intel_pstate.c 64.1 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
187 188 189 190 191 192 193
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
194
	int32_t last_err;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
214 215
};

216 217 218
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
219
 * @policy:		CPUFreq policy value
220
 * @update_util:	CPUFreq utility callback information
221
 * @update_util_set:	CPUFreq utility callback is set
222 223
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
224 225 226 227 228 229 230 231 232 233
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
234 235
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
236 237
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
238 239 240
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
241
 * @epp_policy:		Last saved policy used to set EPP/EPB
242 243 244 245
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
246 247 248
 *
 * This structure stores per CPU instance data for all CPUs.
 */
249 250 251
struct cpudata {
	int cpu;

252
	unsigned int policy;
253
	struct update_util_data update_util;
254
	bool   update_util_set;
255 256

	struct pstate_data pstate;
257
	struct vid_data vid;
258 259
	struct _pid pid;

260
	u64	last_update;
261
	u64	last_sample_time;
262 263
	u64	prev_aperf;
	u64	prev_mperf;
264
	u64	prev_tsc;
265
	u64	prev_cummulative_iowait;
266
	struct sample sample;
267 268
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
269 270 271 272
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
273
	unsigned int iowait_boost;
274
	s16 epp_powersave;
275
	s16 epp_policy;
276 277
	s16 epp_default;
	s16 epp_saved;
278 279 280
};

static struct cpudata **all_cpu_data;
281 282

/**
283
 * struct pstate_adjust_policy - Stores static PID configuration data
284 285 286 287 288 289 290 291 292 293
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
294 295
struct pstate_adjust_policy {
	int sample_rate_ms;
296
	s64 sample_rate_ns;
297 298 299 300 301 302 303
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

304 305 306 307 308 309 310 311 312
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
313
 * @update_util:	Active mode utilization update callback.
314 315 316 317
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
318 319
struct pstate_funcs {
	int (*get_max)(void);
320
	int (*get_max_physical)(void);
321 322
	int (*get_min)(void);
	int (*get_turbo)(void);
323
	int (*get_scaling)(void);
324
	u64 (*get_val)(struct cpudata*, int pstate);
325
	void (*get_vid)(struct cpudata *);
326 327
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
328 329
};

330
static struct pstate_funcs pstate_funcs __read_mostly;
331 332 333 334 335 336 337 338 339 340
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

341
static int hwp_active __read_mostly;
342
static bool per_cpu_limits __read_mostly;
343

344
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
345

346 347 348
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
349

350
static struct global_params global;
351

352
static DEFINE_MUTEX(intel_pstate_driver_lock);
353 354
static DEFINE_MUTEX(intel_pstate_limits_lock);

355
#ifdef CONFIG_ACPI
356 357 358 359 360 361 362 363 364 365

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

417 418 419 420 421 422
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

423 424
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
425
		return;
426
	}
427

428
	if (!intel_pstate_get_ppc_enable_status())
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
471
	 * correct max turbo frequency based on the turbo state.
472 473
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
474
	if (!global.turbo_disabled)
475 476 477
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
478
	pr_debug("_PPC limits will be enforced\n");
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
498
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 500 501
{
}

502
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 504 505 506
{
}
#endif

507
static signed int pid_calc(struct _pid *pid, int32_t busy)
508
{
509
	signed int result;
510 511 512
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

513
	fp_error = pid->setpoint - busy;
514

515
	if (abs(fp_error) <= pid->deadband)
516 517 518 519 520 521
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

522 523 524 525 526 527 528 529
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
530 531 532 533 534 535
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

536 537
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
538 539

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540
	result = result + (1 << (FRAC_BITS-1));
541 542 543
	return (signed int)fp_toint(result);
}

544
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
545
{
546
	struct _pid *pid = &cpu->pid;
547

548 549 550 551 552 553 554
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
555 556
}

557 558 559 560 561 562 563
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564
	global.turbo_disabled =
565 566 567 568
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

569 570 571
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
572
	int turbo_pstate = cpu->pstate.turbo_pstate;
573

574
	return turbo_pstate ?
575
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

597 598 599 600 601 602 603 604 605 606 607
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
608
		epp = (hwp_req_data >> 24) & 0xff;
609
	} else {
610 611
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
612
	}
613 614 615 616

	return epp;
}

617
static int intel_pstate_set_epb(int cpu, s16 pref)
618 619
{
	u64 epb;
620
	int ret;
621 622

	if (!static_cpu_has(X86_FEATURE_EPB))
623
		return -ENXIO;
624

625 626 627
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
628 629 630

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 632

	return 0;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
654 655 656 657 658 659
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
660 661 662 663 664 665 666 667 668 669 670

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
671 672 673 674 675 676 677 678
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
717
			epp = epp_values[pref_index - 1];
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

791 792
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
793
{
794
	u64 cap;
795

796 797
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
798
		*current_max = HWP_GUARANTEED_PERF(cap);
799
	else
800 801 802 803 804 805 806 807 808 809 810 811 812 813
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
814

815 816
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
817

818
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
819

820 821
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
822

823 824
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
825

826 827
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
828

829
	cpu_data->epp_policy = cpu_data->policy;
830

831 832 833 834 835
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
836

837 838 839 840 841 842
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
843

844 845 846 847 848
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
849

850 851 852 853 854 855 856 857 858 859
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
860

861 862
		epp = cpu_data->epp_powersave;
	}
863
update_epp:
864 865 866 867 868
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
869
	}
870 871
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
872
}
D
Dirk Brandewie 已提交
873

874 875 876 877 878 879 880 881 882 883 884 885
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

886 887 888 889 890
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

891 892
	mutex_lock(&intel_pstate_limits_lock);

893
	all_cpu_data[policy->cpu]->epp_policy = 0;
894
	intel_pstate_hwp_set(policy->cpu);
895 896 897

	mutex_unlock(&intel_pstate_limits_lock);

898
	return 0;
899 900
}

901
static void intel_pstate_update_policies(void)
902
{
903 904 905 906
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
907 908
}

909 910 911
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
912 913
	unsigned int cpu;

914
	*(u32 *)data = val;
915
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
916 917
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
918
			intel_pstate_pid_reset(all_cpu_data[cpu]);
919

920 921
	return 0;
}
922

923 924 925 926 927
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
928
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
929

930 931
static struct dentry *debugfs_parent;

932 933 934
struct pid_param {
	char *name;
	void *value;
935
	struct dentry *dentry;
936 937 938
};

static struct pid_param pid_files[] = {
939 940 941 942 943 944 945
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
946 947
};

948
static void intel_pstate_debug_expose_params(void)
949
{
950
	int i;
951 952 953 954

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
955 956 957 958 959 960 961 962 963

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
964 965 966
	}
}

967 968 969 970 971 972 973 974 975 976
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
977
	}
978 979 980

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
981 982 983 984 985 986 987 988 989
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
990
		return sprintf(buf, "%u\n", global.object);		\
991 992
	}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1021 1022 1023 1024 1025 1026 1027
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1028 1029
	mutex_lock(&intel_pstate_driver_lock);

1030
	if (!intel_pstate_driver) {
1031 1032 1033 1034
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1035 1036 1037 1038
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1039
	turbo_fp = div_fp(no_turbo, total);
1040
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1041 1042 1043

	mutex_unlock(&intel_pstate_driver_lock);

1044 1045 1046
	return sprintf(buf, "%u\n", turbo_pct);
}

1047 1048 1049 1050 1051 1052
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1053 1054
	mutex_lock(&intel_pstate_driver_lock);

1055
	if (!intel_pstate_driver) {
1056 1057 1058 1059
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1060 1061
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1062 1063 1064

	mutex_unlock(&intel_pstate_driver_lock);

1065 1066 1067
	return sprintf(buf, "%u\n", total);
}

1068 1069 1070 1071 1072
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1073 1074
	mutex_lock(&intel_pstate_driver_lock);

1075
	if (!intel_pstate_driver) {
1076 1077 1078 1079
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1080
	update_turbo_state();
1081 1082
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1083
	else
1084
		ret = sprintf(buf, "%u\n", global.no_turbo);
1085

1086 1087
	mutex_unlock(&intel_pstate_driver_lock);

1088 1089 1090
	return ret;
}

1091
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1092
			      const char *buf, size_t count)
1093 1094 1095
{
	unsigned int input;
	int ret;
1096

1097 1098 1099
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1100

1101 1102
	mutex_lock(&intel_pstate_driver_lock);

1103
	if (!intel_pstate_driver) {
1104 1105 1106 1107
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1108 1109
	mutex_lock(&intel_pstate_limits_lock);

1110
	update_turbo_state();
1111
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1112
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1113
		mutex_unlock(&intel_pstate_limits_lock);
1114
		mutex_unlock(&intel_pstate_driver_lock);
1115
		return -EPERM;
1116
	}
D
Dirk Brandewie 已提交
1117

1118
	global.no_turbo = clamp_t(int, input, 0, 1);
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1129 1130
	mutex_unlock(&intel_pstate_limits_lock);

1131 1132
	intel_pstate_update_policies();

1133 1134
	mutex_unlock(&intel_pstate_driver_lock);

1135 1136 1137 1138
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1139
				  const char *buf, size_t count)
1140 1141 1142
{
	unsigned int input;
	int ret;
1143

1144 1145 1146 1147
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1148 1149
	mutex_lock(&intel_pstate_driver_lock);

1150
	if (!intel_pstate_driver) {
1151 1152 1153 1154
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1155 1156
	mutex_lock(&intel_pstate_limits_lock);

1157
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1158

1159 1160
	mutex_unlock(&intel_pstate_limits_lock);

1161 1162
	intel_pstate_update_policies();

1163 1164
	mutex_unlock(&intel_pstate_driver_lock);

1165 1166 1167 1168
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1169
				  const char *buf, size_t count)
1170 1171 1172
{
	unsigned int input;
	int ret;
1173

1174 1175 1176
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1177

1178 1179
	mutex_lock(&intel_pstate_driver_lock);

1180
	if (!intel_pstate_driver) {
1181 1182 1183 1184
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1185 1186
	mutex_lock(&intel_pstate_limits_lock);

1187 1188
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1189

1190 1191
	mutex_unlock(&intel_pstate_limits_lock);

1192 1193
	intel_pstate_update_policies();

1194 1195
	mutex_unlock(&intel_pstate_driver_lock);

1196 1197 1198 1199 1200 1201
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1202
define_one_global_rw(status);
1203 1204 1205
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1206
define_one_global_ro(turbo_pct);
1207
define_one_global_ro(num_pstates);
1208 1209

static struct attribute *intel_pstate_attributes[] = {
1210
	&status.attr,
1211
	&no_turbo.attr,
1212
	&turbo_pct.attr,
1213
	&num_pstates.attr,
1214 1215 1216
	NULL
};

1217
static const struct attribute_group intel_pstate_attr_group = {
1218 1219 1220
	.attrs = intel_pstate_attributes,
};

1221
static void __init intel_pstate_sysfs_expose_params(void)
1222
{
1223
	struct kobject *intel_pstate_kobject;
1224 1225 1226 1227
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1228 1229 1230
	if (WARN_ON(!intel_pstate_kobject))
		return;

1231
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1248 1249
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1250

1251
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1252
{
1253
	/* First disable HWP notification interrupt as we don't process them */
1254 1255
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1256

1257
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1258
	cpudata->epp_policy = 0;
1259 1260
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1282
static int atom_get_min_pstate(void)
1283 1284
{
	u64 value;
1285

1286
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1287
	return (value >> 8) & 0x7F;
1288 1289
}

1290
static int atom_get_max_pstate(void)
1291 1292
{
	u64 value;
1293

1294
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1295
	return (value >> 16) & 0x7F;
1296
}
1297

1298
static int atom_get_turbo_pstate(void)
1299 1300
{
	u64 value;
1301

1302
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1303
	return value & 0x7F;
1304 1305
}

1306
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1307 1308 1309 1310 1311
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1312
	val = (u64)pstate << 8;
1313
	if (global.no_turbo && !global.turbo_disabled)
1314 1315 1316 1317 1318 1319 1320
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1321
	vid = ceiling_fp(vid_fp);
1322

1323 1324 1325
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1326
	return val | vid;
1327 1328
}

1329
static int silvermont_get_scaling(void)
1330 1331 1332
{
	u64 value;
	int i;
1333 1334 1335
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1336 1337

	rdmsrl(MSR_FSB_FREQ, value);
1338 1339
	i = value & 0x7;
	WARN_ON(i > 4);
1340

1341 1342
	return silvermont_freq_table[i];
}
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1358 1359
}

1360
static void atom_get_vid(struct cpudata *cpudata)
1361 1362 1363
{
	u64 value;

1364
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1365 1366
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1367 1368 1369 1370
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1371

1372
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1373
	cpudata->vid.turbo = value & 0x7f;
1374 1375
}

1376
static int core_get_min_pstate(void)
1377 1378
{
	u64 value;
1379

1380
	rdmsrl(MSR_PLATFORM_INFO, value);
1381 1382 1383
	return (value >> 40) & 0xFF;
}

1384
static int core_get_max_pstate_physical(void)
1385 1386
{
	u64 value;
1387

1388
	rdmsrl(MSR_PLATFORM_INFO, value);
1389 1390 1391
	return (value >> 8) & 0xFF;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1425
static int core_get_max_pstate(void)
1426
{
1427 1428 1429
	u64 tar;
	u64 plat_info;
	int max_pstate;
1430
	int tdp_ratio;
1431 1432 1433 1434 1435
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1436 1437 1438 1439 1440 1441 1442 1443 1444
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1445 1446
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1447 1448
		int tar_levels;

1449
		/* Do some sanity checking for safety */
1450 1451 1452 1453
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1454 1455
		}
	}
1456

1457
	return max_pstate;
1458 1459
}

1460
static int core_get_turbo_pstate(void)
1461 1462 1463
{
	u64 value;
	int nont, ret;
1464

1465
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1466
	nont = core_get_max_pstate();
1467
	ret = (value) & 255;
1468 1469 1470 1471 1472
	if (ret <= nont)
		ret = nont;
	return ret;
}

1473 1474 1475 1476 1477
static inline int core_get_scaling(void)
{
	return 100000;
}

1478
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1479 1480 1481
{
	u64 val;

1482
	val = (u64)pstate << 8;
1483
	if (global.no_turbo && !global.turbo_disabled)
1484 1485
		val |= (u64)1 << 32;

1486
	return val;
1487 1488
}

1489 1490 1491 1492 1493
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1494
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495 1496 1497 1498 1499 1500 1501
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1502
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1503
{
1504 1505
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1506 1507
}

1508
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1509
{
1510 1511
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1512 1513 1514 1515 1516 1517 1518
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1519 1520
}

1521 1522 1523 1524 1525 1526 1527
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1528
	int pstate;
1529 1530

	update_turbo_state();
1531
	pstate = intel_pstate_get_base_pstate(cpu);
1532
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1533
	intel_pstate_set_pstate(cpu, pstate);
1534 1535
}

1536 1537
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1538 1539
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1540
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1541
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1542
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1543 1544
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1545

1546 1547
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1548 1549

	intel_pstate_set_min_pstate(cpu);
1550 1551
}

1552
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1553
{
1554
	struct sample *sample = &cpu->sample;
1555

1556
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1557 1558
}

1559
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1560 1561
{
	u64 aperf, mperf;
1562
	unsigned long flags;
1563
	u64 tsc;
1564

1565
	local_irq_save(flags);
1566 1567
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1568
	tsc = rdtsc();
1569
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1570
		local_irq_restore(flags);
1571
		return false;
1572
	}
1573
	local_irq_restore(flags);
1574

1575
	cpu->last_sample_time = cpu->sample.time;
1576
	cpu->sample.time = time;
1577 1578
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1579
	cpu->sample.tsc =  tsc;
1580 1581
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1582
	cpu->sample.tsc -= cpu->prev_tsc;
1583

1584 1585
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1586
	cpu->prev_tsc = tsc;
1587 1588 1589 1590 1591 1592 1593
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1594 1595 1596 1597 1598
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1599 1600
}

1601 1602
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1603 1604
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1605 1606
}

1607 1608
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1609 1610
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1611 1612
}

1613 1614 1615
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1616
	int32_t busy_frac, boost;
1617
	int target, avg_pstate;
1618

1619
	busy_frac = div_fp(sample->mperf, sample->tsc);
1620

1621 1622
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1623

1624 1625
	if (busy_frac < boost)
		busy_frac = boost;
1626

1627
	sample->busy_scaled = busy_frac * 100;
1628

1629
	target = global.no_turbo || global.turbo_disabled ?
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1648 1649
}

1650
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1651
{
1652
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1653
	u64 duration_ns;
1654

1655
	/*
1656 1657 1658 1659 1660
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1661
	 */
1662 1663
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1664
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1665
			       div_fp(100 * max_pstate, current_pstate));
1666

1667
	/*
1668 1669 1670
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1671
	 * enough period of time to adjust our performance metric.
1672
	 */
1673
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1674
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1675
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1676
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1677 1678 1679
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1680
			perf_scaled = 0;
1681 1682
	}

1683 1684
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1685 1686
}

1687
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1688
{
1689 1690
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1691

1692 1693
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1694
	return clamp_t(int, pstate, min_pstate, max_pstate);
1695 1696 1697 1698
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1699 1700 1701
	if (pstate == cpu->pstate.current_pstate)
		return;

1702
	cpu->pstate.current_pstate = pstate;
1703 1704 1705
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1706
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1707
{
1708
	int from = cpu->pstate.current_pstate;
1709 1710
	struct sample *sample;

1711 1712
	update_turbo_state();

1713 1714
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1715
	intel_pstate_update_pstate(cpu, target_pstate);
1716 1717

	sample = &cpu->sample;
1718
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1719
		fp_toint(sample->busy_scaled),
1720 1721 1722 1723 1724
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1725 1726
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737
static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1738 1739 1740 1741 1742 1743
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1744 1745
}

1746
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1747
				     unsigned int flags)
1748
{
1749
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1750 1751
	u64 delta_ns;

1752 1753 1754 1755 1756 1757 1758
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1759
	}
1760
	cpu->last_update = time;
1761
	delta_ns = time - cpu->sample.time;
1762 1763
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1764

1765 1766
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1767

1768 1769 1770 1771
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1772

1773 1774 1775 1776 1777 1778 1779 1780
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1781 1782
};

1783 1784 1785 1786 1787 1788 1789 1790 1791
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1792 1793
};

1794 1795 1796 1797 1798 1799 1800 1801 1802
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1803 1804
};

1805 1806 1807 1808 1809 1810 1811 1812
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1813 1814
};

1815 1816 1817 1818 1819 1820 1821 1822
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1823 1824
};

1825
#define ICPU(model, policy) \
1826 1827
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1828 1829

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1849
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1850 1851 1852 1853
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1854
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1855 1856 1857
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1858 1859 1860
	{}
};

1861
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1862
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1863 1864 1865
	{}
};

1866 1867
static bool pid_in_use(void);

1868 1869 1870 1871
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1872 1873 1874
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1875
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1876 1877 1878 1879 1880
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1881 1882 1883
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1884
	}
1885 1886 1887 1888

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1889

1890
	if (hwp_active) {
1891 1892 1893 1894 1895 1896
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1897
		intel_pstate_hwp_enable(cpu);
1898
	} else if (pid_in_use()) {
1899
		intel_pstate_pid_reset(cpu);
1900
	}
1901

1902
	intel_pstate_get_cpu_pstates(cpu);
1903

J
Joe Perches 已提交
1904
	pr_debug("controlling: cpu %d\n", cpunum);
1905 1906 1907 1908 1909 1910

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1911
	struct cpudata *cpu = all_cpu_data[cpu_num];
1912

1913
	return cpu ? get_avg_frequency(cpu) : 0;
1914 1915
}

1916
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1917
{
1918 1919
	struct cpudata *cpu = all_cpu_data[cpu_num];

1920 1921 1922
	if (hwp_active)
		return;

1923 1924 1925
	if (cpu->update_util_set)
		return;

1926 1927
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1928 1929
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1930
	cpu->update_util_set = true;
1931 1932 1933 1934
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1935 1936 1937 1938 1939
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1940
	cpufreq_remove_update_util_hook(cpu);
1941
	cpu_data->update_util_set = false;
1942 1943 1944
	synchronize_sched();
}

1945 1946 1947 1948 1949 1950
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1951
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1952
					    struct cpudata *cpu)
1953
{
1954
	int max_freq = intel_pstate_get_max_freq(cpu);
1955
	int32_t max_policy_perf, min_policy_perf;
1956
	int max_state, turbo_max;
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1971
	if (policy->max == policy->min) {
1972
		min_policy_perf = max_policy_perf;
1973
	} else {
1974
		min_policy_perf = max_state * policy->min / max_freq;
1975 1976
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1977
	}
1978

1979 1980 1981 1982
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1983
	/* Normalize user input to [min_perf, max_perf] */
1984
	if (per_cpu_limits) {
1985 1986
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1987 1988 1989 1990
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1991 1992
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1993
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1994

1995 1996
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1997

1998 1999 2000 2001
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2002

2003 2004 2005
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2006

2007 2008 2009 2010
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2011 2012
}

2013 2014
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2015 2016
	struct cpudata *cpu;

2017 2018 2019
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2020 2021 2022
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2023
	cpu = all_cpu_data[policy->cpu];
2024 2025
	cpu->policy = policy->policy;

2026 2027
	mutex_lock(&intel_pstate_limits_lock);

2028
	intel_pstate_update_perf_limits(policy, cpu);
2029

2030
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2031 2032 2033 2034 2035 2036
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2037 2038
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2039 2040
	}

2041
	if (hwp_active)
2042
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2043

2044 2045
	mutex_unlock(&intel_pstate_limits_lock);

2046 2047 2048
	return 0;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2060 2061
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2062 2063 2064
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2065 2066
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2067

2068
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 2071
		return -EINVAL;

2072 2073
	intel_pstate_adjust_policy_max(policy, cpu);

2074 2075 2076
	return 0;
}

2077 2078 2079 2080 2081
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2082
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083
{
2084
	pr_debug("CPU %d exiting\n", policy->cpu);
2085

2086
	intel_pstate_clear_update_util_hook(policy->cpu);
2087 2088 2089
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2090 2091
		intel_cpufreq_stop_cpu(policy);
}
2092

2093 2094 2095
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2096

2097
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2098

2099
	return 0;
2100 2101
}

2102
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 2104
{
	struct cpudata *cpu;
2105
	int rc;
2106 2107 2108 2109 2110 2111 2112

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2113 2114
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2115

2116 2117
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118 2119

	/* cpuinfo and default policy values */
2120
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121
	update_turbo_state();
2122
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 2124 2125
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2126
	intel_pstate_init_acpi_perf_limits(policy);
2127 2128
	cpumask_set_cpu(policy->cpu, policy->cpus);

2129 2130
	policy->fast_switch_possible = true;

2131 2132 2133
	return 0;
}

2134
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2135
{
2136 2137 2138 2139 2140 2141
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2142
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2143 2144 2145
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2146 2147 2148 2149

	return 0;
}

2150
static struct cpufreq_driver intel_pstate = {
2151 2152 2153
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2154
	.suspend	= intel_pstate_hwp_save_state,
2155
	.resume		= intel_pstate_resume,
2156 2157
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2158
	.exit		= intel_pstate_cpu_exit,
2159
	.stop_cpu	= intel_pstate_stop_cpu,
2160 2161 2162
	.name		= "intel_pstate",
};

2163 2164 2165 2166 2167
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2168 2169
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2170

2171
	intel_pstate_adjust_policy_max(policy, cpu);
2172

2173 2174
	intel_pstate_update_perf_limits(policy, cpu);

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2186 2187
	update_turbo_state();

2188
	freqs.old = policy->cur;
2189
	freqs.new = target_freq;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2209
	freqs.new = target_pstate * cpu->pstate.scaling;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2221 2222
	update_turbo_state();

2223
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2224
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2225
	intel_pstate_update_pstate(cpu, target_pstate);
2226
	return target_pstate * cpu->pstate.scaling;
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2237
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2255
static struct cpufreq_driver *default_driver = &intel_pstate;
2256

2257 2258 2259 2260 2261 2262
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2278
	intel_pstate_driver = NULL;
2279 2280
}

2281
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2282 2283 2284
{
	int ret;

2285 2286
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2287

2288
	intel_pstate_driver = driver;
2289 2290 2291 2292 2293 2294
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2295 2296
	global.min_perf_pct = min_perf_pct_min();

2297
	if (pid_in_use())
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2308
	if (pid_in_use())
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2319
	if (!intel_pstate_driver)
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2331
		return intel_pstate_driver ?
2332 2333 2334
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2335
		if (intel_pstate_driver) {
2336 2337 2338 2339 2340 2341 2342 2343
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2344
		return intel_pstate_register_driver(&intel_pstate);
2345 2346 2347
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2348
		if (intel_pstate_driver) {
2349
			if (intel_pstate_driver == &intel_cpufreq)
2350 2351 2352 2353 2354 2355 2356
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2357
		return intel_pstate_register_driver(&intel_cpufreq);
2358 2359 2360 2361 2362
	}

	return -EINVAL;
}

2363 2364 2365
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2366
static unsigned int force_load __initdata;
2367

2368
static int __init intel_pstate_msrs_not_valid(void)
2369
{
2370
	if (!pstate_funcs.get_max() ||
2371 2372
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2373 2374 2375 2376
		return -ENODEV;

	return 0;
}
2377

2378 2379 2380
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2381 2382 2383 2384 2385 2386
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2387
		pstate_funcs.update_util = intel_pstate_update_util;
2388
	}
2389 2390 2391 2392 2393 2394 2395
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2396
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 2398
{
	pstate_funcs.get_max   = funcs->get_max;
2399
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2400 2401
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2402
	pstate_funcs.get_scaling = funcs->get_scaling;
2403
	pstate_funcs.get_val   = funcs->get_val;
2404
	pstate_funcs.get_vid   = funcs->get_vid;
2405
	pstate_funcs.update_util = funcs->update_util;
2406

2407
	intel_pstate_use_acpi_profile();
2408 2409
}

2410
#ifdef CONFIG_ACPI
2411

2412
static bool __init intel_pstate_no_acpi_pss(void)
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2441
static bool __init intel_pstate_has_acpi_ppc(void)
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2461 2462 2463 2464
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465
	int  oem_pwr_table;
2466 2467 2468
};

/* Hardware vendor-specific info that has its own power management modes */
2469
static struct hw_vendor_info vendor_info[] __initdata = {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2481 2482 2483 2484
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2485 2486 2487
	{0, "", ""},
};

2488
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 2490 2491
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2501

2502 2503
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504 2505 2506
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2507
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508 2509 2510 2511 2512 2513
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2514 2515
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2516
			}
2517 2518 2519 2520
	}

	return false;
}
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2531 2532
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534
static inline void intel_pstate_request_control_from_smm(void) {}
2535 2536
#endif /* CONFIG_ACPI */

2537 2538 2539 2540 2541
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2542 2543
static int __init intel_pstate_init(void)
{
2544
	int rc;
2545

2546 2547 2548
	if (no_load)
		return -ENODEV;

2549
	if (x86_match_cpu(hwp_support_ids)) {
2550
		copy_cpu_funcs(&core_funcs);
2551
		if (no_hwp) {
2552
			pstate_funcs.update_util = intel_pstate_update_util;
2553 2554 2555 2556 2557 2558 2559
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2560

2561 2562 2563
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2564

2565
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2566
	}
2567

2568 2569 2570
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2571 2572 2573 2574 2575 2576 2577 2578
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2579 2580 2581
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2582
	pr_info("Intel P-state driver initializing\n");
2583

2584
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2585 2586 2587
	if (!all_cpu_data)
		return -ENOMEM;

2588 2589
	intel_pstate_request_control_from_smm();

2590
	intel_pstate_sysfs_expose_params();
2591

2592
	mutex_lock(&intel_pstate_driver_lock);
2593
	rc = intel_pstate_register_driver(default_driver);
2594
	mutex_unlock(&intel_pstate_driver_lock);
2595 2596
	if (rc)
		return rc;
2597

2598
	if (hwp_active)
J
Joe Perches 已提交
2599
		pr_info("HWP enabled\n");
2600

2601
	return 0;
2602 2603 2604
}
device_initcall(intel_pstate_init);

2605 2606 2607 2608 2609
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2610
	if (!strcmp(str, "disable")) {
2611
		no_load = 1;
2612 2613
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2614
		default_driver = &intel_cpufreq;
2615 2616
		no_hwp = 1;
	}
2617
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2618
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2619
		no_hwp = 1;
2620
	}
2621 2622
	if (!strcmp(str, "force"))
		force_load = 1;
2623 2624
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2625 2626
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2627 2628 2629 2630 2631 2632

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2633 2634 2635 2636
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2637 2638 2639
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");