->base.size)
3131
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3132

3133 3134 3135 3136
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3137 3138
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3139
		return ret;
3140

3141 3142 3143
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3144 3145
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3146
		return 0;
3147

3148 3149 3150
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3151 3152 3153 3154
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3155
			return -ENOMEM;
3156 3157
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3158 3159 3160 3161

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3162 3163
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3164
		if (obj->page_cpu_valid[i])
3165 3166
			continue;

3167
		drm_clflush_pages(obj->pages + i, 1);
3168

3169
		obj->page_cpu_valid[i] = 1;
3170 3171
	}

3172 3173 3174
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3175
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3176

3177 3178
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3179

C
Chris Wilson 已提交
3180 3181
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3182
					    obj->base.write_domain);
C
Chris Wilson 已提交
3183

3184 3185 3186 3187 3188 3189
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3190 3191 3192 3193
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3194 3195 3196
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3197
static int
3198
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3199
{
3200 3201
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3202
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3203 3204 3205 3206
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3207

3208
	spin_lock(&file_priv->mm.lock);
3209
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3210 3211
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3212

3213 3214
		ring = request->ring;
		seqno = request->seqno;
3215
	}
3216
	spin_unlock(&file_priv->mm.lock);
3217

3218 3219
	if (seqno == 0)
		return 0;
3220

3221
	ret = 0;
3222
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3223 3224 3225 3226 3227
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3228 3229 3230 3231 3232
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3233

3234 3235 3236
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3237 3238
	}

3239 3240
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3241 3242 3243 3244

	return ret;
}

3245
int
3246 3247
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3248
		    bool map_and_fenceable)
3249
{
3250
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3251
	struct drm_i915_private *dev_priv = dev->dev_private;
3252 3253
	int ret;

3254
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3255
	WARN_ON(i915_verify_lists(dev));
3256

3257 3258 3259 3260
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3261
			     "bo is already pinned with incorrect alignment:"
3262 3263
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3264
			     obj->gtt_offset, alignment,
3265
			     map_and_fenceable,
3266
			     obj->map_and_fenceable);
3267 3268 3269 3270 3271 3272
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3273
	if (obj->gtt_space == NULL) {
3274
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3275
						  map_and_fenceable);
3276
		if (ret)
3277
			return ret;
3278
	}
J
Jesse Barnes 已提交
3279

3280 3281 3282
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3283
				       &dev_priv->mm.pinned_list);
3284
	}
3285
	obj->pin_mappable |= map_and_fenceable;
3286

3287
	WARN_ON(i915_verify_lists(dev));
3288 3289 3290 3291
	return 0;
}

void
3292
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3293
{
3294
	struct drm_device *dev = obj->base.dev;
3295 3296
	drm_i915_private_t *dev_priv = dev->dev_private;

3297
	WARN_ON(i915_verify_lists(dev));
3298 3299
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3300

3301 3302 3303
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3304
				       &dev_priv->mm.inactive_list);
3305
		obj->pin_mappable = false;
3306
	}
3307
	WARN_ON(i915_verify_lists(dev));
3308 3309 3310 3311
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3312
		   struct drm_file *file)
3313 3314
{
	struct drm_i915_gem_pin *args = data;
3315
	struct drm_i915_gem_object *obj;
3316 3317
	int ret;

3318 3319 3320
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3321

3322
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3323
	if (obj == NULL) {
3324 3325
		ret = -ENOENT;
		goto unlock;
3326 3327
	}

3328
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3329
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3330 3331
		ret = -EINVAL;
		goto out;
3332 3333
	}

3334
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3335 3336
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3337 3338
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3339 3340
	}

3341 3342 3343
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3344
		ret = i915_gem_object_pin(obj, args->alignment, true);
3345 3346
		if (ret)
			goto out;
3347 3348 3349 3350 3351
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3352
	i915_gem_object_flush_cpu_write_domain(obj);
3353
	args->offset = obj->gtt_offset;
3354
out:
3355
	drm_gem_object_unreference(&obj->base);
3356
unlock:
3357
	mutex_unlock(&dev->struct_mutex);
3358
	return ret;
3359 3360 3361 3362
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3363
		     struct drm_file *file)
3364 3365
{
	struct drm_i915_gem_pin *args = data;
3366
	struct drm_i915_gem_object *obj;
3367
	int ret;
3368

3369 3370 3371
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3372

3373
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3374
	if (obj == NULL) {
3375 3376
		ret = -ENOENT;
		goto unlock;
3377
	}
3378

3379
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3380 3381
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3382 3383
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3384
	}
3385 3386 3387
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3388 3389
		i915_gem_object_unpin(obj);
	}
3390

3391
out:
3392
	drm_gem_object_unreference(&obj->base);
3393
unlock:
3394
	mutex_unlock(&dev->struct_mutex);
3395
	return ret;
3396 3397 3398 3399
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3400
		    struct drm_file *file)
3401 3402
{
	struct drm_i915_gem_busy *args = data;
3403
	struct drm_i915_gem_object *obj;
3404 3405
	int ret;

3406
	ret = i915_mutex_lock_interruptible(dev);
3407
	if (ret)
3408
		return ret;
3409

3410
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3411
	if (obj == NULL) {
3412 3413
		ret = -ENOENT;
		goto unlock;
3414
	}
3415

3416 3417 3418 3419
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3420
	 */
3421
	args->busy = obj->active;
3422 3423 3424 3425 3426 3427
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3428
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3429 3430
			ret = i915_gem_flush_ring(dev, obj->ring,
						  0, obj->base.write_domain);
3431 3432 3433 3434
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3435 3436 3437
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3438 3439 3440 3441 3442 3443
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
				ret = i915_add_request(dev,
						       NULL, request,
						       obj->ring);
			else
3444 3445
				ret = -ENOMEM;
		}
3446 3447 3448 3449 3450 3451

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
3452
		i915_gem_retire_requests_ring(dev, obj->ring);
3453

3454
		args->busy = obj->active;
3455
	}
3456

3457
	drm_gem_object_unreference(&obj->base);
3458
unlock:
3459
	mutex_unlock(&dev->struct_mutex);
3460
	return ret;
3461 3462 3463 3464 3465 3466 3467 3468 3469
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3470 3471 3472 3473 3474
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3475
	struct drm_i915_gem_object *obj;
3476
	int ret;
3477 3478 3479 3480 3481 3482 3483 3484 3485

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3486 3487 3488 3489
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3490
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3491
	if (obj == NULL) {
3492 3493
		ret = -ENOENT;
		goto unlock;
3494 3495
	}

3496
	if (obj->pin_count) {
3497 3498
		ret = -EINVAL;
		goto out;
3499 3500
	}

3501 3502
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3503

3504
	/* if the object is no longer bound, discard its backing storage */
3505 3506
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3507 3508
		i915_gem_object_truncate(obj);

3509
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3510

3511
out:
3512
	drm_gem_object_unreference(&obj->base);
3513
unlock:
3514
	mutex_unlock(&dev->struct_mutex);
3515
	return ret;
3516 3517
}

3518 3519
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3520
{
3521
	struct drm_i915_private *dev_priv = dev->dev_private;
3522
	struct drm_i915_gem_object *obj;
3523

3524 3525 3526
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3527

3528 3529 3530 3531
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3532

3533 3534
	i915_gem_info_add_obj(dev_priv, size);

3535 3536
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3537

3538
	obj->agp_type = AGP_USER_MEMORY;
3539
	obj->base.driver_private = NULL;
3540
	obj->fence_reg = I915_FENCE_REG_NONE;
3541
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3542
	INIT_LIST_HEAD(&obj->gtt_list);
3543
	INIT_LIST_HEAD(&obj->ring_list);
3544
	INIT_LIST_HEAD(&obj->exec_list);
3545 3546
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3547 3548
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3549

3550
	return obj;
3551 3552 3553 3554 3555
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3556

3557 3558 3559
	return 0;
}

3560
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3561
{
3562
	struct drm_device *dev = obj->base.dev;
3563 3564
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3565

3566 3567
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3568
		list_move(&obj->mm_list,
3569 3570 3571
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3572

3573
	if (obj->base.map_list.map)
3574
		i915_gem_free_mmap_offset(obj);
3575

3576 3577
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3578

3579 3580 3581
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3582 3583
}

3584
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3585
{
3586 3587
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3588 3589 3590

	trace_i915_gem_object_destroy(obj);

3591
	while (obj->pin_count > 0)
3592 3593
		i915_gem_object_unpin(obj);

3594
	if (obj->phys_obj)
3595 3596 3597 3598 3599
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3600 3601 3602 3603 3604
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3605

3606
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3607

3608
	if (dev_priv->mm.suspended) {
3609 3610
		mutex_unlock(&dev->struct_mutex);
		return 0;
3611 3612
	}

3613
	ret = i915_gpu_idle(dev);
3614 3615
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3616
		return ret;
3617
	}
3618

3619 3620
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3621
		ret = i915_gem_evict_inactive(dev, false);
3622 3623 3624 3625 3626 3627
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3628 3629
	i915_gem_reset_fences(dev);

3630 3631 3632 3633 3634
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3635
	del_timer_sync(&dev_priv->hangcheck_timer);
3636 3637

	i915_kernel_lost_context(dev);
3638
	i915_gem_cleanup_ringbuffer(dev);
3639

3640 3641
	mutex_unlock(&dev->struct_mutex);

3642 3643 3644
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3645 3646 3647
	return 0;
}

3648 3649 3650 3651 3652
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3653

3654
	ret = intel_init_render_ring_buffer(dev);
3655
	if (ret)
3656
		return ret;
3657 3658

	if (HAS_BSD(dev)) {
3659
		ret = intel_init_bsd_ring_buffer(dev);
3660 3661
		if (ret)
			goto cleanup_render_ring;
3662
	}
3663

3664 3665 3666 3667 3668 3669
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3670 3671
	dev_priv->next_seqno = 1;

3672 3673
	return 0;

3674
cleanup_bsd_ring:
3675
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3676
cleanup_render_ring:
3677
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3678 3679 3680 3681 3682 3683 3684
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3685
	int i;
3686

3687 3688
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3689 3690
}

3691 3692 3693 3694 3695
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3696
	int ret, i;
3697

J
Jesse Barnes 已提交
3698 3699 3700
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3701
	if (atomic_read(&dev_priv->mm.wedged)) {
3702
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3703
		atomic_set(&dev_priv->mm.wedged, 0);
3704 3705 3706
	}

	mutex_lock(&dev->struct_mutex);
3707 3708 3709
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3710 3711
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3712
		return ret;
3713
	}
3714

3715
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3716 3717
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3718 3719 3720 3721
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3722
	mutex_unlock(&dev->struct_mutex);
3723

3724 3725 3726
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3727

3728
	return 0;
3729 3730 3731 3732 3733 3734 3735 3736

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3737 3738 3739 3740 3741 3742
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3743 3744 3745
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3746
	drm_irq_uninstall(dev);
3747
	return i915_gem_idle(dev);
3748 3749 3750 3751 3752 3753 3754
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3755 3756 3757
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3758 3759 3760
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3761 3762
}

3763 3764 3765 3766 3767 3768 3769 3770
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3771 3772 3773
void
i915_gem_load(struct drm_device *dev)
{
3774
	int i;
3775 3776
	drm_i915_private_t *dev_priv = dev->dev_private;

3777
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3778 3779
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3780
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3781
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3782
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3783
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3784 3785
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3786 3787
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3788 3789
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3790
	init_completion(&dev_priv->error_completion);
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3802 3803
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3804
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3805 3806
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3807

3808
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3809 3810 3811 3812
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3813
	/* Initialize fence registers to zero */
3814 3815 3816 3817 3818 3819 3820
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3821 3822
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3823 3824
		break;
	case 3:
3825 3826 3827
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3828 3829 3830 3831
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3832
	}
3833
	i915_gem_detect_bit_6_swizzle(dev);
3834
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3835 3836 3837 3838

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3839
}
3840 3841 3842 3843 3844

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3845 3846
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3847 3848 3849 3850 3851 3852 3853 3854
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3855
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3856 3857 3858 3859 3860
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3861
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3874
	kfree(phys_obj);
3875 3876 3877
	return ret;
}

3878
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3903
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3904 3905 3906 3907
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3908
				 struct drm_i915_gem_object *obj)
3909
{
3910
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3911
	char *vaddr;
3912 3913 3914
	int i;
	int page_count;

3915
	if (!obj->phys_obj)
3916
		return;
3917
	vaddr = obj->phys_obj->handle->vaddr;
3918

3919
	page_count = obj->base.size / PAGE_SIZE;
3920
	for (i = 0; i < page_count; i++) {
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3934
	}
3935
	intel_gtt_chipset_flush();
3936

3937 3938
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3939 3940 3941 3942
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3943
			    struct drm_i915_gem_object *obj,
3944 3945
			    int id,
			    int align)
3946
{
3947
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3948 3949 3950 3951 3952 3953 3954 3955
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3956 3957
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3958 3959 3960 3961 3962 3963 3964
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3965
						obj->base.size, align);
3966
		if (ret) {
3967 3968
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3969
			return ret;
3970 3971 3972 3973
		}
	}

	/* bind to the object */
3974 3975
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3976

3977
	page_count = obj->base.size / PAGE_SIZE;
3978 3979

	for (i = 0; i < page_count; i++) {
3980 3981 3982 3983 3984 3985 3986
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
3987

3988
		src = kmap_atomic(page);
3989
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3990
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3991
		kunmap_atomic(src);
3992

3993 3994 3995
		mark_page_accessed(page);
		page_cache_release(page);
	}
3996

3997 3998 3999 4000
	return 0;
}

static int
4001 4002
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4003 4004 4005
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4006
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4007
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4022

4023
	intel_gtt_chipset_flush();
4024 4025
	return 0;
}
4026

4027
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4028
{
4029
	struct drm_i915_file_private *file_priv = file->driver_priv;
4030 4031 4032 4033 4034

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4035
	spin_lock(&file_priv->mm.lock);
4036 4037 4038 4039 4040 4041 4042 4043 4044
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4045
	spin_unlock(&file_priv->mm.lock);
4046
}
4047

4048 4049 4050 4051 4052 4053 4054
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4055
		      list_empty(&dev_priv->mm.active_list);
4056 4057 4058 4059

	return !lists_empty;
}

4060
static int
4061 4062 4063
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4064
{
4065 4066 4067 4068 4069 4070 4071 4072 4073
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4074
		return 0;
4075 4076 4077

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4078 4079 4080 4081 4082 4083 4084
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4085 4086
	}

4087
rescan:
4088
	/* first scan for clean buffers */
4089
	i915_gem_retire_requests(dev);
4090

4091 4092 4093 4094
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4095 4096
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4097
				break;
4098 4099 4100 4101
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4102 4103 4104 4105
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4106 4107
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4108
			nr_to_scan--;
4109
		else
4110 4111 4112 4113
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4114 4115 4116 4117 4118 4119
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4120
		if (i915_gpu_idle(dev) == 0)
4121 4122
			goto rescan;
	}
4123 4124
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4125
}