slub.c 132.0 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

292
static inline struct kmem_cache_order_objects oo_make(int order,
293
		unsigned long size, int reserved)
294 295
{
	struct kmem_cache_order_objects x = {
296
		(order << OO_SHIFT) + order_objects(order, size, reserved)
297 298 299 300 301 302 303
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
304
	return x.x >> OO_SHIFT;
305 306 307 308
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
309
	return x.x & OO_MASK;
310 311
}

312 313 314 315 316
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
317
	VM_BUG_ON_PAGE(PageTail(page), page);
318 319 320 321 322
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
323
	VM_BUG_ON_PAGE(PageTail(page), page);
324 325 326
	__bit_spin_unlock(PG_locked, &page->flags);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

342 343 344 345 346 347 348
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
349 350
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
351
	if (s->flags & __CMPXCHG_DOUBLE) {
352
		if (cmpxchg_double(&page->freelist, &page->counters,
353 354
				   freelist_old, counters_old,
				   freelist_new, counters_new))
355
			return true;
356 357 358 359
	} else
#endif
	{
		slab_lock(page);
360 361
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
362
			page->freelist = freelist_new;
363
			set_page_slub_counters(page, counters_new);
364
			slab_unlock(page);
365
			return true;
366 367 368 369 370 371 372 373
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
374
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
375 376
#endif

377
	return false;
378 379
}

380 381 382 383 384
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
385 386
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
387
	if (s->flags & __CMPXCHG_DOUBLE) {
388
		if (cmpxchg_double(&page->freelist, &page->counters,
389 390
				   freelist_old, counters_old,
				   freelist_new, counters_new))
391
			return true;
392 393 394
	} else
#endif
	{
395 396 397
		unsigned long flags;

		local_irq_save(flags);
398
		slab_lock(page);
399 400
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
401
			page->freelist = freelist_new;
402
			set_page_slub_counters(page, counters_new);
403
			slab_unlock(page);
404
			local_irq_restore(flags);
405
			return true;
406
		}
407
		slab_unlock(page);
408
		local_irq_restore(flags);
409 410 411 412 413 414
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
415
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
416 417
#endif

418
	return false;
419 420
}

C
Christoph Lameter 已提交
421
#ifdef CONFIG_SLUB_DEBUG
422 423 424
/*
 * Determine a map of object in use on a page.
 *
425
 * Node listlock must be held to guarantee that the page does
426 427 428 429 430 431 432 433 434 435 436
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
437 438 439
/*
 * Debug settings:
 */
440
#if defined(CONFIG_SLUB_DEBUG_ON)
441
static int slub_debug = DEBUG_DEFAULT_FLAGS;
442 443
#elif defined(CONFIG_KASAN)
static int slub_debug = SLAB_STORE_USER;
444
#else
C
Christoph Lameter 已提交
445
static int slub_debug;
446
#endif
C
Christoph Lameter 已提交
447 448

static char *slub_debug_slabs;
449
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
467 468 469 470 471
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
472
	metadata_access_enable();
473 474
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
475
	metadata_access_disable();
C
Christoph Lameter 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
492
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
493
{
A
Akinobu Mita 已提交
494
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
495 496

	if (addr) {
497 498 499 500 501 502 503 504
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
505
		metadata_access_enable();
506
		save_stack_trace(&trace);
507
		metadata_access_disable();
508 509 510 511 512 513 514 515 516

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
517 518
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
519
		p->pid = current->pid;
C
Christoph Lameter 已提交
520 521 522 523 524 525 526
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
527 528 529
	if (!(s->flags & SLAB_STORE_USER))
		return;

530 531
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
532 533 534 535 536 537 538
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

539 540
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
541 542 543 544 545
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
546
				pr_err("\t%pS\n", (void *)t->addrs[i]);
547 548 549 550
			else
				break;
	}
#endif
551 552 553 554 555 556 557 558 559 560 561 562 563
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
564
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
565
	       page, page->objects, page->inuse, page->freelist, page->flags);
566 567 568 569 570

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
571
	struct va_format vaf;
572 573 574
	va_list args;

	va_start(args, fmt);
575 576
	vaf.fmt = fmt;
	vaf.va = &args;
577
	pr_err("=============================================================================\n");
578
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
579
	pr_err("-----------------------------------------------------------------------------\n\n");
580

581
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582
	va_end(args);
C
Christoph Lameter 已提交
583 584
}

585 586
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
587
	struct va_format vaf;
588 589 590
	va_list args;

	va_start(args, fmt);
591 592 593
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
594 595 596 597
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
598 599
{
	unsigned int off;	/* Offset of last byte */
600
	u8 *addr = page_address(page);
601 602 603 604 605

	print_tracking(s, p);

	print_page_info(page);

606 607
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
608 609

	if (p > addr + 16)
610
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
611

612
	print_section("Object ", p, min_t(unsigned long, s->object_size,
613
				PAGE_SIZE));
C
Christoph Lameter 已提交
614
	if (s->flags & SLAB_RED_ZONE)
615 616
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
617 618 619 620 621 622

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

623
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
624 625 626 627
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
628
		print_section("Padding ", p + off, s->size - off);
629 630

	dump_stack();
C
Christoph Lameter 已提交
631 632
}

633
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
634 635
			u8 *object, char *reason)
{
636
	slab_bug(s, "%s", reason);
637
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
638 639
}

640 641
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
642 643 644 645
{
	va_list args;
	char buf[100];

646 647
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
648
	va_end(args);
649
	slab_bug(s, "%s", buf);
650
	print_page_info(page);
C
Christoph Lameter 已提交
651 652 653
	dump_stack();
}

654
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
655 656 657 658
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
659 660
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
661 662 663
	}

	if (s->flags & SLAB_RED_ZONE)
664
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
665 666
}

667 668 669 670 671 672 673 674 675
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
676
			u8 *start, unsigned int value, unsigned int bytes)
677 678 679 680
{
	u8 *fault;
	u8 *end;

681
	metadata_access_enable();
682
	fault = memchr_inv(start, value, bytes);
683
	metadata_access_disable();
684 685 686 687 688 689 690 691
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
692
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
693 694 695 696 697
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
698 699 700 701 702 703 704 705 706
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
707
 *
C
Christoph Lameter 已提交
708 709 710
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
711
 * object + s->object_size
C
Christoph Lameter 已提交
712
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
713
 * 	Padding is extended by another word if Redzoning is enabled and
714
 * 	object_size == inuse.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718 719
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
720 721
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
722 723
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
724
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
725
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
726 727 728
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
729 730
 *
 * object + s->size
C
Christoph Lameter 已提交
731
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
732
 *
733
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
734
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

753 754
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
755 756
}

757
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
758 759
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
760 761 762 763 764
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
765 766 767 768

	if (!(s->flags & SLAB_POISON))
		return 1;

769
	start = page_address(page);
770
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
771 772
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
773 774 775
	if (!remainder)
		return 1;

776
	metadata_access_enable();
777
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
778
	metadata_access_disable();
779 780 781 782 783 784
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
785
	print_section("Padding ", end - remainder, remainder);
786

E
Eric Dumazet 已提交
787
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
788
	return 0;
C
Christoph Lameter 已提交
789 790 791
}

static int check_object(struct kmem_cache *s, struct page *page,
792
					void *object, u8 val)
C
Christoph Lameter 已提交
793 794
{
	u8 *p = object;
795
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
796 797

	if (s->flags & SLAB_RED_ZONE) {
798
		if (!check_bytes_and_report(s, page, object, "Redzone",
799
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
800 801
			return 0;
	} else {
802
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
803
			check_bytes_and_report(s, page, p, "Alignment padding",
804 805
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
806
		}
C
Christoph Lameter 已提交
807 808 809
	}

	if (s->flags & SLAB_POISON) {
810
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
811
			(!check_bytes_and_report(s, page, p, "Poison", p,
812
					POISON_FREE, s->object_size - 1) ||
813
			 !check_bytes_and_report(s, page, p, "Poison",
814
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
815 816 817 818 819 820 821
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

822
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
823 824 825 826 827 828 829 830 831 832
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
833
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
834
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
835
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
836
		 */
837
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
838 839 840 841 842 843 844
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
845 846
	int maxobj;

C
Christoph Lameter 已提交
847 848 849
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
850
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
851 852
		return 0;
	}
853

854
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
855 856
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
857
			page->objects, maxobj);
858 859 860
		return 0;
	}
	if (page->inuse > page->objects) {
861
		slab_err(s, page, "inuse %u > max %u",
862
			page->inuse, page->objects);
C
Christoph Lameter 已提交
863 864 865 866 867 868 869 870
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
871 872
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
873 874 875 876
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
877
	void *fp;
C
Christoph Lameter 已提交
878
	void *object = NULL;
879
	int max_objects;
C
Christoph Lameter 已提交
880

881
	fp = page->freelist;
882
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
883 884 885 886 887 888
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
889
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
890
			} else {
891
				slab_err(s, page, "Freepointer corrupt");
892
				page->freelist = NULL;
893
				page->inuse = page->objects;
894
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
895 896 897 898 899 900 901 902 903
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

904
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
905 906
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
907 908 909 910 911 912 913

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
914
	if (page->inuse != page->objects - nr) {
915
		slab_err(s, page, "Wrong object count. Counter is %d but "
916 917
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
918
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
919 920 921 922
	}
	return search == NULL;
}

923 924
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
925 926
{
	if (s->flags & SLAB_TRACE) {
927
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
928 929 930 931 932 933
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
934 935
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
936 937 938 939 940

		dump_stack();
	}
}

941
/*
C
Christoph Lameter 已提交
942
 * Tracking of fully allocated slabs for debugging purposes.
943
 */
944 945
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
946
{
947 948 949
	if (!(s->flags & SLAB_STORE_USER))
		return;

950
	lockdep_assert_held(&n->list_lock);
951 952 953
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
954
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
955 956 957 958
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

959
	lockdep_assert_held(&n->list_lock);
960 961 962
	list_del(&page->lru);
}

963 964 965 966 967 968 969 970
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

971 972 973 974 975
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

976
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
977 978 979 980 981 982 983 984 985
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
986
	if (likely(n)) {
987
		atomic_long_inc(&n->nr_slabs);
988 989
		atomic_long_add(objects, &n->total_objects);
	}
990
}
991
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
992 993 994 995
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
996
	atomic_long_sub(objects, &n->total_objects);
997 998 999
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1000 1001 1002 1003 1004 1005
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1006
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1007 1008 1009
	init_tracking(s, object);
}

1010 1011
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1012
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1013 1014 1015 1016 1017 1018
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1019
		goto bad;
C
Christoph Lameter 已提交
1020 1021
	}

1022
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1023 1024
		goto bad;

C
Christoph Lameter 已提交
1025 1026 1027 1028
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1029
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1030
	return 1;
C
Christoph Lameter 已提交
1031

C
Christoph Lameter 已提交
1032 1033 1034 1035 1036
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1037
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1038
		 */
1039
		slab_fix(s, "Marking all objects used");
1040
		page->inuse = page->objects;
1041
		page->freelist = NULL;
C
Christoph Lameter 已提交
1042 1043 1044 1045
	}
	return 0;
}

1046
/* Supports checking bulk free of a constructed freelist */
1047
static noinline int free_debug_processing(
1048 1049
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1050
	unsigned long addr)
C
Christoph Lameter 已提交
1051
{
1052
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1053 1054
	void *object = head;
	int cnt = 0;
1055
	unsigned long uninitialized_var(flags);
1056
	int ret = 0;
1057

1058
	spin_lock_irqsave(&n->list_lock, flags);
1059 1060
	slab_lock(page);

C
Christoph Lameter 已提交
1061
	if (!check_slab(s, page))
1062
		goto out;
C
Christoph Lameter 已提交
1063

1064 1065 1066
next_object:
	cnt++;

C
Christoph Lameter 已提交
1067
	if (!check_valid_pointer(s, page, object)) {
1068
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1069
		goto out;
C
Christoph Lameter 已提交
1070 1071 1072
	}

	if (on_freelist(s, page, object)) {
1073
		object_err(s, page, object, "Object already free");
1074
		goto out;
C
Christoph Lameter 已提交
1075 1076
	}

1077
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1078
		goto out;
C
Christoph Lameter 已提交
1079

1080
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1081
		if (!PageSlab(page)) {
1082 1083
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1084
		} else if (!page->slab_cache) {
1085 1086
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1087
			dump_stack();
P
Pekka Enberg 已提交
1088
		} else
1089 1090
			object_err(s, page, object,
					"page slab pointer corrupt.");
1091
		goto out;
C
Christoph Lameter 已提交
1092
	}
C
Christoph Lameter 已提交
1093 1094 1095 1096

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1097
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1098
	init_object(s, object, SLUB_RED_INACTIVE);
1099 1100 1101 1102 1103 1104

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1105 1106
	ret = 1;

1107
out:
1108 1109 1110 1111
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1112
	slab_unlock(page);
1113
	spin_unlock_irqrestore(&n->list_lock, flags);
1114 1115 1116
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1117 1118
}

C
Christoph Lameter 已提交
1119 1120
static int __init setup_slub_debug(char *str)
{
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1145
	for (; *str && *str != ','; str++) {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1162 1163 1164
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1165 1166 1167 1168 1169 1170 1171
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1172
		default:
1173 1174
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1175
		}
C
Christoph Lameter 已提交
1176 1177
	}

1178
check_slabs:
C
Christoph Lameter 已提交
1179 1180
	if (*str == ',')
		slub_debug_slabs = str + 1;
1181
out:
C
Christoph Lameter 已提交
1182 1183 1184 1185 1186
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1187
unsigned long kmem_cache_flags(unsigned long object_size,
1188
	unsigned long flags, const char *name,
1189
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1190 1191
{
	/*
1192
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1193
	 */
1194 1195
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1196
		flags |= slub_debug;
1197 1198

	return flags;
C
Christoph Lameter 已提交
1199
}
1200
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1201 1202
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1203

C
Christoph Lameter 已提交
1204
static inline int alloc_debug_processing(struct kmem_cache *s,
1205
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1206

1207
static inline int free_debug_processing(
1208 1209
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1210
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1211 1212 1213 1214

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1215
			void *object, u8 val) { return 1; }
1216 1217
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1218 1219
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1220
unsigned long kmem_cache_flags(unsigned long object_size,
1221
	unsigned long flags, const char *name,
1222
	void (*ctor)(void *))
1223 1224 1225
{
	return flags;
}
C
Christoph Lameter 已提交
1226
#define slub_debug 0
1227

1228 1229
#define disable_higher_order_debug 0

1230 1231
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1232 1233
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1234 1235 1236 1237
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1238

1239 1240 1241 1242 1243 1244
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1245 1246 1247
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1248
	kasan_kmalloc_large(ptr, size);
1249 1250 1251 1252 1253
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1254
	kasan_kfree_large(x);
1255 1256 1257 1258 1259
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1278 1279

	kasan_slab_free(s, x);
1280
}
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;

	do {
		slab_free_hook(s, object);
	} while ((object != tail_obj) &&
		 (object = get_freepointer(s, object)));
#endif
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1316 1317 1318
/*
 * Slab allocation and freeing
 */
1319 1320
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1321
{
1322
	struct page *page;
1323 1324
	int order = oo_order(oo);

1325 1326
	flags |= __GFP_NOTRACK;

1327
	if (node == NUMA_NO_NODE)
1328
		page = alloc_pages(flags, order);
1329
	else
1330
		page = __alloc_pages_node(node, flags, order);
1331

1332 1333 1334 1335
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1336 1337

	return page;
1338 1339
}

C
Christoph Lameter 已提交
1340 1341
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1342
	struct page *page;
1343
	struct kmem_cache_order_objects oo = s->oo;
1344
	gfp_t alloc_gfp;
1345 1346
	void *start, *p;
	int idx, order;
C
Christoph Lameter 已提交
1347

1348 1349
	flags &= gfp_allowed_mask;

1350
	if (gfpflags_allow_blocking(flags))
1351 1352
		local_irq_enable();

1353
	flags |= s->allocflags;
1354

1355 1356 1357 1358 1359
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1360 1361
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1362

1363
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1364 1365
	if (unlikely(!page)) {
		oo = s->min;
1366
		alloc_gfp = flags;
1367 1368 1369 1370
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1371
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1372 1373 1374
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1375
	}
V
Vegard Nossum 已提交
1376

1377 1378
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1379 1380
		int pages = 1 << oo_order(oo);

1381
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1382 1383 1384 1385 1386 1387 1388 1389 1390

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1391 1392
	}

1393
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1394

G
Glauber Costa 已提交
1395
	order = compound_order(page);
1396
	page->slab_cache = s;
1397
	__SetPageSlab(page);
1398
	if (page_is_pfmemalloc(page))
1399
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1400 1401 1402 1403

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1404
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1405

1406 1407
	kasan_poison_slab(page);

1408 1409 1410 1411 1412 1413
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1414 1415 1416
	}

	page->freelist = start;
1417
	page->inuse = page->objects;
1418
	page->frozen = 1;
1419

C
Christoph Lameter 已提交
1420
out:
1421
	if (gfpflags_allow_blocking(flags))
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1433 1434 1435
	return page;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1447 1448
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1449 1450
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1451

1452
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1453 1454 1455
		void *p;

		slab_pad_check(s, page);
1456 1457
		for_each_object(p, s, page_address(page),
						page->objects)
1458
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1459 1460
	}

1461
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1462

C
Christoph Lameter 已提交
1463 1464 1465
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1466
		-pages);
C
Christoph Lameter 已提交
1467

1468
	__ClearPageSlabPfmemalloc(page);
1469
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1470

1471
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1472 1473
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1474
	__free_kmem_pages(page, order);
C
Christoph Lameter 已提交
1475 1476
}

1477 1478 1479
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1480 1481 1482 1483
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1484 1485 1486 1487 1488
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1489
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1490 1491 1492 1493 1494
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1495 1496 1497 1498 1499 1500 1501 1502 1503
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1504
			head = &page->rcu_head;
1505
		}
C
Christoph Lameter 已提交
1506 1507 1508 1509 1510 1511 1512 1513

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1514
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1515 1516 1517 1518
	free_slab(s, page);
}

/*
1519
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1520
 */
1521 1522
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1523
{
C
Christoph Lameter 已提交
1524
	n->nr_partial++;
1525
	if (tail == DEACTIVATE_TO_TAIL)
1526 1527 1528
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1529 1530
}

1531 1532
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1533
{
P
Peter Zijlstra 已提交
1534
	lockdep_assert_held(&n->list_lock);
1535 1536
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1537

1538 1539 1540 1541
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1542 1543
	list_del(&page->lru);
	n->nr_partial--;
1544 1545
}

C
Christoph Lameter 已提交
1546
/*
1547 1548
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1549
 *
1550
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1551
 */
1552
static inline void *acquire_slab(struct kmem_cache *s,
1553
		struct kmem_cache_node *n, struct page *page,
1554
		int mode, int *objects)
C
Christoph Lameter 已提交
1555
{
1556 1557 1558 1559
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1560 1561
	lockdep_assert_held(&n->list_lock);

1562 1563 1564 1565 1566
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1567 1568 1569
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1570
	*objects = new.objects - new.inuse;
1571
	if (mode) {
1572
		new.inuse = page->objects;
1573 1574 1575 1576
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1577

1578
	VM_BUG_ON(new.frozen);
1579
	new.frozen = 1;
1580

1581
	if (!__cmpxchg_double_slab(s, page,
1582
			freelist, counters,
1583
			new.freelist, new.counters,
1584 1585
			"acquire_slab"))
		return NULL;
1586 1587

	remove_partial(n, page);
1588
	WARN_ON(!freelist);
1589
	return freelist;
C
Christoph Lameter 已提交
1590 1591
}

1592
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1593
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1594

C
Christoph Lameter 已提交
1595
/*
C
Christoph Lameter 已提交
1596
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1597
 */
1598 1599
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1600
{
1601 1602
	struct page *page, *page2;
	void *object = NULL;
1603 1604
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1605 1606 1607 1608

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1609 1610
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1611 1612 1613 1614 1615
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1616
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1617
		void *t;
1618

1619 1620 1621
		if (!pfmemalloc_match(page, flags))
			continue;

1622
		t = acquire_slab(s, n, page, object == NULL, &objects);
1623 1624 1625
		if (!t)
			break;

1626
		available += objects;
1627
		if (!object) {
1628 1629 1630 1631
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1632
			put_cpu_partial(s, page, 0);
1633
			stat(s, CPU_PARTIAL_NODE);
1634
		}
1635 1636
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1637 1638
			break;

1639
	}
C
Christoph Lameter 已提交
1640
	spin_unlock(&n->list_lock);
1641
	return object;
C
Christoph Lameter 已提交
1642 1643 1644
}

/*
C
Christoph Lameter 已提交
1645
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1646
 */
1647
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1648
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1649 1650 1651
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1652
	struct zoneref *z;
1653 1654
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1655
	void *object;
1656
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1657 1658

	/*
C
Christoph Lameter 已提交
1659 1660 1661 1662
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1663
	 *
C
Christoph Lameter 已提交
1664 1665 1666 1667
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1668
	 *
C
Christoph Lameter 已提交
1669
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1670 1671 1672 1673 1674
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1675
	 */
1676 1677
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1678 1679
		return NULL;

1680
	do {
1681
		cpuset_mems_cookie = read_mems_allowed_begin();
1682
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1683 1684 1685 1686 1687
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1688
			if (n && cpuset_zone_allowed(zone, flags) &&
1689
					n->nr_partial > s->min_partial) {
1690
				object = get_partial_node(s, n, c, flags);
1691 1692
				if (object) {
					/*
1693 1694 1695 1696 1697
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1698 1699 1700
					 */
					return object;
				}
1701
			}
C
Christoph Lameter 已提交
1702
		}
1703
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1704 1705 1706 1707 1708 1709 1710
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1711
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1712
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1713
{
1714
	void *object;
1715 1716 1717 1718 1719 1720
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1721

1722
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1723 1724
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1725

1726
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1770
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1771 1772 1773

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1774
		pr_warn("due to cpu change %d -> %d\n",
1775 1776 1777 1778
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1779
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1780 1781
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1782
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1783 1784
			actual_tid, tid, next_tid(tid));
#endif
1785
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1786 1787
}

1788
static void init_kmem_cache_cpus(struct kmem_cache *s)
1789 1790 1791 1792 1793 1794
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1795

C
Christoph Lameter 已提交
1796 1797 1798
/*
 * Remove the cpu slab
 */
1799 1800
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1801
{
1802 1803 1804 1805 1806
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1807
	int tail = DEACTIVATE_TO_HEAD;
1808 1809 1810 1811
	struct page new;
	struct page old;

	if (page->freelist) {
1812
		stat(s, DEACTIVATE_REMOTE_FREES);
1813
		tail = DEACTIVATE_TO_TAIL;
1814 1815
	}

1816
	/*
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1834
			VM_BUG_ON(!new.frozen);
1835

1836
		} while (!__cmpxchg_double_slab(s, page,
1837 1838 1839 1840 1841 1842 1843
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1844
	/*
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1857
	 */
1858
redo:
1859

1860 1861
	old.freelist = page->freelist;
	old.counters = page->counters;
1862
	VM_BUG_ON(!old.frozen);
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1875
	if (!new.inuse && n->nr_partial >= s->min_partial)
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1908

P
Peter Zijlstra 已提交
1909
			remove_full(s, n, page);
1910 1911 1912 1913

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1914
			stat(s, tail);
1915 1916

		} else if (m == M_FULL) {
1917

1918 1919 1920 1921 1922 1923 1924
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1925
	if (!__cmpxchg_double_slab(s, page,
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1938
	}
C
Christoph Lameter 已提交
1939 1940
}

1941 1942 1943
/*
 * Unfreeze all the cpu partial slabs.
 *
1944 1945 1946
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1947
 */
1948 1949
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1950
{
1951
#ifdef CONFIG_SLUB_CPU_PARTIAL
1952
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1953
	struct page *page, *discard_page = NULL;
1954 1955 1956 1957 1958 1959

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1960 1961 1962 1963 1964 1965 1966 1967 1968

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1969 1970 1971 1972 1973

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1974
			VM_BUG_ON(!old.frozen);
1975 1976 1977 1978 1979 1980

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1981
		} while (!__cmpxchg_double_slab(s, page,
1982 1983 1984 1985
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1986
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1987 1988
			page->next = discard_page;
			discard_page = page;
1989 1990 1991
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1992 1993 1994 1995 1996
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1997 1998 1999 2000 2001 2002 2003 2004 2005

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2006
#endif
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2018
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2019
{
2020
#ifdef CONFIG_SLUB_CPU_PARTIAL
2021 2022 2023 2024
	struct page *oldpage;
	int pages;
	int pobjects;

2025
	preempt_disable();
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2041
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2042
				local_irq_restore(flags);
2043
				oldpage = NULL;
2044 2045
				pobjects = 0;
				pages = 0;
2046
				stat(s, CPU_PARTIAL_DRAIN);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2057 2058
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2059 2060 2061 2062 2063 2064 2065 2066
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2067
#endif
2068 2069
}

2070
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2071
{
2072
	stat(s, CPUSLAB_FLUSH);
2073 2074 2075 2076 2077
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2078 2079 2080 2081
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2082
 *
C
Christoph Lameter 已提交
2083 2084
 * Called from IPI handler with interrupts disabled.
 */
2085
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2086
{
2087
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2088

2089 2090 2091 2092
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2093
		unfreeze_partials(s, c);
2094
	}
C
Christoph Lameter 已提交
2095 2096 2097 2098 2099 2100
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2101
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2102 2103
}

2104 2105 2106 2107 2108
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2109
	return c->page || c->partial;
2110 2111
}

C
Christoph Lameter 已提交
2112 2113
static void flush_all(struct kmem_cache *s)
{
2114
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2115 2116
}

2117 2118 2119 2120
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2121
static inline int node_match(struct page *page, int node)
2122 2123
{
#ifdef CONFIG_NUMA
2124
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2125 2126 2127 2128 2129
		return 0;
#endif
	return 1;
}

2130
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2131 2132 2133 2134 2135
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2136 2137 2138 2139 2140 2141 2142
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2156
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2157

P
Pekka Enberg 已提交
2158 2159 2160
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2161 2162 2163
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2164
	int node;
C
Christoph Lameter 已提交
2165
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2166

2167 2168 2169
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2170
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2171
		nid, gfpflags);
2172 2173 2174
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2175

2176
	if (oo_order(s->min) > get_order(s->object_size))
2177 2178
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2179

C
Christoph Lameter 已提交
2180
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2181 2182 2183 2184
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2185 2186 2187
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2188

2189
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2190 2191
			node, nr_slabs, nr_objs, nr_free);
	}
2192
#endif
P
Pekka Enberg 已提交
2193 2194
}

2195 2196 2197
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2198
	void *freelist;
2199 2200
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2201

2202
	freelist = get_partial(s, flags, node, c);
2203

2204 2205 2206 2207
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2208
	if (page) {
2209
		c = raw_cpu_ptr(s->cpu_slab);
2210 2211 2212 2213 2214 2215 2216
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2217
		freelist = page->freelist;
2218 2219 2220 2221 2222 2223
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2224
		freelist = NULL;
2225

2226
	return freelist;
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2237
/*
2238 2239
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2240 2241 2242 2243
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2244 2245
 *
 * This function must be called with interrupt disabled.
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2256

2257
		new.counters = counters;
2258
		VM_BUG_ON(!new.frozen);
2259 2260 2261 2262

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2263
	} while (!__cmpxchg_double_slab(s, page,
2264 2265 2266 2267 2268 2269 2270
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2271
/*
2272 2273 2274 2275 2276 2277
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2278
 *
2279 2280 2281
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2282
 *
2283
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2284 2285
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2286 2287 2288
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2289
 */
2290
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2291
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2292
{
2293
	void *freelist;
2294
	struct page *page;
C
Christoph Lameter 已提交
2295

2296 2297
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2298
		goto new_slab;
2299
redo:
2300

2301
	if (unlikely(!node_match(page, node))) {
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2314
	}
C
Christoph Lameter 已提交
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2328
	/* must check again c->freelist in case of cpu migration or IRQ */
2329 2330
	freelist = c->freelist;
	if (freelist)
2331
		goto load_freelist;
2332

2333
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2334

2335
	if (!freelist) {
2336 2337
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2338
		goto new_slab;
2339
	}
C
Christoph Lameter 已提交
2340

2341
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2342

2343
load_freelist:
2344 2345 2346 2347 2348
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2349
	VM_BUG_ON(!c->page->frozen);
2350
	c->freelist = get_freepointer(s, freelist);
2351
	c->tid = next_tid(c->tid);
2352
	return freelist;
C
Christoph Lameter 已提交
2353 2354

new_slab:
2355

2356
	if (c->partial) {
2357 2358
		page = c->page = c->partial;
		c->partial = page->next;
2359 2360 2361
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2362 2363
	}

2364
	freelist = new_slab_objects(s, gfpflags, node, &c);
2365

2366
	if (unlikely(!freelist)) {
2367
		slab_out_of_memory(s, gfpflags, node);
2368
		return NULL;
C
Christoph Lameter 已提交
2369
	}
2370

2371
	page = c->page;
2372
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2373
		goto load_freelist;
2374

2375
	/* Only entered in the debug case */
2376 2377
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2378
		goto new_slab;	/* Slab failed checks. Next slab needed */
2379

2380
	deactivate_slab(s, page, get_freepointer(s, freelist));
2381 2382
	c->page = NULL;
	c->freelist = NULL;
2383
	return freelist;
2384 2385
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2421
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2422
		gfp_t gfpflags, int node, unsigned long addr)
2423
{
2424
	void *object;
2425
	struct kmem_cache_cpu *c;
2426
	struct page *page;
2427
	unsigned long tid;
2428

2429 2430
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2431
		return NULL;
2432 2433 2434 2435 2436 2437
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2438
	 *
2439 2440 2441
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2442
	 */
2443 2444 2445
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2446 2447
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2458 2459 2460 2461 2462 2463 2464 2465

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2466
	object = c->freelist;
2467
	page = c->page;
D
Dave Hansen 已提交
2468
	if (unlikely(!object || !node_match(page, node))) {
2469
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2470 2471
		stat(s, ALLOC_SLOWPATH);
	} else {
2472 2473
		void *next_object = get_freepointer_safe(s, object);

2474
		/*
L
Lucas De Marchi 已提交
2475
		 * The cmpxchg will only match if there was no additional
2476 2477
		 * operation and if we are on the right processor.
		 *
2478 2479
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2480 2481 2482 2483
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2484 2485 2486
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2487
		 */
2488
		if (unlikely(!this_cpu_cmpxchg_double(
2489 2490
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2491
				next_object, next_tid(tid)))) {
2492 2493 2494 2495

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2496
		prefetch_freepointer(s, next_object);
2497
		stat(s, ALLOC_FASTPATH);
2498
	}
2499

2500
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2501
		memset(object, 0, s->object_size);
2502

2503
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2504

2505
	return object;
C
Christoph Lameter 已提交
2506 2507
}

2508 2509 2510 2511 2512 2513
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2514 2515
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2516
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2517

2518 2519
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2520 2521

	return ret;
C
Christoph Lameter 已提交
2522 2523 2524
}
EXPORT_SYMBOL(kmem_cache_alloc);

2525
#ifdef CONFIG_TRACING
2526 2527
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2528
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2529
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2530
	kasan_kmalloc(s, ret, size);
2531 2532 2533
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2534 2535
#endif

C
Christoph Lameter 已提交
2536 2537 2538
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2539
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2540

2541
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2542
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2543 2544

	return ret;
C
Christoph Lameter 已提交
2545 2546 2547
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2548
#ifdef CONFIG_TRACING
2549
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2550
				    gfp_t gfpflags,
2551
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2552
{
2553
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2554 2555 2556

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2557 2558

	kasan_kmalloc(s, ret, size);
2559
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2560
}
2561
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2562
#endif
2563
#endif
E
Eduard - Gabriel Munteanu 已提交
2564

C
Christoph Lameter 已提交
2565
/*
K
Kim Phillips 已提交
2566
 * Slow path handling. This may still be called frequently since objects
2567
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2568
 *
2569 2570 2571
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2572
 */
2573
static void __slab_free(struct kmem_cache *s, struct page *page,
2574 2575 2576
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2577 2578
{
	void *prior;
2579 2580 2581 2582
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2583
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2584

2585
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2586

2587
	if (kmem_cache_debug(s) &&
2588
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2589
		return;
C
Christoph Lameter 已提交
2590

2591
	do {
2592 2593 2594 2595
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2596 2597
		prior = page->freelist;
		counters = page->counters;
2598
		set_freepointer(s, tail, prior);
2599 2600
		new.counters = counters;
		was_frozen = new.frozen;
2601
		new.inuse -= cnt;
2602
		if ((!new.inuse || !prior) && !was_frozen) {
2603

P
Peter Zijlstra 已提交
2604
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2605 2606

				/*
2607 2608 2609 2610
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2611 2612 2613
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2614
			} else { /* Needs to be taken off a list */
2615

2616
				n = get_node(s, page_to_nid(page));
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2628
		}
C
Christoph Lameter 已提交
2629

2630 2631
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2632
		head, new.counters,
2633
		"__slab_free"));
C
Christoph Lameter 已提交
2634

2635
	if (likely(!n)) {
2636 2637 2638 2639 2640

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2641
		if (new.frozen && !was_frozen) {
2642
			put_cpu_partial(s, page, 1);
2643 2644
			stat(s, CPU_PARTIAL_FREE);
		}
2645
		/*
2646 2647 2648
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2649 2650 2651 2652
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2653

2654
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2655 2656
		goto slab_empty;

C
Christoph Lameter 已提交
2657
	/*
2658 2659
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2660
	 */
2661 2662
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2663
			remove_full(s, n, page);
2664 2665
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2666
	}
2667
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2668 2669 2670
	return;

slab_empty:
2671
	if (prior) {
C
Christoph Lameter 已提交
2672
		/*
2673
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2674
		 */
2675
		remove_partial(n, page);
2676
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2677
	} else {
2678
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2679 2680
		remove_full(s, n, page);
	}
2681

2682
	spin_unlock_irqrestore(&n->list_lock, flags);
2683
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2684 2685 2686
	discard_slab(s, page);
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2697 2698 2699 2700
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2701
 */
2702 2703 2704
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
2705
{
2706
	void *tail_obj = tail ? : head;
2707
	struct kmem_cache_cpu *c;
2708
	unsigned long tid;
2709

2710
	slab_free_freelist_hook(s, head, tail);
2711

2712 2713 2714 2715 2716
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2717
	 * during the cmpxchg then the free will succeed.
2718
	 */
2719 2720 2721
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2722 2723
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2724

2725 2726
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2727

2728
	if (likely(page == c->page)) {
2729
		set_freepointer(s, tail_obj, c->freelist);
2730

2731
		if (unlikely(!this_cpu_cmpxchg_double(
2732 2733
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2734
				head, next_tid(tid)))) {
2735 2736 2737 2738

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2739
		stat(s, FREE_FASTPATH);
2740
	} else
2741
		__slab_free(s, page, head, tail_obj, cnt, addr);
2742 2743 2744

}

C
Christoph Lameter 已提交
2745 2746
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2747 2748
	s = cache_from_obj(s, x);
	if (!s)
2749
		return;
2750
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2751
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2752 2753 2754
}
EXPORT_SYMBOL(kmem_cache_free);

2755
struct detached_freelist {
2756
	struct page *page;
2757 2758 2759
	void *tail;
	void *freelist;
	int cnt;
2760
	struct kmem_cache *s;
2761
};
2762

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
2775 2776 2777
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
2778 2779 2780 2781
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
2782
	struct page *page;
2783

2784 2785
	/* Always re-init detached_freelist */
	df->page = NULL;
2786

2787 2788
	do {
		object = p[--size];
2789
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2790
	} while (!object && size);
2791

2792 2793
	if (!object)
		return 0;
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
			__free_kmem_pages(page, compound_order(page));
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
2810

2811
	/* Start new detached freelist */
2812
	df->page = page;
2813
	set_freepointer(df->s, object, NULL);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
2827
			set_freepointer(df->s, object, df->freelist);
2828 2829 2830 2831 2832
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
2833
		}
2834 2835 2836 2837 2838 2839 2840

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
2841
	}
2842 2843 2844 2845 2846

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
2847
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
		if (unlikely(!df.page))
			continue;

2859
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2860
	} while (likely(size));
2861 2862 2863
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2864
/* Note that interrupts must be enabled when calling this function. */
2865 2866
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
2867
{
2868 2869 2870
	struct kmem_cache_cpu *c;
	int i;

2871 2872 2873 2874
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2886 2887 2888 2889 2890
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
2891
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2892
					    _RET_IP_, c);
2893 2894 2895
			if (unlikely(!p[i]))
				goto error;

2896 2897 2898
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

2913 2914
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
2915
	return i;
2916 2917
error:
	local_irq_enable();
2918 2919
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
2920
	return 0;
2921 2922 2923 2924
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2925
/*
C
Christoph Lameter 已提交
2926 2927 2928 2929
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2930 2931 2932 2933
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2934
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2945
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2946
static int slub_min_objects;
C
Christoph Lameter 已提交
2947 2948 2949 2950

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2951 2952 2953 2954
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2955
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2956 2957 2958 2959 2960 2961
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2962
 *
C
Christoph Lameter 已提交
2963 2964 2965 2966
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2967
 *
C
Christoph Lameter 已提交
2968 2969 2970 2971
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2972
 */
2973
static inline int slab_order(int size, int min_objects,
2974
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2975 2976 2977
{
	int order;
	int rem;
2978
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2979

2980
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2981
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2982

2983
	for (order = max(min_order, get_order(min_objects * size + reserved));
2984
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2985

2986
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2987

2988
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2989

2990
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2991 2992
			break;
	}
C
Christoph Lameter 已提交
2993

C
Christoph Lameter 已提交
2994 2995 2996
	return order;
}

2997
static inline int calculate_order(int size, int reserved)
2998 2999 3000 3001
{
	int order;
	int min_objects;
	int fraction;
3002
	int max_objects;
3003 3004 3005 3006 3007 3008

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3009
	 * First we increase the acceptable waste in a slab. Then
3010 3011 3012
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3013 3014
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3015
	max_objects = order_objects(slub_max_order, size, reserved);
3016 3017
	min_objects = min(min_objects, max_objects);

3018
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3019
		fraction = 16;
3020 3021
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3022
					slub_max_order, fraction, reserved);
3023 3024 3025 3026
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3027
		min_objects--;
3028 3029 3030 3031 3032 3033
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3034
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3035 3036 3037 3038 3039 3040
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3041
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3042
	if (order < MAX_ORDER)
3043 3044 3045 3046
		return order;
	return -ENOSYS;
}

3047
static void
3048
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3049 3050 3051 3052
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3053
#ifdef CONFIG_SLUB_DEBUG
3054
	atomic_long_set(&n->nr_slabs, 0);
3055
	atomic_long_set(&n->total_objects, 0);
3056
	INIT_LIST_HEAD(&n->full);
3057
#endif
C
Christoph Lameter 已提交
3058 3059
}

3060
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3061
{
3062
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3063
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3064

3065
	/*
3066 3067
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3068
	 */
3069 3070
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3071 3072 3073 3074 3075

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3076

3077
	return 1;
3078 3079
}

3080 3081
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3082 3083 3084 3085 3086
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3087 3088
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3089
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3090
 */
3091
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3092 3093 3094 3095
{
	struct page *page;
	struct kmem_cache_node *n;

3096
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3097

3098
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3099 3100

	BUG_ON(!page);
3101
	if (page_to_nid(page) != node) {
3102 3103
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3104 3105
	}

C
Christoph Lameter 已提交
3106 3107
	n = page->freelist;
	BUG_ON(!n);
3108
	page->freelist = get_freepointer(kmem_cache_node, n);
3109
	page->inuse = 1;
3110
	page->frozen = 0;
3111
	kmem_cache_node->node[node] = n;
3112
#ifdef CONFIG_SLUB_DEBUG
3113
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3114
	init_tracking(kmem_cache_node, n);
3115
#endif
3116
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3117
	init_kmem_cache_node(n);
3118
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3119

3120
	/*
3121 3122
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3123
	 */
3124
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3125 3126 3127 3128 3129
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3130
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3131

C
Christoph Lameter 已提交
3132 3133
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3134 3135 3136 3137
		s->node[node] = NULL;
	}
}

3138 3139 3140 3141 3142 3143
void __kmem_cache_release(struct kmem_cache *s)
{
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3144
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3145 3146 3147
{
	int node;

C
Christoph Lameter 已提交
3148
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3149 3150
		struct kmem_cache_node *n;

3151
		if (slab_state == DOWN) {
3152
			early_kmem_cache_node_alloc(node);
3153 3154
			continue;
		}
3155
		n = kmem_cache_alloc_node(kmem_cache_node,
3156
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3157

3158 3159 3160
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3161
		}
3162

C
Christoph Lameter 已提交
3163
		s->node[node] = n;
3164
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3165 3166 3167 3168
	}
	return 1;
}

3169
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3170 3171 3172 3173 3174 3175 3176 3177
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3178 3179 3180 3181
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3182
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3183 3184
{
	unsigned long flags = s->flags;
3185
	unsigned long size = s->object_size;
3186
	int order;
C
Christoph Lameter 已提交
3187

3188 3189 3190 3191 3192 3193 3194 3195
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3196 3197 3198 3199 3200 3201
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3202
			!s->ctor)
C
Christoph Lameter 已提交
3203 3204 3205 3206 3207 3208
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3209
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3210
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3211
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3212
	 */
3213
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3214
		size += sizeof(void *);
C
Christoph Lameter 已提交
3215
#endif
C
Christoph Lameter 已提交
3216 3217

	/*
C
Christoph Lameter 已提交
3218 3219
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3220 3221 3222 3223
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3224
		s->ctor)) {
C
Christoph Lameter 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3237
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3238 3239 3240 3241 3242 3243 3244
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3245
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3246 3247 3248 3249
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3250
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3251 3252 3253
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3254
#endif
C
Christoph Lameter 已提交
3255

C
Christoph Lameter 已提交
3256 3257 3258 3259 3260
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3261
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3262
	s->size = size;
3263 3264 3265
	if (forced_order >= 0)
		order = forced_order;
	else
3266
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3267

3268
	if (order < 0)
C
Christoph Lameter 已提交
3269 3270
		return 0;

3271
	s->allocflags = 0;
3272
	if (order)
3273 3274 3275
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3276
		s->allocflags |= GFP_DMA;
3277 3278 3279 3280

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3281 3282 3283
	/*
	 * Determine the number of objects per slab
	 */
3284 3285
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3286 3287
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3288

3289
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3290 3291
}

3292
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3293
{
3294
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3295
	s->reserved = 0;
C
Christoph Lameter 已提交
3296

3297 3298
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3299

3300
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3301
		goto error;
3302 3303 3304 3305 3306
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3307
		if (get_order(s->size) > get_order(s->object_size)) {
3308 3309 3310 3311 3312 3313
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3314

3315 3316
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3317 3318 3319 3320 3321
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3322 3323 3324 3325
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3341
	 * B) The number of objects in cpu partial slabs to extract from the
3342 3343
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3344
	 */
3345
	if (!kmem_cache_has_cpu_partial(s))
3346 3347
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3348 3349 3350 3351 3352 3353 3354 3355
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3356
#ifdef CONFIG_NUMA
3357
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3358
#endif
3359
	if (!init_kmem_cache_nodes(s))
3360
		goto error;
C
Christoph Lameter 已提交
3361

3362
	if (alloc_kmem_cache_cpus(s))
3363
		return 0;
3364

3365
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3366 3367 3368 3369
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3370 3371
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3372
	return -EINVAL;
C
Christoph Lameter 已提交
3373 3374
}

3375 3376 3377 3378 3379 3380
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3381 3382
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3383 3384
	if (!map)
		return;
3385
	slab_err(s, page, text, s->name);
3386 3387
	slab_lock(page);

3388
	get_map(s, page, map);
3389 3390 3391
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3392
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3393 3394 3395 3396
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3397
	kfree(map);
3398 3399 3400
#endif
}

C
Christoph Lameter 已提交
3401
/*
C
Christoph Lameter 已提交
3402
 * Attempt to free all partial slabs on a node.
3403 3404
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3405
 */
C
Christoph Lameter 已提交
3406
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3407 3408 3409
{
	struct page *page, *h;

3410 3411
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3412
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3413
		if (!page->inuse) {
3414
			remove_partial(n, page);
C
Christoph Lameter 已提交
3415
			discard_slab(s, page);
3416 3417
		} else {
			list_slab_objects(s, page,
3418
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3419
		}
3420
	}
3421
	spin_unlock_irq(&n->list_lock);
C
Christoph Lameter 已提交
3422 3423 3424
}

/*
C
Christoph Lameter 已提交
3425
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3426
 */
3427
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3428 3429
{
	int node;
C
Christoph Lameter 已提交
3430
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3431 3432 3433

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3434
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3435 3436
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
			return 1;
	}
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3448
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3449 3450 3451 3452 3453 3454 3455 3456

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3457
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3458
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3459 3460 3461 3462 3463 3464 3465 3466

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3467
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3468 3469 3470 3471 3472 3473 3474 3475

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3476
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3477
	void *ret;
C
Christoph Lameter 已提交
3478

3479
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3480
		return kmalloc_large(size, flags);
3481

3482
	s = kmalloc_slab(size, flags);
3483 3484

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3485 3486
		return s;

3487
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3488

3489
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3490

3491 3492
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3493
	return ret;
C
Christoph Lameter 已提交
3494 3495 3496
}
EXPORT_SYMBOL(__kmalloc);

3497
#ifdef CONFIG_NUMA
3498 3499
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3500
	struct page *page;
3501
	void *ptr = NULL;
3502

V
Vladimir Davydov 已提交
3503 3504
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3505
	if (page)
3506 3507
		ptr = page_address(page);

3508
	kmalloc_large_node_hook(ptr, size, flags);
3509
	return ptr;
3510 3511
}

C
Christoph Lameter 已提交
3512 3513
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3514
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3515
	void *ret;
C
Christoph Lameter 已提交
3516

3517
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3518 3519
		ret = kmalloc_large_node(size, flags, node);

3520 3521 3522
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3523 3524 3525

		return ret;
	}
3526

3527
	s = kmalloc_slab(size, flags);
3528 3529

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3530 3531
		return s;

3532
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3533

3534
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3535

3536 3537
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3538
	return ret;
C
Christoph Lameter 已提交
3539 3540 3541 3542
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3543
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3544
{
3545
	struct page *page;
C
Christoph Lameter 已提交
3546

3547
	if (unlikely(object == ZERO_SIZE_PTR))
3548 3549
		return 0;

3550 3551
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3552 3553
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3554
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3555
	}
C
Christoph Lameter 已提交
3556

3557
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3558
}
3559 3560 3561 3562 3563 3564 3565 3566 3567

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3568
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3569 3570 3571 3572

void kfree(const void *x)
{
	struct page *page;
3573
	void *object = (void *)x;
C
Christoph Lameter 已提交
3574

3575 3576
	trace_kfree(_RET_IP_, x);

3577
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3578 3579
		return;

3580
	page = virt_to_head_page(x);
3581
	if (unlikely(!PageSlab(page))) {
3582
		BUG_ON(!PageCompound(page));
3583
		kfree_hook(x);
V
Vladimir Davydov 已提交
3584
		__free_kmem_pages(page, compound_order(page));
3585 3586
		return;
	}
3587
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3588 3589 3590
}
EXPORT_SYMBOL(kfree);

3591 3592
#define SHRINK_PROMOTE_MAX 32

3593
/*
3594 3595 3596
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3597 3598 3599 3600
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3601
 */
3602
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3603 3604 3605 3606 3607 3608
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3609 3610
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3611
	unsigned long flags;
3612
	int ret = 0;
3613

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3629
	flush_all(s);
C
Christoph Lameter 已提交
3630
	for_each_kmem_cache_node(s, node, n) {
3631 3632 3633
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3634 3635 3636 3637

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3638
		 * Build lists of slabs to discard or promote.
3639
		 *
C
Christoph Lameter 已提交
3640 3641
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3642 3643
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3654
				n->nr_partial--;
3655 3656
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3657 3658 3659
		}

		/*
3660 3661
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3662
		 */
3663 3664
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3665 3666

		spin_unlock_irqrestore(&n->list_lock, flags);
3667 3668

		/* Release empty slabs */
3669
		list_for_each_entry_safe(page, t, &discard, lru)
3670
			discard_slab(s, page);
3671 3672 3673

		if (slabs_node(s, node))
			ret = 1;
3674 3675
	}

3676
	return ret;
3677 3678
}

3679 3680 3681 3682
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3683
	mutex_lock(&slab_mutex);
3684
	list_for_each_entry(s, &slab_caches, list)
3685
		__kmem_cache_shrink(s, false);
3686
	mutex_unlock(&slab_mutex);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3698
	offline_node = marg->status_change_nid_normal;
3699 3700 3701 3702 3703 3704 3705 3706

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3707
	mutex_lock(&slab_mutex);
3708 3709 3710 3711 3712 3713
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3714
			 * and offline_pages() function shouldn't call this
3715 3716
			 * callback. So, we must fail.
			 */
3717
			BUG_ON(slabs_node(s, offline_node));
3718 3719

			s->node[offline_node] = NULL;
3720
			kmem_cache_free(kmem_cache_node, n);
3721 3722
		}
	}
3723
	mutex_unlock(&slab_mutex);
3724 3725 3726 3727 3728 3729 3730
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3731
	int nid = marg->status_change_nid_normal;
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3742
	 * We are bringing a node online. No memory is available yet. We must
3743 3744 3745
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3746
	mutex_lock(&slab_mutex);
3747 3748 3749 3750 3751 3752
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3753
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3754 3755 3756 3757
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3758
		init_kmem_cache_node(n);
3759 3760 3761
		s->node[nid] = n;
	}
out:
3762
	mutex_unlock(&slab_mutex);
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3786 3787 3788 3789
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3790 3791 3792
	return ret;
}

3793 3794 3795 3796
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3797

C
Christoph Lameter 已提交
3798 3799 3800 3801
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3802 3803
/*
 * Used for early kmem_cache structures that were allocated using
3804 3805
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3806 3807
 */

3808
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3809 3810
{
	int node;
3811
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3812
	struct kmem_cache_node *n;
3813

3814
	memcpy(s, static_cache, kmem_cache->object_size);
3815

3816 3817 3818 3819 3820 3821
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3822
	for_each_kmem_cache_node(s, node, n) {
3823 3824
		struct page *p;

C
Christoph Lameter 已提交
3825 3826
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3827

L
Li Zefan 已提交
3828
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3829 3830
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3831 3832
#endif
	}
3833
	slab_init_memcg_params(s);
3834 3835
	list_add(&s->list, &slab_caches);
	return s;
3836 3837
}

C
Christoph Lameter 已提交
3838 3839
void __init kmem_cache_init(void)
{
3840 3841
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3842

3843 3844 3845
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3846 3847
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3848

3849 3850
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3851

3852
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3853 3854 3855 3856

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3857 3858 3859 3860
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3861

3862
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3863

3864 3865 3866 3867 3868
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3869
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3870 3871

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3872
	setup_kmalloc_cache_index_table();
3873
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3874 3875 3876

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3877
#endif
C
Christoph Lameter 已提交
3878

3879
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3880
		cache_line_size(),
C
Christoph Lameter 已提交
3881 3882 3883 3884
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3885 3886 3887 3888
void __init kmem_cache_init_late(void)
{
}

3889
struct kmem_cache *
3890 3891
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3892
{
3893
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3894

3895
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3896 3897
	if (s) {
		s->refcount++;
3898

C
Christoph Lameter 已提交
3899 3900 3901 3902
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3903
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3904
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3905

3906
		for_each_memcg_cache(c, s) {
3907 3908 3909 3910 3911
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3912 3913
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3914
			s = NULL;
3915
		}
3916
	}
C
Christoph Lameter 已提交
3917

3918 3919
	return s;
}
P
Pekka Enberg 已提交
3920

3921
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3922
{
3923 3924 3925 3926 3927
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3928

3929 3930 3931 3932
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3933
	memcg_propagate_slab_attrs(s);
3934 3935
	err = sysfs_slab_add(s);
	if (err)
3936
		__kmem_cache_release(s);
3937

3938
	return err;
C
Christoph Lameter 已提交
3939 3940 3941 3942
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3943 3944
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3945
 */
3946
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3947 3948 3949
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3950 3951
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3952 3953 3954

	switch (action) {
	case CPU_UP_CANCELED:
3955
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3956
	case CPU_DEAD:
3957
	case CPU_DEAD_FROZEN:
3958
		mutex_lock(&slab_mutex);
3959 3960 3961 3962 3963
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3964
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3965 3966 3967 3968 3969 3970 3971
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3972
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3973
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3974
};
C
Christoph Lameter 已提交
3975 3976 3977

#endif

3978
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3979
{
3980
	struct kmem_cache *s;
3981
	void *ret;
3982

3983
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3984 3985
		return kmalloc_large(size, gfpflags);

3986
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3987

3988
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3989
		return s;
C
Christoph Lameter 已提交
3990

3991
	ret = slab_alloc(s, gfpflags, caller);
3992

L
Lucas De Marchi 已提交
3993
	/* Honor the call site pointer we received. */
3994
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3995 3996

	return ret;
C
Christoph Lameter 已提交
3997 3998
}

3999
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4000
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4001
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4002
{
4003
	struct kmem_cache *s;
4004
	void *ret;
4005

4006
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4007 4008 4009 4010 4011 4012 4013 4014
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4015

4016
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4017

4018
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4019
		return s;
C
Christoph Lameter 已提交
4020

4021
	ret = slab_alloc_node(s, gfpflags, node, caller);
4022

L
Lucas De Marchi 已提交
4023
	/* Honor the call site pointer we received. */
4024
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4025 4026

	return ret;
C
Christoph Lameter 已提交
4027
}
4028
#endif
C
Christoph Lameter 已提交
4029

4030
#ifdef CONFIG_SYSFS
4031 4032 4033 4034 4035 4036 4037 4038 4039
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4040
#endif
4041

4042
#ifdef CONFIG_SLUB_DEBUG
4043 4044
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4045 4046
{
	void *p;
4047
	void *addr = page_address(page);
4048 4049 4050 4051 4052 4053

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4054
	bitmap_zero(map, page->objects);
4055

4056 4057 4058 4059 4060
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4061 4062
	}

4063
	for_each_object(p, s, addr, page->objects)
4064
		if (!test_bit(slab_index(p, s, addr), map))
4065
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4066 4067 4068 4069
				return 0;
	return 1;
}

4070 4071
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4072
{
4073 4074 4075
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4076 4077
}

4078 4079
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4080 4081 4082 4083 4084 4085 4086 4087
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4088
		validate_slab_slab(s, page, map);
4089 4090 4091
		count++;
	}
	if (count != n->nr_partial)
4092 4093
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4094 4095 4096 4097 4098

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4099
		validate_slab_slab(s, page, map);
4100 4101 4102
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4103 4104
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4105 4106 4107 4108 4109 4110

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4111
static long validate_slab_cache(struct kmem_cache *s)
4112 4113 4114
{
	int node;
	unsigned long count = 0;
4115
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4116
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4117
	struct kmem_cache_node *n;
4118 4119 4120

	if (!map)
		return -ENOMEM;
4121 4122

	flush_all(s);
C
Christoph Lameter 已提交
4123
	for_each_kmem_cache_node(s, node, n)
4124 4125
		count += validate_slab_node(s, n, map);
	kfree(map);
4126 4127
	return count;
}
4128
/*
C
Christoph Lameter 已提交
4129
 * Generate lists of code addresses where slabcache objects are allocated
4130 4131 4132 4133 4134
 * and freed.
 */

struct location {
	unsigned long count;
4135
	unsigned long addr;
4136 4137 4138 4139 4140
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4141
	DECLARE_BITMAP(cpus, NR_CPUS);
4142
	nodemask_t nodes;
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4158
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4159 4160 4161 4162 4163 4164
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4165
	l = (void *)__get_free_pages(flags, order);
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4179
				const struct track *track)
4180 4181 4182
{
	long start, end, pos;
	struct location *l;
4183
	unsigned long caddr;
4184
	unsigned long age = jiffies - track->when;
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4216 4217
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4218 4219
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4220 4221 4222
			return 1;
		}

4223
		if (track->addr < caddr)
4224 4225 4226 4227 4228 4229
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4230
	 * Not found. Insert new tracking element.
4231
	 */
4232
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4233 4234 4235 4236 4237 4238 4239 4240
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4241 4242 4243 4244 4245 4246
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4247 4248
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4249 4250
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4251 4252 4253 4254
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4255
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4256
		unsigned long *map)
4257
{
4258
	void *addr = page_address(page);
4259 4260
	void *p;

4261
	bitmap_zero(map, page->objects);
4262
	get_map(s, page, map);
4263

4264
	for_each_object(p, s, addr, page->objects)
4265 4266
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4267 4268 4269 4270 4271
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4272
	int len = 0;
4273
	unsigned long i;
4274
	struct loc_track t = { 0, 0, NULL };
4275
	int node;
E
Eric Dumazet 已提交
4276 4277
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4278
	struct kmem_cache_node *n;
4279

E
Eric Dumazet 已提交
4280 4281 4282
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4283
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4284
	}
4285 4286 4287
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4288
	for_each_kmem_cache_node(s, node, n) {
4289 4290 4291
		unsigned long flags;
		struct page *page;

4292
		if (!atomic_long_read(&n->nr_slabs))
4293 4294 4295 4296
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4297
			process_slab(&t, s, page, alloc, map);
4298
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4299
			process_slab(&t, s, page, alloc, map);
4300 4301 4302 4303
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4304
		struct location *l = &t.loc[i];
4305

H
Hugh Dickins 已提交
4306
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4307
			break;
4308
		len += sprintf(buf + len, "%7ld ", l->count);
4309 4310

		if (l->addr)
J
Joe Perches 已提交
4311
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4312
		else
4313
			len += sprintf(buf + len, "<not-available>");
4314 4315

		if (l->sum_time != l->min_time) {
4316
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4317 4318 4319
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4320
		} else
4321
			len += sprintf(buf + len, " age=%ld",
4322 4323 4324
				l->min_time);

		if (l->min_pid != l->max_pid)
4325
			len += sprintf(buf + len, " pid=%ld-%ld",
4326 4327
				l->min_pid, l->max_pid);
		else
4328
			len += sprintf(buf + len, " pid=%ld",
4329 4330
				l->min_pid);

R
Rusty Russell 已提交
4331 4332
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4333 4334 4335 4336
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4337

4338
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4339 4340 4341 4342
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4343

4344
		len += sprintf(buf + len, "\n");
4345 4346 4347
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4348
	kfree(map);
4349
	if (!t.count)
4350 4351
		len += sprintf(buf, "No data\n");
	return len;
4352
}
4353
#endif
4354

4355
#ifdef SLUB_RESILIENCY_TEST
4356
static void __init resiliency_test(void)
4357 4358 4359
{
	u8 *p;

4360
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4361

4362 4363 4364
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4365 4366 4367

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4368 4369
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4370 4371 4372 4373 4374 4375

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4376 4377 4378
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4379 4380 4381 4382 4383

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4384 4385 4386
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4387 4388
	validate_slab_cache(kmalloc_caches[6]);

4389
	pr_err("\nB. Corruption after free\n");
4390 4391 4392
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4393
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4394 4395 4396 4397 4398
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4399
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4400 4401 4402 4403 4404
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4405
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4406 4407 4408 4409 4410 4411 4412 4413
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4414
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4415
enum slab_stat_type {
4416 4417 4418 4419 4420
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4421 4422
};

4423
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4424 4425 4426
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4427
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4428

4429 4430
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4431 4432 4433 4434 4435 4436
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4437
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4438 4439
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4440

4441 4442
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4443

4444
		for_each_possible_cpu(cpu) {
4445 4446
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4447
			int node;
4448
			struct page *page;
4449

4450
			page = READ_ONCE(c->page);
4451 4452
			if (!page)
				continue;
4453

4454 4455 4456 4457 4458 4459 4460
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4461

4462 4463 4464
			total += x;
			nodes[node] += x;

4465
			page = READ_ONCE(c->partial);
4466
			if (page) {
L
Li Zefan 已提交
4467 4468 4469 4470 4471 4472 4473
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4474 4475
				total += x;
				nodes[node] += x;
4476
			}
C
Christoph Lameter 已提交
4477 4478 4479
		}
	}

4480
	get_online_mems();
4481
#ifdef CONFIG_SLUB_DEBUG
4482
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4483 4484 4485
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4486

4487 4488 4489 4490 4491
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4492
			else
4493
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4494 4495 4496 4497
			total += x;
			nodes[node] += x;
		}

4498 4499 4500
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4501
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4502

C
Christoph Lameter 已提交
4503
		for_each_kmem_cache_node(s, node, n) {
4504 4505 4506 4507
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4508
			else
4509
				x = n->nr_partial;
C
Christoph Lameter 已提交
4510 4511 4512 4513 4514 4515
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4516
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4517 4518 4519 4520
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4521
	put_online_mems();
C
Christoph Lameter 已提交
4522 4523 4524 4525
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4526
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4527 4528 4529
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4530
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4531

C
Christoph Lameter 已提交
4532
	for_each_kmem_cache_node(s, node, n)
4533
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4534
			return 1;
C
Christoph Lameter 已提交
4535

C
Christoph Lameter 已提交
4536 4537
	return 0;
}
4538
#endif
C
Christoph Lameter 已提交
4539 4540

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4541
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4542 4543 4544 4545 4546 4547 4548 4549

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4550 4551
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4552 4553 4554

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4555
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4571
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4572 4573 4574 4575 4576
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4577
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4578 4579 4580
}
SLAB_ATTR_RO(objs_per_slab);

4581 4582 4583
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4584 4585 4586
	unsigned long order;
	int err;

4587
	err = kstrtoul(buf, 10, &order);
4588 4589
	if (err)
		return err;
4590 4591 4592 4593 4594 4595 4596 4597

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4598 4599
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4600
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4601
}
4602
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4615
	err = kstrtoul(buf, 10, &min);
4616 4617 4618
	if (err)
		return err;

4619
	set_min_partial(s, min);
4620 4621 4622 4623
	return length;
}
SLAB_ATTR(min_partial);

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4635
	err = kstrtoul(buf, 10, &objects);
4636 4637
	if (err)
		return err;
4638
	if (objects && !kmem_cache_has_cpu_partial(s))
4639
		return -EINVAL;
4640 4641 4642 4643 4644 4645 4646

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4647 4648
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4649 4650 4651
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4652 4653 4654 4655 4656
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4657
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4658 4659 4660 4661 4662
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4663
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4664 4665 4666 4667 4668
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4669
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4670 4671 4672 4673 4674
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4675
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4676 4677 4678
}
SLAB_ATTR_RO(objects);

4679 4680 4681 4682 4683 4684
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4751 4752 4753 4754 4755 4756
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4757
#ifdef CONFIG_SLUB_DEBUG
4758 4759 4760 4761 4762 4763
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4764 4765 4766 4767 4768 4769
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4779 4780
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4781
		s->flags |= SLAB_DEBUG_FREE;
4782
	}
C
Christoph Lameter 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4795 4796 4797 4798 4799 4800 4801 4802
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4803
	s->flags &= ~SLAB_TRACE;
4804 4805
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4806
		s->flags |= SLAB_TRACE;
4807
	}
C
Christoph Lameter 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4824 4825
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4826
		s->flags |= SLAB_RED_ZONE;
4827
	}
4828
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4845 4846
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4847
		s->flags |= SLAB_POISON;
4848
	}
4849
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4866 4867
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4868
		s->flags |= SLAB_STORE_USER;
4869
	}
4870
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4871 4872 4873 4874
	return length;
}
SLAB_ATTR(store_user);

4875 4876 4877 4878 4879 4880 4881 4882
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4883 4884 4885 4886 4887 4888 4889 4890
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4891 4892
}
SLAB_ATTR(validate);
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4920 4921 4922
	if (s->refcount > 1)
		return -EINVAL;

4923 4924 4925 4926 4927 4928
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4929
#endif
4930

4931 4932 4933 4934 4935 4936 4937 4938
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4939 4940 4941
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4942 4943 4944 4945 4946
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4947
#ifdef CONFIG_NUMA
4948
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4949
{
4950
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4951 4952
}

4953
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4954 4955
				const char *buf, size_t length)
{
4956 4957 4958
	unsigned long ratio;
	int err;

4959
	err = kstrtoul(buf, 10, &ratio);
4960 4961 4962
	if (err)
		return err;

4963
	if (ratio <= 100)
4964
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4965 4966 4967

	return length;
}
4968
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4969 4970
#endif

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4983
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4984 4985 4986 4987 4988 4989 4990

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4991
#ifdef CONFIG_SMP
4992 4993
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4994
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4995
	}
4996
#endif
4997 4998 4999 5000
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5001 5002 5003 5004 5005
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5006
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5007 5008
}

5009 5010 5011 5012 5013
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5034
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5035 5036 5037 5038 5039 5040 5041
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5042
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5043
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5044 5045
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5046 5047
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5048 5049
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5050 5051
#endif

P
Pekka Enberg 已提交
5052
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5053 5054 5055 5056
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5057
	&min_partial_attr.attr,
5058
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5059
	&objects_attr.attr,
5060
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5061 5062 5063 5064 5065 5066 5067 5068
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5069
	&shrink_attr.attr,
5070
	&reserved_attr.attr,
5071
	&slabs_cpu_partial_attr.attr,
5072
#ifdef CONFIG_SLUB_DEBUG
5073 5074 5075 5076
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5077 5078 5079
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5080
	&validate_attr.attr,
5081 5082
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5083
#endif
C
Christoph Lameter 已提交
5084 5085 5086 5087
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5088
	&remote_node_defrag_ratio_attr.attr,
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5101
	&alloc_node_mismatch_attr.attr,
5102 5103 5104 5105 5106 5107 5108
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5109
	&deactivate_bypass_attr.attr,
5110
	&order_fallback_attr.attr,
5111 5112
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5113 5114
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5115 5116
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5117
#endif
5118 5119 5120 5121
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5163
#ifdef CONFIG_MEMCG
5164
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5165
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5166

5167 5168 5169 5170
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5188 5189
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5190 5191 5192
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5193 5194 5195
	return err;
}

5196 5197
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5198
#ifdef CONFIG_MEMCG
5199 5200
	int i;
	char *buffer = NULL;
5201
	struct kmem_cache *root_cache;
5202

5203
	if (is_root_cache(s))
5204 5205
		return;

5206
	root_cache = s->memcg_params.root_cache;
5207

5208 5209 5210 5211
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5212
	if (!root_cache->max_attr_size)
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5234
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5235 5236 5237 5238 5239 5240 5241 5242
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5243
		attr->show(root_cache, buf);
5244 5245 5246 5247 5248 5249 5250 5251
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5252 5253 5254 5255 5256
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5257
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5258 5259 5260 5261 5262 5263
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5264
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5276
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5277 5278 5279
	.filter = uevent_filter,
};

5280
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5281

5282 5283
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5284
#ifdef CONFIG_MEMCG
5285
	if (!is_root_cache(s))
5286
		return s->memcg_params.root_cache->memcg_kset;
5287 5288 5289 5290
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5291 5292 5293
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5294 5295
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5318 5319
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5320 5321
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5322 5323 5324
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5325

C
Christoph Lameter 已提交
5326 5327 5328 5329 5330 5331 5332 5333
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5334
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5335 5336 5337 5338 5339 5340 5341

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5342
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5352
	s->kobj.kset = cache_kset(s);
5353
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5354
	if (err)
5355
		goto out;
C
Christoph Lameter 已提交
5356 5357

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5358 5359
	if (err)
		goto out_del_kobj;
5360

5361
#ifdef CONFIG_MEMCG
5362 5363 5364
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5365 5366
			err = -ENOMEM;
			goto out_del_kobj;
5367 5368 5369 5370
		}
	}
#endif

C
Christoph Lameter 已提交
5371 5372 5373 5374 5375
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5376 5377 5378 5379 5380 5381 5382
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5383 5384
}

5385
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5386
{
5387
	if (slab_state < FULL)
5388 5389 5390 5391 5392 5393
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5394
#ifdef CONFIG_MEMCG
5395 5396
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5397 5398
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5399
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5400 5401 5402 5403
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5404
 * available lest we lose that information.
C
Christoph Lameter 已提交
5405 5406 5407 5408 5409 5410 5411
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5412
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5413 5414 5415 5416 5417

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5418
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5419 5420 5421
		/*
		 * If we have a leftover link then remove it.
		 */
5422 5423
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5439
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5440 5441
	int err;

5442
	mutex_lock(&slab_mutex);
5443

5444
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5445
	if (!slab_kset) {
5446
		mutex_unlock(&slab_mutex);
5447
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5448 5449 5450
		return -ENOSYS;
	}

5451
	slab_state = FULL;
5452

5453
	list_for_each_entry(s, &slab_caches, list) {
5454
		err = sysfs_slab_add(s);
5455
		if (err)
5456 5457
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5458
	}
C
Christoph Lameter 已提交
5459 5460 5461 5462 5463 5464

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5465
		if (err)
5466 5467
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5468 5469 5470
		kfree(al);
	}

5471
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5472 5473 5474 5475 5476
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5477
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5478 5479 5480 5481

/*
 * The /proc/slabinfo ABI
 */
5482
#ifdef CONFIG_SLABINFO
5483
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5484 5485
{
	unsigned long nr_slabs = 0;
5486 5487
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5488
	int node;
C
Christoph Lameter 已提交
5489
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5490

C
Christoph Lameter 已提交
5491
	for_each_kmem_cache_node(s, node, n) {
5492 5493
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5494
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5495 5496
	}

5497 5498 5499 5500 5501 5502
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5503 5504
}

5505
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5506 5507 5508
{
}

5509 5510
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5511
{
5512
	return -EIO;
5513
}
5514
#endif /* CONFIG_SLABINFO */