hrtimer.c 45.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55 56 57 58 59 60
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
61
 */
62
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63
{
64 65

	.clock_base =
66
	{
67 68 69
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
70
			.resolution = KTIME_LOW_RES,
71 72 73 74
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76 77
		},
	}
78 79
};

80 81 82 83
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
84
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 86
{
	ktime_t xtim, tomono;
87
	struct timespec xts, tom;
88 89 90 91
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
92
		xts = __current_kernel_time();
93
		tom = __get_wall_to_monotonic();
94 95
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
96
	xtim = timespec_to_ktime(xts);
97
	tomono = timespec_to_ktime(tom);
98 99 100
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
121 122 123
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
124
{
125
	struct hrtimer_clock_base *base;
126 127 128 129

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
130
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 132 133
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
134
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 136 137 138 139
		}
		cpu_relax();
	}
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182
/*
 * Switch the timer base to the current CPU when possible.
 */
183
static inline struct hrtimer_clock_base *
184 185
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
186
{
187 188
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
189 190
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
191

192 193
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194
	new_base = &new_cpu_base->clock_base[base->index];
195 196 197

	if (base != new_base) {
		/*
198
		 * We are trying to move timer to new_base.
199 200 201 202 203 204 205
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
206
		if (unlikely(hrtimer_callback_running(timer)))
207 208 209 210
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
211 212
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
213

214 215
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
216 217
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
218 219
			timer->base = base;
			goto again;
220
		}
221 222 223 224 225 226 227
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

228
static inline struct hrtimer_clock_base *
229 230
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
231
	struct hrtimer_clock_base *base = timer->base;
232

233
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
234 235 236 237

	return base;
}

238
# define switch_hrtimer_base(t, b, p)	(b)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
269 270

EXPORT_SYMBOL_GPL(ktime_add_ns);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 296 297 298 299
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
300
u64 ktime_divns(const ktime_t kt, s64 div)
301
{
302
	u64 dclc;
303 304
	int sft = 0;

305
	dclc = ktime_to_ns(kt);
306 307 308 309 310 311 312 313
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
314
	return dclc;
315 316 317
}
#endif /* BITS_PER_LONG >= 64 */

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

335 336
EXPORT_SYMBOL_GPL(ktime_add_safe);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
434
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
435 436 437 438 439 440 441 442 443 444 445 446

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
512 513
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
514 515 516
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
517
	ktime_t expires, expires_next;
518

519
	expires_next.tv64 = KTIME_MAX;
520 521 522 523 524 525 526

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
527
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 529 530 531 532 533 534
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
535 536
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
537 538
	}

539 540 541 542 543
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
560
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
561
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
562 563
	int res;

564
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
565

566 567 568
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
569
	 * the callback is executed in the hrtimer_interrupt context. The
570 571 572 573 574 575
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

576 577 578 579 580 581 582 583 584
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

585 586 587 588 589 590 591 592 593 594
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
595 596 597 598 599 600 601
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
602
		cpu_base->expires_next = expires;
603 604 605 606 607 608 609 610 611 612 613 614
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
615
	struct timespec realtime_offset, wtm;
616 617 618 619 620 621 622
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
623
		wtm = __get_wall_to_monotonic();
624
	} while (read_seqretry(&xtime_lock, seq));
625
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
626 627 628 629

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
630
	raw_spin_lock(&base->lock);
631 632 633
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

634
	hrtimer_force_reprogram(base, 0);
635
	raw_spin_unlock(&base->lock);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
652
	on_each_cpu(retrigger_next_event, NULL, 1);
653 654
}

655 656 657 658 659 660
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
661 662 663
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

664 665 666
	retrigger_next_event(NULL);
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

683

684 685 686 687 688 689 690
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
691 692
					    struct hrtimer_clock_base *base,
					    int wakeup)
693 694
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
695
		if (wakeup) {
696
			raw_spin_unlock(&base->cpu_base->lock);
697
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
698
			raw_spin_lock(&base->cpu_base->lock);
699 700 701
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

702
		return 1;
703
	}
704

705 706 707 708 709 710
	return 0;
}

/*
 * Switch to high resolution mode
 */
711
static int hrtimer_switch_to_hres(void)
712
{
I
Ingo Molnar 已提交
713 714
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
715 716 717
	unsigned long flags;

	if (base->hres_active)
718
		return 1;
719 720 721 722 723

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
724 725
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
726
		return 0;
727 728 729 730 731 732 733 734 735 736
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
737
	return 1;
738 739 740 741 742 743
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
744
static inline int hrtimer_switch_to_hres(void) { return 0; }
745 746
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
747
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
748 749
					    struct hrtimer_clock_base *base,
					    int wakeup)
750 751 752 753 754 755 756 757
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

758
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
759
{
760
#ifdef CONFIG_TIMER_STATS
761 762
	if (timer->start_site)
		return;
763
	timer->start_site = __builtin_return_address(0);
764 765
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
766 767 768 769 770 771 772 773
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
774
}
775 776 777 778 779 780 781 782

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
783
#endif
784
}
785

786
/*
787
 * Counterpart to lock_hrtimer_base above:
788 789 790 791
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
792
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
793 794 795 796 797
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
798
 * @now:	forward past this time
799 800 801
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
802
 * Returns the number of overruns.
803
 */
D
Davide Libenzi 已提交
804
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
805
{
D
Davide Libenzi 已提交
806
	u64 orun = 1;
807
	ktime_t delta;
808

809
	delta = ktime_sub(now, hrtimer_get_expires(timer));
810 811 812 813

	if (delta.tv64 < 0)
		return 0;

814 815 816
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

817
	if (unlikely(delta.tv64 >= interval.tv64)) {
818
		s64 incr = ktime_to_ns(interval);
819 820

		orun = ktime_divns(delta, incr);
821 822
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
823 824 825 826 827 828 829
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
830
	hrtimer_add_expires(timer, interval);
831 832 833

	return orun;
}
S
Stas Sergeev 已提交
834
EXPORT_SYMBOL_GPL(hrtimer_forward);
835 836 837 838 839 840

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
841 842
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
843
 */
844 845
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
846 847 848 849
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
850
	int leftmost = 1;
851

852
	debug_activate(timer);
853

854 855 856 857 858 859 860 861 862 863
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
864 865
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
866
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
867
		} else {
868
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
869 870
			leftmost = 0;
		}
871 872 873
	}

	/*
874 875
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
876
	 */
877
	if (leftmost)
878 879
		base->first = &timer->node;

880 881
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
882 883 884 885 886
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
887 888

	return leftmost;
889
}
890 891 892 893 894

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
895 896 897 898 899
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
900
 */
901
static void __remove_hrtimer(struct hrtimer *timer,
902
			     struct hrtimer_clock_base *base,
903
			     unsigned long newstate, int reprogram)
904
{
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
923
		}
924
#endif
925
	}
926 927
	rb_erase(&timer->node, &base->active);
out:
928
	timer->state = newstate;
929 930 931 932 933 934
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
935
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
936
{
937
	if (hrtimer_is_queued(timer)) {
938 939 940 941 942 943 944 945 946 947
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
948
		debug_deactivate(timer);
949
		timer_stats_hrtimer_clear_start_info(timer);
950 951 952
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
953 954 955 956 957
		return 1;
	}
	return 0;
}

958 959 960
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
961
{
962
	struct hrtimer_clock_base *base, *new_base;
963
	unsigned long flags;
964
	int ret, leftmost;
965 966 967 968 969 970 971

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
972
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
973

974
	if (mode & HRTIMER_MODE_REL) {
975
		tim = ktime_add_safe(tim, new_base->get_time());
976 977 978 979 980 981 982 983
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
984
		tim = ktime_add_safe(tim, base->resolution);
985 986
#endif
	}
987

988
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989

990 991
	timer_stats_hrtimer_set_start_info(timer);

992 993
	leftmost = enqueue_hrtimer(timer, new_base);

994 995 996
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
997 998
	 *
	 * XXX send_remote_softirq() ?
999
	 */
1000
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
1001
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1002 1003 1004 1005 1006

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1024 1025 1026
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1027
 * hrtimer_start - (re)start an hrtimer on the current CPU
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1039
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1040
}
1041
EXPORT_SYMBOL_GPL(hrtimer_start);
1042

1043

1044 1045 1046 1047 1048 1049 1050 1051
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1052
 *    cannot be stopped
1053 1054 1055
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1056
	struct hrtimer_clock_base *base;
1057 1058 1059 1060 1061
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1062
	if (!hrtimer_callback_running(timer))
1063 1064 1065 1066 1067 1068 1069
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1070
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1087
		cpu_relax();
1088 1089
	}
}
1090
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1091 1092 1093 1094 1095 1096 1097

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1098
	struct hrtimer_clock_base *base;
1099 1100 1101 1102
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1103
	rem = hrtimer_expires_remaining(timer);
1104 1105 1106 1107
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1108
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1109

1110
#ifdef CONFIG_NO_HZ
1111 1112 1113 1114 1115 1116 1117 1118
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1119 1120
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1121 1122 1123 1124
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1125
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1126

1127 1128 1129
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1130

1131 1132
			if (!base->first)
				continue;
1133

1134
			timer = rb_entry(base->first, struct hrtimer, node);
1135
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1136 1137 1138 1139
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1140
	}
1141

1142
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1143

1144 1145 1146 1147 1148 1149
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1150 1151
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1152
{
1153
	struct hrtimer_cpu_base *cpu_base;
1154

1155 1156
	memset(timer, 0, sizeof(struct hrtimer));

1157
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1158

1159
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1160 1161
		clock_id = CLOCK_MONOTONIC;

1162
	timer->base = &cpu_base->clock_base[clock_id];
1163
	hrtimer_init_timer_hres(timer);
1164 1165 1166 1167 1168 1169

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1170
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1181
	debug_init(timer, clock_id, mode);
1182 1183
	__hrtimer_init(timer, clock_id, mode);
}
1184
EXPORT_SYMBOL_GPL(hrtimer_init);
1185 1186 1187 1188 1189 1190

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1191 1192
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1193 1194 1195
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1196
	struct hrtimer_cpu_base *cpu_base;
1197

1198 1199
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1200 1201 1202

	return 0;
}
1203
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1204

1205
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1206 1207 1208 1209 1210 1211
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1212 1213
	WARN_ON(!irqs_disabled());

1214
	debug_deactivate(timer);
1215 1216 1217
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1218 1219 1220 1221 1222 1223

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1224
	raw_spin_unlock(&cpu_base->lock);
1225
	trace_hrtimer_expire_entry(timer, now);
1226
	restart = fn(timer);
1227
	trace_hrtimer_expire_exit(timer);
1228
	raw_spin_lock(&cpu_base->lock);
1229 1230

	/*
T
Thomas Gleixner 已提交
1231 1232 1233
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1234 1235 1236
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1237
		enqueue_hrtimer(timer, base);
1238 1239 1240 1241
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1252 1253
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1254 1255 1256 1257 1258

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1259 1260
	entry_time = now = ktime_get();
retry:
1261 1262
	expires_next.tv64 = KTIME_MAX;

1263
	raw_spin_lock(&cpu_base->lock);
1264 1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1300 1301
				ktime_t expires;

1302
				expires = ktime_sub(hrtimer_get_expires(timer),
1303 1304 1305 1306 1307 1308
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1309
			__run_hrtimer(timer, &basenow);
1310 1311 1312 1313
		}
		base++;
	}

1314 1315 1316 1317
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1318
	cpu_base->expires_next = expires_next;
1319
	raw_spin_unlock(&cpu_base->lock);
1320 1321

	/* Reprogramming necessary ? */
1322 1323 1324 1325
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1326
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1393
	unsigned long flags;
1394

1395
	local_irq_save(flags);
1396
	__hrtimer_peek_ahead_timers();
1397 1398 1399
	local_irq_restore(flags);
}

1400 1401 1402 1403 1404
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1405 1406 1407 1408 1409
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1433 1434
}

1435
/*
1436
 * Called from hardirq context every jiffy
1437
 */
1438
void hrtimer_run_queues(void)
1439
{
1440
	struct rb_node *node;
1441 1442 1443
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1444

1445
	if (hrtimer_hres_active())
1446 1447
		return;

1448 1449
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1450

1451
		if (!base->first)
1452
			continue;
1453

1454
		if (gettime) {
1455 1456
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1457
		}
1458

1459
		raw_spin_lock(&cpu_base->lock);
1460

1461 1462
		while ((node = base->first)) {
			struct hrtimer *timer;
1463

1464
			timer = rb_entry(node, struct hrtimer, node);
1465 1466
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1467 1468
				break;

1469
			__run_hrtimer(timer, &base->softirq_time);
1470
		}
1471
		raw_spin_unlock(&cpu_base->lock);
1472
	}
1473 1474
}

1475 1476 1477
/*
 * Sleep related functions:
 */
1478
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1491
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1492 1493 1494 1495
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1496
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1497

1498
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1499
{
1500
	hrtimer_init_sleeper(t, current);
1501

1502 1503
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1504
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1505 1506
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1507

1508 1509
		if (likely(t->task))
			schedule();
1510

1511
		hrtimer_cancel(&t->timer);
1512
		mode = HRTIMER_MODE_ABS;
1513 1514

	} while (t->task && !signal_pending(current));
1515

1516 1517
	__set_current_state(TASK_RUNNING);

1518
	return t->task == NULL;
1519 1520
}

1521 1522 1523 1524 1525
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1526
	rem = hrtimer_expires_remaining(timer);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1537
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1538
{
1539
	struct hrtimer_sleeper t;
1540
	struct timespec __user  *rmtp;
1541
	int ret = 0;
1542

1543 1544
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1545
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1546

1547
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1548
		goto out;
1549

1550
	rmtp = restart->nanosleep.rmtp;
1551
	if (rmtp) {
1552
		ret = update_rmtp(&t.timer, rmtp);
1553
		if (ret <= 0)
1554
			goto out;
1555
	}
1556 1557

	/* The other values in restart are already filled in */
1558 1559 1560 1561
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1562 1563
}

1564
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1565 1566 1567
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1568
	struct hrtimer_sleeper t;
1569
	int ret = 0;
1570 1571 1572 1573 1574
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1575

1576
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1577
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1578
	if (do_nanosleep(&t, mode))
1579
		goto out;
1580

1581
	/* Absolute timers do not update the rmtp value and restart: */
1582 1583 1584 1585
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1586

1587
	if (rmtp) {
1588
		ret = update_rmtp(&t.timer, rmtp);
1589
		if (ret <= 0)
1590
			goto out;
1591
	}
1592 1593

	restart = &current_thread_info()->restart_block;
1594
	restart->fn = hrtimer_nanosleep_restart;
1595 1596
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1597
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1598

1599 1600 1601 1602
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1603 1604
}

1605 1606
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1607
{
1608
	struct timespec tu;
1609 1610 1611 1612 1613 1614 1615

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1616
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1617 1618
}

1619 1620 1621
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1622
static void __cpuinit init_hrtimers_cpu(int cpu)
1623
{
1624
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1625 1626
	int i;

1627
	raw_spin_lock_init(&cpu_base->lock);
1628 1629 1630 1631

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1632
	hrtimer_init_hres(cpu_base);
1633 1634 1635 1636
}

#ifdef CONFIG_HOTPLUG_CPU

1637
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1638
				struct hrtimer_clock_base *new_base)
1639 1640 1641 1642 1643 1644
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1645
		BUG_ON(hrtimer_callback_running(timer));
1646
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1647 1648 1649 1650 1651 1652 1653

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1654
		timer->base = new_base;
1655
		/*
T
Thomas Gleixner 已提交
1656 1657 1658 1659 1660 1661
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1662
		 */
1663
		enqueue_hrtimer(timer, new_base);
1664

T
Thomas Gleixner 已提交
1665 1666
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1667 1668 1669
	}
}

1670
static void migrate_hrtimers(int scpu)
1671
{
1672
	struct hrtimer_cpu_base *old_base, *new_base;
1673
	int i;
1674

1675 1676
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1677 1678 1679 1680

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1681 1682 1683 1684
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1685 1686
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1687

1688
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1689
		migrate_hrtimer_list(&old_base->clock_base[i],
1690
				     &new_base->clock_base[i]);
1691 1692
	}

1693 1694
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1695

1696 1697 1698
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1699
}
1700

1701 1702
#endif /* CONFIG_HOTPLUG_CPU */

1703
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1704 1705
					unsigned long action, void *hcpu)
{
1706
	int scpu = (long)hcpu;
1707 1708 1709 1710

	switch (action) {

	case CPU_UP_PREPARE:
1711
	case CPU_UP_PREPARE_FROZEN:
1712
		init_hrtimers_cpu(scpu);
1713 1714 1715
		break;

#ifdef CONFIG_HOTPLUG_CPU
1716 1717 1718 1719
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1720
	case CPU_DEAD:
1721
	case CPU_DEAD_FROZEN:
1722
	{
1723
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1724
		migrate_hrtimers(scpu);
1725
		break;
1726
	}
1727 1728 1729 1730 1731 1732 1733 1734 1735
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1736
static struct notifier_block __cpuinitdata hrtimers_nb = {
1737 1738 1739 1740 1741 1742 1743 1744
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1745 1746 1747
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1748 1749
}

1750
/**
1751
 * schedule_hrtimeout_range_clock - sleep until timeout
1752
 * @expires:	timeout value (ktime_t)
1753
 * @delta:	slack in expires timeout (ktime_t)
1754
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1755
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1756
 */
1757 1758 1759
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1781
	hrtimer_init_on_stack(&t.timer, clock, mode);
1782
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1783 1784 1785

	hrtimer_init_sleeper(&t, current);

1786
	hrtimer_start_expires(&t.timer, mode);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1864
EXPORT_SYMBOL_GPL(schedule_hrtimeout);