inode.c 138.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
360
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
361
			   used + ei->i_allocated_meta_blocks);
362
	ei->i_allocated_meta_blocks = 0;
363

364 365 366 367 368 369
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
370
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371
				   ei->i_reserved_meta_blocks);
372
		ei->i_reserved_meta_blocks = 0;
373
		ei->i_da_metadata_calc_len = 0;
374
	}
375
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376

377 378
	/* Update quota subsystem for data blocks */
	if (quota_claim)
379
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
380
	else {
381 382 383
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
384
		 * not re-claim the quota for fallocated blocks.
385
		 */
386
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387
	}
388 389 390 391 392 393

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
394 395
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
396
		ext4_discard_preallocations(inode);
397 398
}

399
static int __check_block_validity(struct inode *inode, const char *func,
400 401
				unsigned int line,
				struct ext4_map_blocks *map)
402
{
403 404
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
405 406 407 408
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
409 410 411 412 413
		return -EIO;
	}
	return 0;
}

414
#define check_block_validity(inode, map)	\
415
	__check_block_validity((inode), __func__, __LINE__, (map))
416

417
/*
418 419
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
453 454 455 456 457 458 459 460 461
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
462 463 464 465 466
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
467 468
			if (num >= max_pages) {
				done = 1;
469
				break;
470
			}
471 472 473 474 475 476
		}
		pagevec_release(&pvec);
	}
	return num;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

520
/*
521
 * The ext4_map_blocks() function tries to look up the requested blocks,
522
 * and returns if the blocks are already mapped.
523 524 525 526 527
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
528 529
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
530 531 532 533 534 535 536 537
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
538
 * that case, buffer head is unmapped
539 540 541
 *
 * It returns the error in case of allocation failure.
 */
542 543
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
544 545
{
	int retval;
546

547 548 549 550
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
551
	/*
552 553
	 * Try to see if we can get the block without requesting a new
	 * file system block.
554 555
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
556
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
557 558
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
559
	} else {
560 561
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
562
	}
563
	up_read((&EXT4_I(inode)->i_data_sem));
564

565
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
566
		int ret = check_block_validity(inode, map);
567 568 569 570
		if (ret != 0)
			return ret;
	}

571
	/* If it is only a block(s) look up */
572
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
573 574 575 576 577 578
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
579
	 * ext4_ext_get_block() returns the create = 0
580 581
	 * with buffer head unmapped.
	 */
582
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
583 584
		return retval;

585 586 587 588 589 590 591 592 593 594
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
595
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
596

597
	/*
598 599 600 601
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
602 603
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
604 605 606 607 608 609 610

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
611
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
612
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
613 614 615 616
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
617
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
618
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
619
	} else {
620
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
621

622
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
623 624 625 626 627
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
628
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
629
		}
630

631 632 633 634 635 636 637
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
638
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
639 640
			ext4_da_update_reserve_space(inode, retval, 1);
	}
641
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
642
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
643

644 645 646 647 648 649 650 651
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

652
	up_write((&EXT4_I(inode)->i_data_sem));
653
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
654
		int ret = check_block_validity(inode, map);
655 656 657
		if (ret != 0)
			return ret;
	}
658 659 660
	return retval;
}

661 662 663
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

664 665
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
666
{
667
	handle_t *handle = ext4_journal_current_handle();
668
	struct ext4_map_blocks map;
J
Jan Kara 已提交
669
	int ret = 0, started = 0;
670
	int dio_credits;
671

672 673 674 675
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
676
		/* Direct IO write... */
677 678 679
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
680
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
681
		if (IS_ERR(handle)) {
682
			ret = PTR_ERR(handle);
683
			return ret;
684
		}
J
Jan Kara 已提交
685
		started = 1;
686 687
	}

688
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
689
	if (ret > 0) {
690 691 692
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
693
		ret = 0;
694
	}
J
Jan Kara 已提交
695 696
	if (started)
		ext4_journal_stop(handle);
697 698 699
	return ret;
}

700 701 702 703 704 705 706
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

707 708 709
/*
 * `handle' can be NULL if create is zero
 */
710
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
711
				ext4_lblk_t block, int create, int *errp)
712
{
713 714
	struct ext4_map_blocks map;
	struct buffer_head *bh;
715 716 717 718
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

719 720 721 722
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
723

724 725 726 727 728 729 730 731 732 733
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
734
	}
735 736 737
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
738

739 740 741 742 743 744 745 746 747 748 749 750 751
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
752
		}
753 754 755 756 757 758 759
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
760
	}
761 762 763 764 765 766
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
767 768
}

769
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
770
			       ext4_lblk_t block, int create, int *err)
771
{
772
	struct buffer_head *bh;
773

774
	bh = ext4_getblk(handle, inode, block, create, err);
775 776 777 778
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
779
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
780 781 782 783 784 785 786 787
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

788 789 790 791 792 793 794
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
795 796 797 798 799 800 801
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

802 803
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
804
	     block_start = block_end, bh = next) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
822
 * close off a transaction and start a new one between the ext4_get_block()
823
 * and the commit_write().  So doing the jbd2_journal_start at the start of
824 825
 * prepare_write() is the right place.
 *
826 827
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
828 829 830 831
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
832
 * By accident, ext4 can be reentered when a transaction is open via
833 834 835 836 837 838
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
839
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
840 841 842 843 844
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
845
				       struct buffer_head *bh)
846
{
847 848 849
	int dirty = buffer_dirty(bh);
	int ret;

850 851
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
852
	/*
853
	 * __block_write_begin() could have dirtied some buffers. Clean
854 855
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
856
	 * by __block_write_begin() isn't a real problem here as we clear
857 858 859 860 861 862 863 864 865
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
866 867
}

868 869
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
870
static int ext4_write_begin(struct file *file, struct address_space *mapping,
871 872
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
873
{
874
	struct inode *inode = mapping->host;
875
	int ret, needed_blocks;
876 877
	handle_t *handle;
	int retries = 0;
878
	struct page *page;
879
	pgoff_t index;
880
	unsigned from, to;
N
Nick Piggin 已提交
881

882
	trace_ext4_write_begin(inode, pos, len, flags);
883 884 885 886 887
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
888
	index = pos >> PAGE_CACHE_SHIFT;
889 890
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
891 892

retry:
893 894 895 896
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
897
	}
898

899 900 901 902
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

903
	page = grab_cache_page_write_begin(mapping, index, flags);
904 905 906 907 908 909 910
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

911
	if (ext4_should_dioread_nolock(inode))
912
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
913
	else
914
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
915 916

	if (!ret && ext4_should_journal_data(inode)) {
917 918 919
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
920 921

	if (ret) {
922 923
		unlock_page(page);
		page_cache_release(page);
924
		/*
925
		 * __block_write_begin may have instantiated a few blocks
926 927
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
928 929 930
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
931
		 */
932
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
933 934 935 936
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
937
			ext4_truncate_failed_write(inode);
938
			/*
939
			 * If truncate failed early the inode might
940 941 942 943 944 945 946
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
947 948
	}

949
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
950
		goto retry;
951
out:
952 953 954
	return ret;
}

N
Nick Piggin 已提交
955 956
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
957 958 959 960
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
961
	return ext4_handle_dirty_metadata(handle, NULL, bh);
962 963
}

964
static int ext4_generic_write_end(struct file *file,
965 966 967
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1010 1011 1012 1013
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1014
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1015 1016
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1017
static int ext4_ordered_write_end(struct file *file,
1018 1019 1020
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1021
{
1022
	handle_t *handle = ext4_journal_current_handle();
1023
	struct inode *inode = mapping->host;
1024 1025
	int ret = 0, ret2;

1026
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1027
	ret = ext4_jbd2_file_inode(handle, inode);
1028 1029

	if (ret == 0) {
1030
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1031
							page, fsdata);
1032
		copied = ret2;
1033
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1034 1035 1036 1037 1038
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1039 1040
		if (ret2 < 0)
			ret = ret2;
1041 1042 1043
	} else {
		unlock_page(page);
		page_cache_release(page);
1044
	}
1045

1046
	ret2 = ext4_journal_stop(handle);
1047 1048
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1049

1050
	if (pos + len > inode->i_size) {
1051
		ext4_truncate_failed_write(inode);
1052
		/*
1053
		 * If truncate failed early the inode might still be
1054 1055 1056 1057 1058 1059 1060 1061
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1062
	return ret ? ret : copied;
1063 1064
}

N
Nick Piggin 已提交
1065
static int ext4_writeback_write_end(struct file *file,
1066 1067 1068
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1069
{
1070
	handle_t *handle = ext4_journal_current_handle();
1071
	struct inode *inode = mapping->host;
1072 1073
	int ret = 0, ret2;

1074
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1075
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1076
							page, fsdata);
1077
	copied = ret2;
1078
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1079 1080 1081 1082 1083 1084
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1085 1086
	if (ret2 < 0)
		ret = ret2;
1087

1088
	ret2 = ext4_journal_stop(handle);
1089 1090
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1091

1092
	if (pos + len > inode->i_size) {
1093
		ext4_truncate_failed_write(inode);
1094
		/*
1095
		 * If truncate failed early the inode might still be
1096 1097 1098 1099 1100 1101 1102
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1103
	return ret ? ret : copied;
1104 1105
}

N
Nick Piggin 已提交
1106
static int ext4_journalled_write_end(struct file *file,
1107 1108 1109
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1110
{
1111
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1112
	struct inode *inode = mapping->host;
1113 1114
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1115
	unsigned from, to;
1116
	loff_t new_i_size;
1117

1118
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1119 1120 1121
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1122 1123
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1124 1125 1126 1127 1128
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1129 1130

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1131
				to, &partial, write_end_fn);
1132 1133
	if (!partial)
		SetPageUptodate(page);
1134 1135
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1136
		i_size_write(inode, pos+copied);
1137
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1138
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1139 1140
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1141
		ret2 = ext4_mark_inode_dirty(handle, inode);
1142 1143 1144
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1145

1146
	unlock_page(page);
1147
	page_cache_release(page);
1148
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1149 1150 1151 1152 1153 1154
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1155
	ret2 = ext4_journal_stop(handle);
1156 1157
	if (!ret)
		ret = ret2;
1158
	if (pos + len > inode->i_size) {
1159
		ext4_truncate_failed_write(inode);
1160
		/*
1161
		 * If truncate failed early the inode might still be
1162 1163 1164 1165 1166 1167
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1168 1169

	return ret ? ret : copied;
1170
}
1171

1172
/*
1173
 * Reserve a single cluster located at lblock
1174
 */
1175
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1176
{
1177
	int retries = 0;
1178
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1179
	struct ext4_inode_info *ei = EXT4_I(inode);
1180
	unsigned int md_needed;
1181
	int ret;
1182 1183 1184 1185 1186 1187

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
1188
repeat:
1189
	spin_lock(&ei->i_block_reservation_lock);
1190 1191
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1192
	trace_ext4_da_reserve_space(inode, md_needed);
1193
	spin_unlock(&ei->i_block_reservation_lock);
1194

1195
	/*
1196 1197 1198
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1199
	 */
1200
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1201 1202
	if (ret)
		return ret;
1203 1204 1205 1206
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1207
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1208
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1209 1210 1211 1212
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1213 1214
		return -ENOSPC;
	}
1215
	spin_lock(&ei->i_block_reservation_lock);
1216
	ei->i_reserved_data_blocks++;
1217 1218
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1219

1220 1221 1222
	return 0;       /* success */
}

1223
static void ext4_da_release_space(struct inode *inode, int to_free)
1224 1225
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226
	struct ext4_inode_info *ei = EXT4_I(inode);
1227

1228 1229 1230
	if (!to_free)
		return;		/* Nothing to release, exit */

1231
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1232

L
Li Zefan 已提交
1233
	trace_ext4_da_release_space(inode, to_free);
1234
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1235
		/*
1236 1237 1238 1239
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1240
		 */
1241 1242
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1243
			 "data blocks", inode->i_ino, to_free,
1244 1245 1246
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1247
	}
1248
	ei->i_reserved_data_blocks -= to_free;
1249

1250 1251 1252 1253 1254
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1255 1256
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1257
		 */
1258
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1259
				   ei->i_reserved_meta_blocks);
1260
		ei->i_reserved_meta_blocks = 0;
1261
		ei->i_da_metadata_calc_len = 0;
1262
	}
1263

1264
	/* update fs dirty data blocks counter */
1265
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1266 1267

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1268

1269
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1270 1271 1272
}

static void ext4_da_page_release_reservation(struct page *page,
1273
					     unsigned long offset)
1274 1275 1276 1277
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1278 1279 1280
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1281 1282 1283 1284 1285 1286 1287 1288 1289

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1290
			clear_buffer_da_mapped(bh);
1291 1292 1293
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1308
}
1309

1310 1311 1312 1313 1314 1315
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1316
 * them with writepage() call back
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1327 1328
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1329
{
1330 1331 1332 1333 1334
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1335
	loff_t size = i_size_read(inode);
1336 1337
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1338
	int journal_data = ext4_should_journal_data(inode);
1339
	sector_t pblock = 0, cur_logical = 0;
1340
	struct ext4_io_submit io_submit;
1341 1342

	BUG_ON(mpd->next_page <= mpd->first_page);
1343
	memset(&io_submit, 0, sizeof(io_submit));
1344 1345 1346
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1347
	 * If we look at mpd->b_blocknr we would only be looking
1348 1349
	 * at the currently mapped buffer_heads.
	 */
1350 1351 1352
	index = mpd->first_page;
	end = mpd->next_page - 1;

1353
	pagevec_init(&pvec, 0);
1354
	while (index <= end) {
1355
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1356 1357 1358
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1359
			int commit_write = 0, skip_page = 0;
1360 1361
			struct page *page = pvec.pages[i];

1362 1363 1364
			index = page->index;
			if (index > end)
				break;
1365 1366 1367 1368 1369

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1370 1371 1372 1373 1374 1375
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1376 1377 1378 1379 1380
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1381
			/*
1382 1383
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1384
			 * __block_write_begin.  If this fails,
1385
			 * skip the page and move on.
1386
			 */
1387
			if (!page_has_buffers(page)) {
1388
				if (__block_write_begin(page, 0, len,
1389
						noalloc_get_block_write)) {
1390
				skip_page:
1391 1392 1393 1394 1395
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1396

1397 1398
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1399
			do {
1400
				if (!bh)
1401
					goto skip_page;
1402 1403 1404
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1405 1406 1407 1408
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1409 1410
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1411 1412 1413 1414 1415 1416 1417
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1418

1419 1420 1421 1422 1423
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1424
					skip_page = 1;
1425 1426
				bh = bh->b_this_page;
				block_start += bh->b_size;
1427 1428
				cur_logical++;
				pblock++;
1429 1430
			} while (bh != page_bufs);

1431 1432
			if (skip_page)
				goto skip_page;
1433 1434 1435 1436 1437

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1438
			clear_page_dirty_for_io(page);
1439 1440 1441 1442 1443 1444
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1445
				err = __ext4_journalled_writepage(page, len);
1446
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1447 1448
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1449 1450 1451 1452 1453 1454
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1455 1456
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1457 1458

			if (!err)
1459
				mpd->pages_written++;
1460 1461 1462 1463 1464 1465 1466 1467 1468
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1469
	ext4_io_submit(&io_submit);
1470 1471 1472
	return ret;
}

1473
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1474 1475 1476 1477 1478 1479 1480
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1481 1482
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1483 1484 1485 1486 1487 1488
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1489
			if (page->index > end)
1490 1491 1492 1493 1494 1495 1496
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1497 1498
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1499 1500 1501 1502
	}
	return;
}

1503 1504 1505
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1506 1507 1508
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1509 1510
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1511 1512
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1513 1514
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1515
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1516 1517
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1518 1519 1520 1521
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1522
	       EXT4_I(inode)->i_reserved_meta_blocks);
1523 1524 1525
	return;
}

1526
/*
1527 1528
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1529
 *
1530
 * @mpd - bh describing space
1531 1532 1533 1534
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1535
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1536
{
1537
	int err, blks, get_blocks_flags;
1538
	struct ext4_map_blocks map, *mapp = NULL;
1539 1540 1541 1542
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1543 1544

	/*
1545 1546
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1547
	 */
1548 1549 1550 1551 1552
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1553 1554 1555 1556

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1557
	/*
1558
	 * Call ext4_map_blocks() to allocate any delayed allocation
1559 1560 1561 1562 1563 1564 1565 1566
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1567
	 * want to change *many* call functions, so ext4_map_blocks()
1568
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1569 1570 1571 1572 1573
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1574
	 */
1575 1576
	map.m_lblk = next;
	map.m_len = max_blocks;
1577
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1578 1579
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1580
	if (mpd->b_state & (1 << BH_Delay))
1581 1582
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1583
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1584
	if (blks < 0) {
1585 1586
		struct super_block *sb = mpd->inode->i_sb;

1587
		err = blks;
1588
		/*
1589
		 * If get block returns EAGAIN or ENOSPC and there
1590 1591
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1592 1593
		 */
		if (err == -EAGAIN)
1594
			goto submit_io;
1595

1596
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1597
			mpd->retval = err;
1598
			goto submit_io;
1599 1600
		}

1601
		/*
1602 1603 1604 1605 1606
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1607
		 */
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
1619
		}
1620
		/* invalidate all the pages */
1621
		ext4_da_block_invalidatepages(mpd);
1622 1623 1624

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1625
		return;
1626
	}
1627 1628
	BUG_ON(blks == 0);

1629
	mapp = &map;
1630 1631 1632
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1633

1634 1635
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1636

1637 1638
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1639
			if (err) {
1640
				/* Only if the journal is aborted */
1641 1642 1643
				mpd->retval = err;
				goto submit_io;
			}
1644
		}
1645 1646 1647
	}

	/*
1648
	 * Update on-disk size along with block allocation.
1649 1650 1651 1652 1653 1654
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1655 1656 1657 1658 1659
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1660 1661
	}

1662
submit_io:
1663
	mpage_da_submit_io(mpd, mapp);
1664
	mpd->io_done = 1;
1665 1666
}

1667 1668
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1680 1681
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1682 1683
{
	sector_t next;
1684
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1685

1686 1687 1688 1689
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1690
	 * ext4_map_blocks() multiple times in a loop
1691 1692 1693 1694
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1695
	/* check if thereserved journal credits might overflow */
1696
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1717 1718 1719
	/*
	 * First block in the extent
	 */
1720 1721 1722 1723
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1724 1725 1726
		return;
	}

1727
	next = mpd->b_blocknr + nrblocks;
1728 1729 1730
	/*
	 * Can we merge the block to our big extent?
	 */
1731 1732
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1733 1734 1735
		return;
	}

1736
flush_it:
1737 1738 1739 1740
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1741
	mpage_da_map_and_submit(mpd);
1742
	return;
1743 1744
}

1745
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1746
{
1747
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1810
/*
1811 1812 1813
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1814 1815 1816 1817 1818 1819 1820
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1821 1822
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823
				  struct buffer_head *bh, int create)
1824
{
1825
	struct ext4_map_blocks map;
1826 1827 1828
	int ret = 0;

	BUG_ON(create == 0);
1829 1830 1831 1832
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1833 1834 1835 1836 1837 1838

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1839 1840
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1841
		return ret;
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1854
		set_buffer_mapped(bh);
1855 1856
	}
	return 0;
1857
}
1858

1859 1860 1861
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
1862
 * callback function for block_write_begin() and block_write_full_page().
1863
 * These functions should only try to map a single block at a time.
1864 1865 1866 1867 1868
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1869 1870 1871
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1872 1873
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1874 1875
				   struct buffer_head *bh_result, int create)
{
1876
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1877
	return _ext4_get_block(inode, iblock, bh_result, 0);
1878 1879
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1902
	ClearPageChecked(page);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1916 1917
	BUG_ON(!ext4_handle_valid(handle));

1918 1919 1920 1921 1922 1923 1924
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1925
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1926 1927 1928 1929 1930
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1931
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1932 1933 1934 1935
out:
	return ret;
}

1936 1937 1938
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1939
/*
1940 1941 1942 1943
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1944
 * we are writing back data modified via mmap(), no one guarantees in which
1945 1946 1947 1948
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1949 1950 1951 1952 1953
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1954 1955 1956 1957 1958 1959 1960 1961 1962
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1963
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1979
 */
1980
static int ext4_writepage(struct page *page,
1981
			  struct writeback_control *wbc)
1982
{
1983
	int ret = 0, commit_write = 0;
1984
	loff_t size;
1985
	unsigned int len;
1986
	struct buffer_head *page_bufs = NULL;
1987 1988
	struct inode *inode = page->mapping->host;

1989
	trace_ext4_writepage(page);
1990 1991 1992 1993 1994
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1995

1996 1997
	/*
	 * If the page does not have buffers (for whatever reason),
1998
	 * try to create them using __block_write_begin.  If this
1999 2000
	 * fails, redirty the page and move on.
	 */
2001
	if (!page_has_buffers(page)) {
2002
		if (__block_write_begin(page, 0, len,
2003 2004
					noalloc_get_block_write)) {
		redirty_page:
2005 2006 2007 2008
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2009 2010 2011 2012 2013
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2014
		/*
2015 2016 2017
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2018 2019 2020
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2021
		 */
2022 2023
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
2024 2025 2026
		goto redirty_page;
	}
	if (commit_write)
2027
		/* now mark the buffer_heads as dirty and uptodate */
2028
		block_commit_write(page, 0, len);
2029

2030
	if (PageChecked(page) && ext4_should_journal_data(inode))
2031 2032 2033 2034
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2035
		return __ext4_journalled_writepage(page, len);
2036

2037
	if (buffer_uninit(page_bufs)) {
2038 2039 2040 2041
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2042 2043
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2044 2045 2046 2047

	return ret;
}

2048
/*
2049
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2050
 * calculate the total number of credits to reserve to fit
2051 2052 2053
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2054
 */
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2066
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2067 2068 2069 2070 2071
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2072

2073 2074
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2075
 * address space and accumulate pages that need writing, and call
2076 2077
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2078 2079 2080
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2081 2082
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2083
{
2084
	struct buffer_head	*bh, *head;
2085
	struct inode		*inode = mapping->host;
2086 2087 2088 2089 2090 2091
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2092

2093 2094 2095
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2096 2097 2098 2099
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2100
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101 2102 2103 2104
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2105
	*done_index = index;
2106
	while (index <= end) {
2107
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2108 2109
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2110
			return 0;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2122 2123
			if (page->index > end)
				goto out;
2124

2125 2126
			*done_index = page->index + 1;

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2137 2138 2139
			lock_page(page);

			/*
2140 2141 2142 2143 2144 2145
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2146
			 */
2147 2148 2149 2150
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2151 2152 2153 2154
				unlock_page(page);
				continue;
			}

2155
			wait_on_page_writeback(page);
2156 2157
			BUG_ON(PageWriteback(page));

2158
			if (mpd->next_page != page->index)
2159 2160 2161 2162 2163 2164
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2165 2166
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2167
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2168 2169
				if (mpd->io_done)
					goto ret_extent_tail;
2170 2171
			} else {
				/*
2172 2173
				 * Page with regular buffer heads,
				 * just add all dirty ones
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2189 2190
						if (mpd->io_done)
							goto ret_extent_tail;
2191 2192
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2193 2194 2195 2196 2197 2198 2199 2200 2201
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2202 2203 2204 2205 2206 2207
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2208 2209 2210 2211 2212
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2213
				    wbc->sync_mode == WB_SYNC_NONE)
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2224
					goto out;
2225 2226 2227 2228 2229
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2230 2231 2232
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2233 2234 2235
out:
	pagevec_release(&pvec);
	cond_resched();
2236 2237 2238 2239
	return ret;
}


2240
static int ext4_da_writepages(struct address_space *mapping,
2241
			      struct writeback_control *wbc)
2242
{
2243 2244
	pgoff_t	index;
	int range_whole = 0;
2245
	handle_t *handle = NULL;
2246
	struct mpage_da_data mpd;
2247
	struct inode *inode = mapping->host;
2248
	int pages_written = 0;
2249
	unsigned int max_pages;
2250
	int range_cyclic, cycled = 1, io_done = 0;
2251 2252
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2253
	loff_t range_start = wbc->range_start;
2254
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2255
	pgoff_t done_index = 0;
2256
	pgoff_t end;
2257
	struct blk_plug plug;
2258

2259
	trace_ext4_da_writepages(inode, wbc);
2260

2261 2262 2263 2264 2265
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2266
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2267
		return 0;
2268 2269 2270 2271 2272

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2273
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2274 2275 2276 2277 2278
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2279
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2280 2281
		return -EROFS;

2282 2283
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2284

2285 2286
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2287
		index = mapping->writeback_index;
2288 2289 2290 2291 2292
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2293 2294
		end = -1;
	} else {
2295
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2296 2297
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2316 2317 2318 2319 2320 2321
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2332
retry:
2333
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2334 2335
		tag_pages_for_writeback(mapping, index, end);

2336
	blk_start_plug(&plug);
2337
	while (!ret && wbc->nr_to_write > 0) {
2338 2339 2340 2341 2342 2343 2344 2345

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2346
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2347

2348 2349 2350 2351
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2352
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2353
			       "%ld pages, ino %lu; err %d", __func__,
2354
				wbc->nr_to_write, inode->i_ino, ret);
2355
			blk_finish_plug(&plug);
2356 2357
			goto out_writepages;
		}
2358 2359

		/*
2360
		 * Now call write_cache_pages_da() to find the next
2361
		 * contiguous region of logical blocks that need
2362
		 * blocks to be allocated by ext4 and submit them.
2363
		 */
2364
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2365
		/*
2366
		 * If we have a contiguous extent of pages and we
2367 2368 2369 2370
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2371
			mpage_da_map_and_submit(&mpd);
2372 2373
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2374
		trace_ext4_da_write_pages(inode, &mpd);
2375
		wbc->nr_to_write -= mpd.pages_written;
2376

2377
		ext4_journal_stop(handle);
2378

2379
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2380 2381 2382 2383
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2384
			jbd2_journal_force_commit_nested(sbi->s_journal);
2385 2386
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2387
			/*
2388 2389 2390
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2391
			 */
2392
			pages_written += mpd.pages_written;
2393
			ret = mpd.retval;
2394
			io_done = 1;
2395
		} else if (wbc->nr_to_write)
2396 2397 2398 2399 2400 2401
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2402
	}
2403
	blk_finish_plug(&plug);
2404 2405 2406 2407 2408 2409 2410
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2411 2412

	/* Update index */
2413
	wbc->range_cyclic = range_cyclic;
2414 2415 2416 2417 2418
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2419
		mapping->writeback_index = done_index;
2420

2421
out_writepages:
2422
	wbc->nr_to_write -= nr_to_writebump;
2423
	wbc->range_start = range_start;
2424
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2425
	return ret;
2426 2427
}

2428 2429 2430 2431 2432 2433 2434 2435 2436
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2437
	 * counters can get slightly wrong with percpu_counter_batch getting
2438 2439 2440 2441
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2442 2443 2444
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2445
	if (2 * free_blocks < 3 * dirty_blocks ||
2446
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2447
		/*
2448 2449
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2450 2451 2452
		 */
		return 1;
	}
2453 2454 2455 2456 2457
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
2458
		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2459

2460 2461 2462
	return 0;
}

2463
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2464 2465
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2466
{
2467
	int ret, retries = 0;
2468 2469 2470 2471 2472 2473
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2474 2475 2476 2477 2478 2479 2480

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2481
	trace_ext4_da_write_begin(inode, pos, len, flags);
2482
retry:
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2494 2495 2496
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2497

2498
	page = grab_cache_page_write_begin(mapping, index, flags);
2499 2500 2501 2502 2503
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2504 2505
	*pagep = page;

2506
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2507 2508 2509 2510
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2511 2512 2513 2514 2515 2516
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2517
			ext4_truncate_failed_write(inode);
2518 2519
	}

2520 2521
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2522 2523 2524 2525
out:
	return ret;
}

2526 2527 2528 2529 2530
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2531
					    unsigned long offset)
2532 2533 2534 2535 2536 2537 2538 2539 2540
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2541
	for (i = 0; i < idx; i++)
2542 2543
		bh = bh->b_this_page;

2544
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2545 2546 2547 2548
		return 0;
	return 1;
}

2549
static int ext4_da_write_end(struct file *file,
2550 2551 2552
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2553 2554 2555 2556 2557
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2558
	unsigned long start, end;
2559 2560 2561
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2562 2563
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2564 2565
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2566
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2567 2568
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2569
		default:
2570 2571 2572
			BUG();
		}
	}
2573

2574
	trace_ext4_da_write_end(inode, pos, len, copied);
2575
	start = pos & (PAGE_CACHE_SIZE - 1);
2576
	end = start + copied - 1;
2577 2578 2579 2580 2581 2582 2583 2584

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2585
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2596

2597 2598 2599
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2600 2601 2602 2603 2604
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2605
		}
2606
	}
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2628
	ext4_da_page_release_reservation(page, offset);
2629 2630 2631 2632 2633 2634 2635

out:
	ext4_invalidatepage(page, offset);

	return;
}

2636 2637 2638 2639 2640
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2641 2642
	trace_ext4_alloc_da_blocks(inode);

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2653
	 *
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2666
	 * the pages by calling redirty_page_for_writepage() but that
2667 2668
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2669
	 * simplifying them because we wouldn't actually intend to
2670 2671 2672
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2673
	 *
2674 2675 2676 2677 2678 2679
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2680

2681 2682 2683 2684 2685
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2686
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2687 2688 2689 2690 2691 2692 2693 2694
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2695
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2696 2697 2698 2699 2700
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2711 2712
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2724
		 * NB. EXT4_STATE_JDATA is not set on files other than
2725 2726 2727 2728 2729 2730
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2731
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2732
		journal = EXT4_JOURNAL(inode);
2733 2734 2735
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2736 2737 2738 2739 2740

		if (err)
			return 0;
	}

2741
	return generic_block_bmap(mapping, block, ext4_get_block);
2742 2743
}

2744
static int ext4_readpage(struct file *file, struct page *page)
2745
{
2746
	trace_ext4_readpage(page);
2747
	return mpage_readpage(page, ext4_get_block);
2748 2749 2750
}

static int
2751
ext4_readpages(struct file *file, struct address_space *mapping,
2752 2753
		struct list_head *pages, unsigned nr_pages)
{
2754
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2755 2756
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2777
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2778
{
2779
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2780

2781 2782
	trace_ext4_invalidatepage(page, offset);

2783 2784 2785 2786 2787
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2788 2789 2790 2791 2792 2793
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2794 2795 2796 2797
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2798 2799
}

2800
static int ext4_releasepage(struct page *page, gfp_t wait)
2801
{
2802
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803

2804 2805
	trace_ext4_releasepage(page);

2806 2807 2808
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2809 2810 2811 2812
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2813 2814
}

2815 2816 2817 2818 2819
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2820
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2821 2822
		   struct buffer_head *bh_result, int create)
{
2823
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2824
		   inode->i_ino, create);
2825 2826
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2827 2828 2829
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2830 2831
			    ssize_t size, void *private, int ret,
			    bool is_async)
2832
{
2833
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2834 2835
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2836 2837
	unsigned long flags;
	struct ext4_inode_info *ei;
2838

2839 2840
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2841
		goto out;
2842

2843
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2844
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2845 2846 2847
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2848 2849
	iocb->private = NULL;

2850
	/* if not aio dio with unwritten extents, just free io and return */
2851
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2852
		ext4_free_io_end(io_end);
2853 2854 2855
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2856
		inode_dio_done(inode);
2857
		return;
2858 2859
	}

2860 2861
	io_end->offset = offset;
	io_end->size = size;
2862 2863 2864 2865
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2866 2867
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2868
	/* Add the io_end to per-inode completed aio dio list*/
2869 2870 2871 2872
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2873 2874

	/* queue the work to convert unwritten extents to written */
2875
	queue_work(wq, &io_end->work);
2876
}
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2889 2890 2891
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2892 2893 2894 2895
		ext4_free_io_end(io_end);
		goto out;
	}

2896 2897 2898 2899
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2900
	inode = io_end->inode;
2901
	ext4_set_io_unwritten_flag(inode, io_end);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2928
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2947 2948 2949 2950 2951
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2952
 * For holes, we fallocate those blocks, mark them as uninitialized
2953
 * If those blocks were preallocated, we mark sure they are splited, but
2954
 * still keep the range to write as uninitialized.
2955
 *
2956 2957
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2958
 * set up an end_io call back function, which will do the conversion
2959
 * when async direct IO completed.
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2978 2979 2980
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2981
 		 * to prevent parallel buffered read to expose the stale data
2982
 		 * before DIO complete the data IO.
2983 2984
		 *
 		 * As to previously fallocated extents, ext4 get_block
2985 2986 2987
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2988 2989 2990 2991 2992 2993 2994 2995
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2996
 		 */
2997 2998 2999
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3000 3001 3002
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
			if (!io_end)
3003
				return -ENOMEM;
3004 3005
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3006 3007
			/*
			 * we save the io structure for current async
3008
			 * direct IO, so that later ext4_map_blocks()
3009 3010 3011 3012 3013 3014 3015
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3016
		ret = __blockdev_direct_IO(rw, iocb, inode,
3017 3018
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3019
					 ext4_get_block_write,
3020 3021
					 ext4_end_io_dio,
					 NULL,
3022
					 DIO_LOCKING);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3042 3043
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3044
			int err;
3045 3046
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3047
			 * completed, we could do the conversion right here
3048
			 */
3049 3050 3051 3052
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3053
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054
		}
3055 3056
		return ret;
	}
3057 3058

	/* for write the the end of file case, we fall back to old way */
3059 3060 3061 3062 3063 3064 3065 3066 3067
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3068
	ssize_t ret;
3069

3070 3071 3072 3073 3074 3075
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3076
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3077
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3078 3079 3080 3081 3082 3083
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3084 3085
}

3086
/*
3087
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3099
static int ext4_journalled_set_page_dirty(struct page *page)
3100 3101 3102 3103 3104
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3105
static const struct address_space_operations ext4_ordered_aops = {
3106 3107
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3108
	.writepage		= ext4_writepage,
3109 3110 3111 3112 3113 3114 3115 3116
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3117
	.error_remove_page	= generic_error_remove_page,
3118 3119
};

3120
static const struct address_space_operations ext4_writeback_aops = {
3121 3122
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3123
	.writepage		= ext4_writepage,
3124 3125 3126 3127 3128 3129 3130 3131
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3132
	.error_remove_page	= generic_error_remove_page,
3133 3134
};

3135
static const struct address_space_operations ext4_journalled_aops = {
3136 3137
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3138
	.writepage		= ext4_writepage,
3139 3140 3141 3142 3143 3144
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3145
	.direct_IO		= ext4_direct_IO,
3146
	.is_partially_uptodate  = block_is_partially_uptodate,
3147
	.error_remove_page	= generic_error_remove_page,
3148 3149
};

3150
static const struct address_space_operations ext4_da_aops = {
3151 3152
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3153
	.writepage		= ext4_writepage,
3154 3155 3156 3157 3158 3159 3160 3161 3162
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3163
	.error_remove_page	= generic_error_remove_page,
3164 3165
};

3166
void ext4_set_aops(struct inode *inode)
3167
{
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3182
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3183 3184 3185 3186
		break;
	default:
		BUG();
	}
3187 3188
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3209
		return -ENOMEM;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
3252
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3278 3279
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3292 3293
		unsigned int end_of_block, range_to_discard;

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3379
		} else
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3418
		return -EOPNOTSUPP;
3419 3420 3421

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3422
		return -EOPNOTSUPP;
3423 3424
	}

3425 3426
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3427
		return -EOPNOTSUPP;
3428 3429
	}

3430 3431 3432
	return ext4_ext_punch_hole(file, offset, length);
}

3433
/*
3434
 * ext4_truncate()
3435
 *
3436 3437
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3438 3439
 * simultaneously on behalf of the same inode.
 *
3440
 * As we work through the truncate and commit bits of it to the journal there
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3454
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3455
 * that this inode's truncate did not complete and it will again call
3456 3457
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3458
 * that's fine - as long as they are linked from the inode, the post-crash
3459
 * ext4_truncate() run will find them and release them.
3460
 */
3461
void ext4_truncate(struct inode *inode)
3462
{
3463 3464
	trace_ext4_truncate_enter(inode);

3465
	if (!ext4_can_truncate(inode))
3466 3467
		return;

3468
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3469

3470
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3471
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3472

3473
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3474
		ext4_ext_truncate(inode);
3475 3476
	else
		ext4_ind_truncate(inode);
3477

3478
	trace_ext4_truncate_exit(inode);
3479 3480 3481
}

/*
3482
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3483 3484 3485 3486
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3487 3488
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3489
{
3490 3491 3492 3493 3494 3495
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3496
	iloc->bh = NULL;
3497 3498
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3499

3500 3501 3502
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3503 3504
		return -EIO;

3505 3506 3507
	/*
	 * Figure out the offset within the block group inode table
	 */
3508
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3509 3510 3511 3512 3513 3514
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3515
	if (!bh) {
3516 3517
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3518 3519 3520 3521
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3545
			int i, start;
3546

3547
			start = inode_offset & ~(inodes_per_block - 1);
3548

3549 3550
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3563
			for (i = start; i < start + inodes_per_block; i++) {
3564 3565
				if (i == inode_offset)
					continue;
3566
				if (ext4_test_bit(i, bitmap_bh->b_data))
3567 3568 3569
					break;
			}
			brelse(bitmap_bh);
3570
			if (i == start + inodes_per_block) {
3571 3572 3573 3574 3575 3576 3577 3578 3579
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3580 3581 3582 3583 3584 3585 3586 3587 3588
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
3589
			/* s_inode_readahead_blks is always a power of 2 */
3590 3591 3592 3593 3594
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3595
			if (ext4_has_group_desc_csum(sb))
3596
				num -= ext4_itable_unused_count(sb, gdp);
3597 3598 3599 3600 3601 3602 3603
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3604 3605 3606 3607 3608
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3609
		trace_ext4_load_inode(inode);
3610 3611
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3612
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3613 3614
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3615 3616
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3617 3618 3619 3620 3621 3622 3623 3624 3625
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3626
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3627 3628
{
	/* We have all inode data except xattrs in memory here. */
3629
	return __ext4_get_inode_loc(inode, iloc,
3630
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3631 3632
}

3633
void ext4_set_inode_flags(struct inode *inode)
3634
{
3635
	unsigned int flags = EXT4_I(inode)->i_flags;
3636 3637

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3638
	if (flags & EXT4_SYNC_FL)
3639
		inode->i_flags |= S_SYNC;
3640
	if (flags & EXT4_APPEND_FL)
3641
		inode->i_flags |= S_APPEND;
3642
	if (flags & EXT4_IMMUTABLE_FL)
3643
		inode->i_flags |= S_IMMUTABLE;
3644
	if (flags & EXT4_NOATIME_FL)
3645
		inode->i_flags |= S_NOATIME;
3646
	if (flags & EXT4_DIRSYNC_FL)
3647 3648 3649
		inode->i_flags |= S_DIRSYNC;
}

3650 3651 3652
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3673
}
3674

3675
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3676
				  struct ext4_inode_info *ei)
3677 3678
{
	blkcnt_t i_blocks ;
3679 3680
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3681 3682 3683 3684 3685 3686

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3687
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3688 3689 3690 3691 3692
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3693 3694 3695 3696
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3697

3698
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3699
{
3700 3701
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3702 3703
	struct ext4_inode_info *ei;
	struct inode *inode;
3704
	journal_t *journal = EXT4_SB(sb)->s_journal;
3705
	long ret;
3706
	int block;
3707 3708
	uid_t i_uid;
	gid_t i_gid;
3709

3710 3711 3712 3713 3714 3715 3716
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3717
	iloc.bh = NULL;
3718

3719 3720
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3721
		goto bad_inode;
3722
	raw_inode = ext4_raw_inode(&iloc);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3756
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3757 3758
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3759
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3760 3761
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3762
	}
3763 3764
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
3765
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3766

3767
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3768 3769 3770 3771 3772 3773 3774 3775 3776
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3777
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3778
			/* this inode is deleted */
3779
			ret = -ESTALE;
3780 3781 3782 3783 3784 3785 3786 3787
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3788
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3789
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3790
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3791 3792
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3793
	inode->i_size = ext4_isize(raw_inode);
3794
	ei->i_disksize = inode->i_size;
3795 3796 3797
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3798 3799
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3800
	ei->i_last_alloc_group = ~0;
3801 3802 3803 3804
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3805
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3806 3807 3808
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3820
		read_lock(&journal->j_state_lock);
3821 3822 3823 3824 3825 3826 3827 3828
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3829
		read_unlock(&journal->j_state_lock);
3830 3831 3832 3833
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3834
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3835 3836
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3837 3838
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3839 3840
		} else {
			__le32 *magic = (void *)raw_inode +
3841
					EXT4_GOOD_OLD_INODE_SIZE +
3842
					ei->i_extra_isize;
3843
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3844
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3845
		}
3846
	}
3847

3848 3849 3850 3851 3852
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3853 3854 3855 3856 3857 3858 3859
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3860
	ret = 0;
3861
	if (ei->i_file_acl &&
3862
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3863 3864
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3865 3866
		ret = -EIO;
		goto bad_inode;
3867
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3868 3869 3870 3871 3872
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3873
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3874 3875
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3876
		/* Validate block references which are part of inode */
3877
		ret = ext4_ind_check_inode(inode);
3878
	}
3879
	if (ret)
3880
		goto bad_inode;
3881

3882
	if (S_ISREG(inode->i_mode)) {
3883 3884 3885
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3886
	} else if (S_ISDIR(inode->i_mode)) {
3887 3888
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3889
	} else if (S_ISLNK(inode->i_mode)) {
3890
		if (ext4_inode_is_fast_symlink(inode)) {
3891
			inode->i_op = &ext4_fast_symlink_inode_operations;
3892 3893 3894
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3895 3896
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3897
		}
3898 3899
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3900
		inode->i_op = &ext4_special_inode_operations;
3901 3902 3903 3904 3905 3906
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3907 3908
	} else {
		ret = -EIO;
3909
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3910
		goto bad_inode;
3911
	}
3912
	brelse(iloc.bh);
3913
	ext4_set_inode_flags(inode);
3914 3915
	unlock_new_inode(inode);
	return inode;
3916 3917

bad_inode:
3918
	brelse(iloc.bh);
3919 3920
	iget_failed(inode);
	return ERR_PTR(ret);
3921 3922
}

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
3936
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3937
		raw_inode->i_blocks_high = 0;
3938
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3939 3940 3941 3942 3943 3944
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3945 3946 3947 3948
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
3949
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3950
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3951
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3952
	} else {
3953
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3954 3955 3956 3957
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3958
	}
3959
	return 0;
3960 3961
}

3962 3963 3964 3965 3966 3967 3968
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3969
static int ext4_do_update_inode(handle_t *handle,
3970
				struct inode *inode,
3971
				struct ext4_iloc *iloc)
3972
{
3973 3974
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3975 3976
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3977 3978
	uid_t i_uid;
	gid_t i_gid;
3979 3980 3981

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3982
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3983
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3984

3985
	ext4_get_inode_flags(ei);
3986
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3987 3988
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3989
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3990 3991
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3992 3993 3994 3995
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3996
		if (!ei->i_dtime) {
3997
			raw_inode->i_uid_high =
3998
				cpu_to_le16(high_16_bits(i_uid));
3999
			raw_inode->i_gid_high =
4000
				cpu_to_le16(high_16_bits(i_gid));
4001 4002 4003 4004 4005
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4006 4007
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4008 4009 4010 4011
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4012 4013 4014 4015 4016 4017

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4018 4019
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4020
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4021
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4022 4023
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
4024 4025
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4026
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4043
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4044
			ext4_handle_sync(handle);
4045
			err = ext4_handle_dirty_super_now(handle, sb);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4060 4061 4062
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4063

4064 4065 4066 4067 4068
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4069
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4070 4071
	}

4072 4073
	ext4_inode_csum_set(inode, raw_inode, ei);

4074
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4075
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4076 4077
	if (!err)
		err = rc;
4078
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4079

4080
	ext4_update_inode_fsync_trans(handle, inode, 0);
4081
out_brelse:
4082
	brelse(bh);
4083
	ext4_std_error(inode->i_sb, err);
4084 4085 4086 4087
	return err;
}

/*
4088
 * ext4_write_inode()
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4105
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4122
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4123
{
4124 4125
	int err;

4126 4127 4128
	if (current->flags & PF_MEMALLOC)
		return 0;

4129 4130 4131 4132 4133 4134
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4135

4136
		if (wbc->sync_mode != WB_SYNC_ALL)
4137 4138 4139 4140 4141
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4142

4143
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4144 4145
		if (err)
			return err;
4146
		if (wbc->sync_mode == WB_SYNC_ALL)
4147 4148
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4149 4150
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4151 4152
			err = -EIO;
		}
4153
		brelse(iloc.bh);
4154 4155
	}
	return err;
4156 4157 4158
}

/*
4159
 * ext4_setattr()
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4173 4174 4175 4176 4177 4178 4179 4180
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4181
 */
4182
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4183 4184 4185
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4186
	int orphan = 0;
4187 4188 4189 4190 4191 4192
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4193
	if (is_quota_modification(inode, attr))
4194
		dquot_initialize(inode);
4195 4196
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4197 4198 4199 4200
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4201
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4202
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4203 4204 4205 4206
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4207
		error = dquot_transfer(inode, attr);
4208
		if (error) {
4209
			ext4_journal_stop(handle);
4210 4211 4212 4213 4214 4215 4216 4217
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4218 4219
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4220 4221
	}

4222
	if (attr->ia_valid & ATTR_SIZE) {
4223 4224
		inode_dio_wait(inode);

4225
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4226 4227
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4228 4229
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4230 4231 4232
		}
	}

4233
	if (S_ISREG(inode->i_mode) &&
4234
	    attr->ia_valid & ATTR_SIZE &&
4235
	    (attr->ia_size < inode->i_size)) {
4236 4237
		handle_t *handle;

4238
		handle = ext4_journal_start(inode, 3);
4239 4240 4241 4242
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4243 4244 4245 4246
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4247 4248
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4249 4250
		if (!error)
			error = rc;
4251
		ext4_journal_stop(handle);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4264
				orphan = 0;
4265 4266 4267 4268
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4269 4270
	}

4271
	if (attr->ia_valid & ATTR_SIZE) {
4272
		if (attr->ia_size != i_size_read(inode))
4273
			truncate_setsize(inode, attr->ia_size);
4274
		ext4_truncate(inode);
4275
	}
4276

C
Christoph Hellwig 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4286
	if (orphan && inode->i_nlink)
4287
		ext4_orphan_del(NULL, inode);
4288 4289

	if (!rc && (ia_valid & ATTR_MODE))
4290
		rc = ext4_acl_chmod(inode);
4291 4292

err_out:
4293
	ext4_std_error(inode->i_sb, error);
4294 4295 4296 4297 4298
	if (!error)
		error = rc;
	return error;
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4318 4319
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4320 4321 4322 4323

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4324

4325 4326
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4327
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4328
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4329
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4330
}
4331

4332
/*
4333 4334 4335
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4336
 *
4337
 * If datablocks are discontiguous, they are possible to spread over
4338
 * different block groups too. If they are contiuguous, with flexbg,
4339
 * they could still across block group boundary.
4340
 *
4341 4342
 * Also account for superblock, inode, quota and xattr blocks
 */
4343
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4344
{
4345 4346
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4373 4374
	if (groups > ngroups)
		groups = ngroups;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4388
 * Calculate the total number of credits to reserve to fit
4389 4390
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4391
 *
4392
 * This could be called via ext4_write_begin()
4393
 *
4394
 * We need to consider the worse case, when
4395
 * one new block per extent.
4396
 */
4397
int ext4_writepage_trans_blocks(struct inode *inode)
4398
{
4399
	int bpp = ext4_journal_blocks_per_page(inode);
4400 4401
	int ret;

4402
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4403

4404
	/* Account for data blocks for journalled mode */
4405
	if (ext4_should_journal_data(inode))
4406
		ret += bpp;
4407 4408
	return ret;
}
4409 4410 4411 4412 4413

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4414
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4415 4416 4417 4418 4419 4420 4421 4422 4423
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4424
/*
4425
 * The caller must have previously called ext4_reserve_inode_write().
4426 4427
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4428
int ext4_mark_iloc_dirty(handle_t *handle,
4429
			 struct inode *inode, struct ext4_iloc *iloc)
4430 4431 4432
{
	int err = 0;

4433
	if (IS_I_VERSION(inode))
4434 4435
		inode_inc_iversion(inode);

4436 4437 4438
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4439
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4440
	err = ext4_do_update_inode(handle, inode, iloc);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4451 4452
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4453
{
4454 4455 4456 4457 4458 4459 4460 4461 4462
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4463 4464
		}
	}
4465
	ext4_std_error(inode->i_sb, err);
4466 4467 4468
	return err;
}

4469 4470 4471 4472
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
4473 4474 4475 4476
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4489 4490
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4523
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4524
{
4525
	struct ext4_iloc iloc;
4526 4527 4528
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4529 4530

	might_sleep();
4531
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4532
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4533 4534
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4535
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4549 4550
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
4551 4552
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4553
					ext4_warning(inode->i_sb,
4554 4555 4556
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
4557 4558
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4559 4560 4561 4562
				}
			}
		}
	}
4563
	if (!err)
4564
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4565 4566 4567 4568
	return err;
}

/*
4569
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4570 4571 4572 4573 4574
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4575
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4576 4577 4578 4579 4580 4581
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4582
void ext4_dirty_inode(struct inode *inode, int flags)
4583 4584 4585
{
	handle_t *handle;

4586
	handle = ext4_journal_start(inode, 2);
4587 4588
	if (IS_ERR(handle))
		goto out;
4589 4590 4591

	ext4_mark_inode_dirty(handle, inode);

4592
	ext4_journal_stop(handle);
4593 4594 4595 4596 4597 4598 4599 4600
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4601
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4602 4603 4604
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4605
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4606
{
4607
	struct ext4_iloc iloc;
4608 4609 4610

	int err = 0;
	if (handle) {
4611
		err = ext4_get_inode_loc(inode, &iloc);
4612 4613
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4614
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4615
			if (!err)
4616
				err = ext4_handle_dirty_metadata(handle,
4617
								 NULL,
4618
								 iloc.bh);
4619 4620 4621
			brelse(iloc.bh);
		}
	}
4622
	ext4_std_error(inode->i_sb, err);
4623 4624 4625 4626
	return err;
}
#endif

4627
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4643
	journal = EXT4_JOURNAL(inode);
4644 4645
	if (!journal)
		return 0;
4646
	if (is_journal_aborted(journal))
4647
		return -EROFS;
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4659

4660
	jbd2_journal_lock_updates(journal);
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4671
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4672 4673
	else {
		jbd2_journal_flush(journal);
4674
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4675
	}
4676
	ext4_set_aops(inode);
4677

4678
	jbd2_journal_unlock_updates(journal);
4679 4680 4681

	/* Finally we can mark the inode as dirty. */

4682
	handle = ext4_journal_start(inode, 1);
4683 4684 4685
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4686
	err = ext4_mark_inode_dirty(handle, inode);
4687
	ext4_handle_sync(handle);
4688 4689
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4690 4691 4692

	return err;
}
4693 4694 4695 4696 4697 4698

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4699
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4700
{
4701
	struct page *page = vmf->page;
4702 4703
	loff_t size;
	unsigned long len;
4704
	int ret;
4705 4706 4707
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4708 4709 4710
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4711

4712
	sb_start_pagefault(inode->i_sb);
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4723
	}
4724 4725

	lock_page(page);
4726 4727 4728 4729 4730 4731
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4732
	}
4733 4734 4735 4736 4737

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4738
	/*
4739 4740
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4741
	 */
4742 4743
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4744
					ext4_bh_unmapped)) {
4745 4746 4747 4748
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4749
		}
4750
	}
4751
	unlock_page(page);
4752 4753 4754 4755 4756 4757 4758 4759
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4760
		ret = VM_FAULT_SIGBUS;
4761 4762 4763 4764 4765 4766 4767 4768
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4769
			ext4_journal_stop(handle);
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4780
	sb_end_pagefault(inode->i_sb);
4781 4782
	return ret;
}
新手
引导
客服 返回
顶部