slub.c 126.0 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

172 173
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
174
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175

C
Christoph Lameter 已提交
176
/* Internal SLUB flags */
C
Christoph Lameter 已提交
177
#define __OBJECT_POISON		0x80000000UL /* Poison object */
178
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
179 180 181 182 183

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

184 185 186
/*
 * Tracking user of a slab.
 */
187
#define TRACK_ADDRS_COUNT 16
188
struct track {
189
	unsigned long addr;	/* Called from address */
190 191 192
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
193 194 195 196 197 198 199
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

200
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
201 202
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
203
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
204
#else
205 206 207
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
208
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
209 210
#endif

211
static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 213
{
#ifdef CONFIG_SLUB_STATS
214 215 216 217 218
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
219 220 221
#endif
}

C
Christoph Lameter 已提交
222 223 224 225
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
226
/* Verify that a pointer has an address that is valid within a slab page */
227 228 229 230 231
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

232
	if (!object)
233 234
		return 1;

235
	base = page_address(page);
236
	if (object < base || object >= base + page->objects * s->size ||
237 238 239 240 241 242 243
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

244 245 246 247 248
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

249 250 251 252 253
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

254 255 256 257 258 259 260 261 262 263 264 265
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

266 267 268 269 270 271
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
272 273
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 275
			__p += (__s)->size)

276 277 278 279
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

280 281 282 283 284 285
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

286 287 288 289 290 291 292 293
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294
		return s->object_size;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

310 311 312 313 314
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

315
static inline struct kmem_cache_order_objects oo_make(int order,
316
		unsigned long size, int reserved)
317 318
{
	struct kmem_cache_order_objects x = {
319
		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 321 322 323 324 325 326
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
327
	return x.x >> OO_SHIFT;
328 329 330 331
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
332
	return x.x & OO_MASK;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

363 364 365 366 367 368 369
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
370 371
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372
	if (s->flags & __CMPXCHG_DOUBLE) {
373
		if (cmpxchg_double(&page->freelist, &page->counters,
374 375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
377 378 379 380
	} else
#endif
	{
		slab_lock(page);
381 382
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
383
			page->freelist = freelist_new;
384
			set_page_slub_counters(page, counters_new);
385 386 387 388 389 390 391 392 393 394
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
395
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 397 398 399 400
#endif

	return 0;
}

401 402 403 404 405
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
406 407
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408
	if (s->flags & __CMPXCHG_DOUBLE) {
409
		if (cmpxchg_double(&page->freelist, &page->counters,
410 411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
413 414 415
	} else
#endif
	{
416 417 418
		unsigned long flags;

		local_irq_save(flags);
419
		slab_lock(page);
420 421
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
422
			page->freelist = freelist_new;
423
			set_page_slub_counters(page, counters_new);
424
			slab_unlock(page);
425
			local_irq_restore(flags);
426 427
			return 1;
		}
428
		slab_unlock(page);
429
		local_irq_restore(flags);
430 431 432 433 434 435
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
436
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 438 439 440 441
#endif

	return 0;
}

C
Christoph Lameter 已提交
442
#ifdef CONFIG_SLUB_DEBUG
443 444 445
/*
 * Determine a map of object in use on a page.
 *
446
 * Node listlock must be held to guarantee that the page does
447 448 449 450 451 452 453 454 455 456 457
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
458 459 460
/*
 * Debug settings:
 */
461 462 463
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
464
static int slub_debug;
465
#endif
C
Christoph Lameter 已提交
466 467

static char *slub_debug_slabs;
468
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
469

C
Christoph Lameter 已提交
470 471 472 473 474
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
475 476
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
493
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
494
{
A
Akinobu Mita 已提交
495
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
496 497

	if (addr) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
516 517
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
518
		p->pid = current->pid;
C
Christoph Lameter 已提交
519 520 521 522 523 524 525
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
526 527 528
	if (!(s->flags & SLAB_STORE_USER))
		return;

529 530
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
531 532 533 534 535 536 537
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

538 539
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
545
				pr_err("\t%pS\n", (void *)t->addrs[i]);
546 547 548 549
			else
				break;
	}
#endif
550 551 552 553 554 555 556 557 558 559 560 561 562
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
563
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564
	       page, page->objects, page->inuse, page->freelist, page->flags);
565 566 567 568 569

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
570
	struct va_format vaf;
571 572 573
	va_list args;

	va_start(args, fmt);
574 575
	vaf.fmt = fmt;
	vaf.va = &args;
576
	pr_err("=============================================================================\n");
577
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578
	pr_err("-----------------------------------------------------------------------------\n\n");
579

580
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581
	va_end(args);
C
Christoph Lameter 已提交
582 583
}

584 585
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
586
	struct va_format vaf;
587 588 589
	va_list args;

	va_start(args, fmt);
590 591 592
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
593 594 595 596
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
597 598
{
	unsigned int off;	/* Offset of last byte */
599
	u8 *addr = page_address(page);
600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

605 606
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
607 608

	if (p > addr + 16)
609
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
610

611
	print_section("Object ", p, min_t(unsigned long, s->object_size,
612
				PAGE_SIZE));
C
Christoph Lameter 已提交
613
	if (s->flags & SLAB_RED_ZONE)
614 615
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
616 617 618 619 620 621

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

622
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
623 624 625 626
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
627
		print_section("Padding ", p + off, s->size - off);
628 629

	dump_stack();
C
Christoph Lameter 已提交
630 631
}

632
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
633 634
			u8 *object, char *reason)
{
635
	slab_bug(s, "%s", reason);
636
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
637 638
}

639 640
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
641 642 643 644
{
	va_list args;
	char buf[100];

645 646
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
647
	va_end(args);
648
	slab_bug(s, "%s", buf);
649
	print_page_info(page);
C
Christoph Lameter 已提交
650 651 652
	dump_stack();
}

653
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
654 655 656 657
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
658 659
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
660 661 662
	}

	if (s->flags & SLAB_RED_ZONE)
663
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
664 665
}

666 667 668 669 670 671 672 673 674
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
675
			u8 *start, unsigned int value, unsigned int bytes)
676 677 678 679
{
	u8 *fault;
	u8 *end;

680
	fault = memchr_inv(start, value, bytes);
681 682 683 684 685 686 687 688
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
689
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 691 692 693 694
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
708
 * object + s->object_size
C
Christoph Lameter 已提交
709
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
710
 * 	Padding is extended by another word if Redzoning is enabled and
711
 * 	object_size == inuse.
C
Christoph Lameter 已提交
712
 *
C
Christoph Lameter 已提交
713 714 715 716
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
717 718
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
719 720
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
721
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
722
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
723 724 725
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
726 727
 *
 * object + s->size
C
Christoph Lameter 已提交
728
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
729
 *
730
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
731
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

750 751
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
752 753
}

754
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
755 756
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
757 758 759 760 761
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
762 763 764 765

	if (!(s->flags & SLAB_POISON))
		return 1;

766
	start = page_address(page);
767
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 769
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
770 771 772
	if (!remainder)
		return 1;

773
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 775 776 777 778 779
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780
	print_section("Padding ", end - remainder, remainder);
781

E
Eric Dumazet 已提交
782
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783
	return 0;
C
Christoph Lameter 已提交
784 785 786
}

static int check_object(struct kmem_cache *s, struct page *page,
787
					void *object, u8 val)
C
Christoph Lameter 已提交
788 789
{
	u8 *p = object;
790
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
791 792

	if (s->flags & SLAB_RED_ZONE) {
793
		if (!check_bytes_and_report(s, page, object, "Redzone",
794
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
795 796
			return 0;
	} else {
797
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
798
			check_bytes_and_report(s, page, p, "Alignment padding",
799 800
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
801
		}
C
Christoph Lameter 已提交
802 803 804
	}

	if (s->flags & SLAB_POISON) {
805
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806
			(!check_bytes_and_report(s, page, p, "Poison", p,
807
					POISON_FREE, s->object_size - 1) ||
808
			 !check_bytes_and_report(s, page, p, "Poison",
809
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
810 811 812 813 814 815 816
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

817
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
818 819 820 821 822 823 824 825 826 827
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
828
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
829
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
830
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
831
		 */
832
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
833 834 835 836 837 838 839
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
840 841
	int maxobj;

C
Christoph Lameter 已提交
842 843 844
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
845
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
846 847
		return 0;
	}
848

849
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
852
			page->objects, maxobj);
853 854 855
		return 0;
	}
	if (page->inuse > page->objects) {
856
		slab_err(s, page, "inuse %u > max %u",
857
			page->inuse, page->objects);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864 865
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
866 867
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
868 869 870 871
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
872
	void *fp;
C
Christoph Lameter 已提交
873
	void *object = NULL;
874
	int max_objects;
C
Christoph Lameter 已提交
875

876
	fp = page->freelist;
877
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
878 879 880 881 882 883
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
884
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
885
			} else {
886
				slab_err(s, page, "Freepointer corrupt");
887
				page->freelist = NULL;
888
				page->inuse = page->objects;
889
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897 898
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

899
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
902 903 904 905 906 907 908

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
909
	if (page->inuse != page->objects - nr) {
910
		slab_err(s, page, "Wrong object count. Counter is %d but "
911 912
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
913
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
914 915 916 917
	}
	return search == NULL;
}

918 919
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
920 921
{
	if (s->flags & SLAB_TRACE) {
922
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
923 924 925 926 927 928
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
929 930
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
931 932 933 934 935

		dump_stack();
	}
}

936
/*
C
Christoph Lameter 已提交
937
 * Tracking of fully allocated slabs for debugging purposes.
938
 */
939 940
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
941
{
942 943 944
	if (!(s->flags & SLAB_STORE_USER))
		return;

945
	lockdep_assert_held(&n->list_lock);
946 947 948
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
949
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 951 952 953
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

954
	lockdep_assert_held(&n->list_lock);
955 956 957
	list_del(&page->lru);
}

958 959 960 961 962 963 964 965
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

966 967 968 969 970
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

971
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 973 974 975 976 977 978 979 980
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
981
	if (likely(n)) {
982
		atomic_long_inc(&n->nr_slabs);
983 984
		atomic_long_add(objects, &n->total_objects);
	}
985
}
986
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 988 989 990
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
991
	atomic_long_sub(objects, &n->total_objects);
992 993 994
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
995 996 997 998 999 1000
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1001
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1002 1003 1004
	init_tracking(s, object);
}

1005 1006
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1007
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012 1013
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1014
		goto bad;
C
Christoph Lameter 已提交
1015 1016
	}

1017
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1018 1019
		goto bad;

C
Christoph Lameter 已提交
1020 1021 1022 1023
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1024
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1025
	return 1;
C
Christoph Lameter 已提交
1026

C
Christoph Lameter 已提交
1027 1028 1029 1030 1031
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1032
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1033
		 */
1034
		slab_fix(s, "Marking all objects used");
1035
		page->inuse = page->objects;
1036
		page->freelist = NULL;
C
Christoph Lameter 已提交
1037 1038 1039 1040
	}
	return 0;
}

1041 1042 1043
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1044
{
1045
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046

1047
	spin_lock_irqsave(&n->list_lock, *flags);
1048 1049
	slab_lock(page);

C
Christoph Lameter 已提交
1050 1051 1052 1053
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1054
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1055 1056 1057 1058
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1059
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1060 1061 1062
		goto fail;
	}

1063
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064
		goto out;
C
Christoph Lameter 已提交
1065

1066
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1067
		if (!PageSlab(page)) {
1068 1069
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1070
		} else if (!page->slab_cache) {
1071 1072
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1073
			dump_stack();
P
Pekka Enberg 已提交
1074
		} else
1075 1076
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1077 1078
		goto fail;
	}
C
Christoph Lameter 已提交
1079 1080 1081 1082

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1083
	init_object(s, object, SLUB_RED_INACTIVE);
1084
out:
1085
	slab_unlock(page);
1086 1087 1088 1089 1090
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092
fail:
1093 1094
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1095
	slab_fix(s, "Object at 0x%p not freed", object);
1096
	return NULL;
C
Christoph Lameter 已提交
1097 1098
}

C
Christoph Lameter 已提交
1099 1100
static int __init setup_slub_debug(char *str)
{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1134
	for (; *str && *str != ','; str++) {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1151 1152 1153
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1154
		default:
1155 1156
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1157
		}
C
Christoph Lameter 已提交
1158 1159
	}

1160
check_slabs:
C
Christoph Lameter 已提交
1161 1162
	if (*str == ',')
		slub_debug_slabs = str + 1;
1163
out:
C
Christoph Lameter 已提交
1164 1165 1166 1167 1168
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1169
unsigned long kmem_cache_flags(unsigned long object_size,
1170
	unsigned long flags, const char *name,
1171
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1172 1173
{
	/*
1174
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1175
	 */
1176 1177
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178
		flags |= slub_debug;
1179 1180

	return flags;
C
Christoph Lameter 已提交
1181 1182
}
#else
C
Christoph Lameter 已提交
1183 1184
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1185

C
Christoph Lameter 已提交
1186
static inline int alloc_debug_processing(struct kmem_cache *s,
1187
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1188

1189 1190 1191
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1192 1193 1194 1195

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1196
			void *object, u8 val) { return 1; }
1197 1198
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1199 1200
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1201
unsigned long kmem_cache_flags(unsigned long object_size,
1202
	unsigned long flags, const char *name,
1203
	void (*ctor)(void *))
1204 1205 1206
{
	return flags;
}
C
Christoph Lameter 已提交
1207
#define slub_debug 0
1208

1209 1210
#define disable_higher_order_debug 0

1211 1212
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1213 1214
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1215 1216 1217 1218
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1219

1220 1221 1222 1223 1224 1225
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1236 1237
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1238 1239 1240 1241
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1242

1243 1244 1245 1246
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1247 1248 1249 1250
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1251
{
1252 1253 1254
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1255
	memcg_kmem_put_cache(s);
1256
}
1257

1258 1259 1260
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1280

C
Christoph Lameter 已提交
1281 1282 1283
/*
 * Slab allocation and freeing
 */
1284 1285
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1286
{
1287
	struct page *page;
1288 1289
	int order = oo_order(oo);

1290 1291
	flags |= __GFP_NOTRACK;

1292 1293 1294
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1295
	if (node == NUMA_NO_NODE)
1296
		page = alloc_pages(flags, order);
1297
	else
1298 1299 1300 1301 1302 1303
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1304 1305
}

C
Christoph Lameter 已提交
1306 1307
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1308
	struct page *page;
1309
	struct kmem_cache_order_objects oo = s->oo;
1310
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1311

1312 1313 1314 1315 1316
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1317
	flags |= s->allocflags;
1318

1319 1320 1321 1322 1323 1324
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1325
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1326 1327
	if (unlikely(!page)) {
		oo = s->min;
1328
		alloc_gfp = flags;
1329 1330 1331 1332
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1333
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1334

1335 1336
		if (page)
			stat(s, ORDER_FALLBACK);
1337
	}
V
Vegard Nossum 已提交
1338

1339
	if (kmemcheck_enabled && page
1340
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1341 1342
		int pages = 1 << oo_order(oo);

1343
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1344 1345 1346 1347 1348 1349 1350 1351 1352

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1353 1354
	}

1355 1356 1357 1358 1359
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1360
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1361 1362 1363
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1364
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1365 1366 1367 1368 1369 1370 1371

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1372
	setup_object_debug(s, page, object);
1373
	if (unlikely(s->ctor))
1374
		s->ctor(object);
C
Christoph Lameter 已提交
1375 1376 1377 1378 1379 1380 1381
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1382
	int order;
1383
	int idx;
C
Christoph Lameter 已提交
1384

1385 1386 1387 1388
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
1389

C
Christoph Lameter 已提交
1390 1391
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1392 1393 1394
	if (!page)
		goto out;

G
Glauber Costa 已提交
1395
	order = compound_order(page);
1396
	inc_slabs_node(s, page_to_nid(page), page->objects);
1397
	page->slab_cache = s;
1398
	__SetPageSlab(page);
1399 1400
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1401 1402 1403 1404

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1405
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1406

1407 1408 1409 1410 1411 1412
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1413 1414 1415
	}

	page->freelist = start;
1416
	page->inuse = page->objects;
1417
	page->frozen = 1;
C
Christoph Lameter 已提交
1418 1419 1420 1421 1422 1423
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1424 1425
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1426

1427
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1428 1429 1430
		void *p;

		slab_pad_check(s, page);
1431 1432
		for_each_object(p, s, page_address(page),
						page->objects)
1433
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1434 1435
	}

1436
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1437

C
Christoph Lameter 已提交
1438 1439 1440
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1441
		-pages);
C
Christoph Lameter 已提交
1442

1443
	__ClearPageSlabPfmemalloc(page);
1444
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1445

1446
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1447 1448
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1449 1450
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1451 1452
}

1453 1454 1455
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1456 1457 1458 1459
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1460 1461 1462 1463 1464
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1465
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1466 1467 1468 1469 1470
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1485 1486 1487 1488 1489 1490 1491 1492

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1493
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1494 1495 1496 1497
	free_slab(s, page);
}

/*
1498
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1499
 */
1500 1501
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1502
{
C
Christoph Lameter 已提交
1503
	n->nr_partial++;
1504
	if (tail == DEACTIVATE_TO_TAIL)
1505 1506 1507
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1508 1509
}

1510 1511
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1512
{
P
Peter Zijlstra 已提交
1513
	lockdep_assert_held(&n->list_lock);
1514 1515
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1516

1517 1518 1519
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1520 1521 1522 1523
	list_del(&page->lru);
	n->nr_partial--;
}

1524 1525 1526 1527 1528 1529 1530
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1531
/*
1532 1533
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1534
 *
1535
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1536
 */
1537
static inline void *acquire_slab(struct kmem_cache *s,
1538
		struct kmem_cache_node *n, struct page *page,
1539
		int mode, int *objects)
C
Christoph Lameter 已提交
1540
{
1541 1542 1543 1544
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1545 1546
	lockdep_assert_held(&n->list_lock);

1547 1548 1549 1550 1551
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1552 1553 1554
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1555
	*objects = new.objects - new.inuse;
1556
	if (mode) {
1557
		new.inuse = page->objects;
1558 1559 1560 1561
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1562

1563
	VM_BUG_ON(new.frozen);
1564
	new.frozen = 1;
1565

1566
	if (!__cmpxchg_double_slab(s, page,
1567
			freelist, counters,
1568
			new.freelist, new.counters,
1569 1570
			"acquire_slab"))
		return NULL;
1571 1572

	remove_partial(n, page);
1573
	WARN_ON(!freelist);
1574
	return freelist;
C
Christoph Lameter 已提交
1575 1576
}

1577
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1578
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1579

C
Christoph Lameter 已提交
1580
/*
C
Christoph Lameter 已提交
1581
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1582
 */
1583 1584
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1585
{
1586 1587
	struct page *page, *page2;
	void *object = NULL;
1588 1589
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1590 1591 1592 1593

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1594 1595
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1596 1597 1598 1599 1600
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1601
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1602
		void *t;
1603

1604 1605 1606
		if (!pfmemalloc_match(page, flags))
			continue;

1607
		t = acquire_slab(s, n, page, object == NULL, &objects);
1608 1609 1610
		if (!t)
			break;

1611
		available += objects;
1612
		if (!object) {
1613 1614 1615 1616
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1617
			put_cpu_partial(s, page, 0);
1618
			stat(s, CPU_PARTIAL_NODE);
1619
		}
1620 1621
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1622 1623
			break;

1624
	}
C
Christoph Lameter 已提交
1625
	spin_unlock(&n->list_lock);
1626
	return object;
C
Christoph Lameter 已提交
1627 1628 1629
}

/*
C
Christoph Lameter 已提交
1630
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1631
 */
1632
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1633
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1634 1635 1636
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1637
	struct zoneref *z;
1638 1639
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1640
	void *object;
1641
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1642 1643

	/*
C
Christoph Lameter 已提交
1644 1645 1646 1647
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1648
	 *
C
Christoph Lameter 已提交
1649 1650 1651 1652
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1653
	 *
C
Christoph Lameter 已提交
1654
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1655 1656 1657 1658 1659
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1660
	 */
1661 1662
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1663 1664
		return NULL;

1665
	do {
1666
		cpuset_mems_cookie = read_mems_allowed_begin();
1667
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1668 1669 1670 1671 1672
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1673
			if (n && cpuset_zone_allowed(zone, flags) &&
1674
					n->nr_partial > s->min_partial) {
1675
				object = get_partial_node(s, n, c, flags);
1676 1677
				if (object) {
					/*
1678 1679 1680 1681 1682
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1683 1684 1685
					 */
					return object;
				}
1686
			}
C
Christoph Lameter 已提交
1687
		}
1688
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1689 1690 1691 1692 1693 1694 1695
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1696
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1698
{
1699
	void *object;
1700 1701 1702 1703 1704 1705
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1706

1707
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1708 1709
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1710

1711
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1712 1713
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1755
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1756 1757 1758

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1759
		pr_warn("due to cpu change %d -> %d\n",
1760 1761 1762 1763
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1764
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1765 1766
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1767
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1768 1769
			actual_tid, tid, next_tid(tid));
#endif
1770
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1771 1772
}

1773
static void init_kmem_cache_cpus(struct kmem_cache *s)
1774 1775 1776 1777 1778 1779
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1780

C
Christoph Lameter 已提交
1781 1782 1783
/*
 * Remove the cpu slab
 */
1784 1785
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1786
{
1787 1788 1789 1790 1791
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1792
	int tail = DEACTIVATE_TO_HEAD;
1793 1794 1795 1796
	struct page new;
	struct page old;

	if (page->freelist) {
1797
		stat(s, DEACTIVATE_REMOTE_FREES);
1798
		tail = DEACTIVATE_TO_TAIL;
1799 1800
	}

1801
	/*
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1819
			VM_BUG_ON(!new.frozen);
1820

1821
		} while (!__cmpxchg_double_slab(s, page,
1822 1823 1824 1825 1826 1827 1828
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1829
	/*
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1842
	 */
1843
redo:
1844

1845 1846
	old.freelist = page->freelist;
	old.counters = page->counters;
1847
	VM_BUG_ON(!old.frozen);
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1860
	if (!new.inuse && n->nr_partial >= s->min_partial)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1893

P
Peter Zijlstra 已提交
1894
			remove_full(s, n, page);
1895 1896 1897 1898

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1899
			stat(s, tail);
1900 1901

		} else if (m == M_FULL) {
1902

1903 1904 1905 1906 1907 1908 1909
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1910
	if (!__cmpxchg_double_slab(s, page,
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1923
	}
C
Christoph Lameter 已提交
1924 1925
}

1926 1927 1928
/*
 * Unfreeze all the cpu partial slabs.
 *
1929 1930 1931
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1932
 */
1933 1934
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1935
{
1936
#ifdef CONFIG_SLUB_CPU_PARTIAL
1937
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1938
	struct page *page, *discard_page = NULL;
1939 1940 1941 1942 1943 1944

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1945 1946 1947 1948 1949 1950 1951 1952 1953

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1954 1955 1956 1957 1958

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1959
			VM_BUG_ON(!old.frozen);
1960 1961 1962 1963 1964 1965

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1966
		} while (!__cmpxchg_double_slab(s, page,
1967 1968 1969 1970
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1971
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1972 1973
			page->next = discard_page;
			discard_page = page;
1974 1975 1976
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1977 1978 1979 1980 1981
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1982 1983 1984 1985 1986 1987 1988 1989 1990

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1991
#endif
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2003
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2004
{
2005
#ifdef CONFIG_SLUB_CPU_PARTIAL
2006 2007 2008 2009
	struct page *oldpage;
	int pages;
	int pobjects;

2010
	preempt_disable();
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2026
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2027
				local_irq_restore(flags);
2028
				oldpage = NULL;
2029 2030
				pobjects = 0;
				pages = 0;
2031
				stat(s, CPU_PARTIAL_DRAIN);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2042 2043
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2044 2045 2046 2047 2048 2049 2050 2051
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2052
#endif
2053 2054
}

2055
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2056
{
2057
	stat(s, CPUSLAB_FLUSH);
2058 2059 2060 2061 2062
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2063 2064 2065 2066
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2067
 *
C
Christoph Lameter 已提交
2068 2069
 * Called from IPI handler with interrupts disabled.
 */
2070
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2071
{
2072
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2073

2074 2075 2076 2077
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2078
		unfreeze_partials(s, c);
2079
	}
C
Christoph Lameter 已提交
2080 2081 2082 2083 2084 2085
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2086
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2087 2088
}

2089 2090 2091 2092 2093
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2094
	return c->page || c->partial;
2095 2096
}

C
Christoph Lameter 已提交
2097 2098
static void flush_all(struct kmem_cache *s)
{
2099
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2100 2101
}

2102 2103 2104 2105
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2106
static inline int node_match(struct page *page, int node)
2107 2108
{
#ifdef CONFIG_NUMA
2109
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2110 2111 2112 2113 2114
		return 0;
#endif
	return 1;
}

2115
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2116 2117 2118 2119 2120
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2121 2122 2123 2124 2125 2126 2127
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2141
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2142

P
Pekka Enberg 已提交
2143 2144 2145
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2146 2147 2148
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2149
	int node;
C
Christoph Lameter 已提交
2150
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2151

2152 2153 2154
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2155
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2156
		nid, gfpflags);
2157 2158 2159
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2160

2161
	if (oo_order(s->min) > get_order(s->object_size))
2162 2163
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2164

C
Christoph Lameter 已提交
2165
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2166 2167 2168 2169
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2170 2171 2172
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2173

2174
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2175 2176
			node, nr_slabs, nr_objs, nr_free);
	}
2177
#endif
P
Pekka Enberg 已提交
2178 2179
}

2180 2181 2182
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2183
	void *freelist;
2184 2185
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2186

2187
	freelist = get_partial(s, flags, node, c);
2188

2189 2190 2191 2192
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2193
	if (page) {
2194
		c = raw_cpu_ptr(s->cpu_slab);
2195 2196 2197 2198 2199 2200 2201
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2202
		freelist = page->freelist;
2203 2204 2205 2206 2207 2208
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2209
		freelist = NULL;
2210

2211
	return freelist;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2222
/*
2223 2224
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2225 2226 2227 2228
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2229 2230
 *
 * This function must be called with interrupt disabled.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2241

2242
		new.counters = counters;
2243
		VM_BUG_ON(!new.frozen);
2244 2245 2246 2247

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2248
	} while (!__cmpxchg_double_slab(s, page,
2249 2250 2251 2252 2253 2254 2255
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2256
/*
2257 2258 2259 2260 2261 2262
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2263
 *
2264 2265 2266
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2267
 *
2268
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2269 2270
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2271
 */
2272 2273
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2274
{
2275
	void *freelist;
2276
	struct page *page;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2288

2289 2290
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2291
		goto new_slab;
2292
redo:
2293

2294
	if (unlikely(!node_match(page, node))) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2307
	}
C
Christoph Lameter 已提交
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2321
	/* must check again c->freelist in case of cpu migration or IRQ */
2322 2323
	freelist = c->freelist;
	if (freelist)
2324
		goto load_freelist;
2325

2326
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2327

2328
	if (!freelist) {
2329 2330
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2331
		goto new_slab;
2332
	}
C
Christoph Lameter 已提交
2333

2334
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2335

2336
load_freelist:
2337 2338 2339 2340 2341
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2342
	VM_BUG_ON(!c->page->frozen);
2343
	c->freelist = get_freepointer(s, freelist);
2344 2345
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2346
	return freelist;
C
Christoph Lameter 已提交
2347 2348

new_slab:
2349

2350
	if (c->partial) {
2351 2352
		page = c->page = c->partial;
		c->partial = page->next;
2353 2354 2355
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2356 2357
	}

2358
	freelist = new_slab_objects(s, gfpflags, node, &c);
2359

2360
	if (unlikely(!freelist)) {
2361
		slab_out_of_memory(s, gfpflags, node);
2362 2363
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2364
	}
2365

2366
	page = c->page;
2367
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2368
		goto load_freelist;
2369

2370
	/* Only entered in the debug case */
2371 2372
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2373
		goto new_slab;	/* Slab failed checks. Next slab needed */
2374

2375
	deactivate_slab(s, page, get_freepointer(s, freelist));
2376 2377
	c->page = NULL;
	c->freelist = NULL;
2378
	local_irq_restore(flags);
2379
	return freelist;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2392
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2393
		gfp_t gfpflags, int node, unsigned long addr)
2394 2395
{
	void **object;
2396
	struct kmem_cache_cpu *c;
2397
	struct page *page;
2398
	unsigned long tid;
2399

2400 2401
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2402
		return NULL;
2403 2404 2405 2406 2407 2408
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2409
	 *
2410 2411 2412
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2413
	 */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2428 2429 2430 2431 2432 2433 2434 2435

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2436
	object = c->freelist;
2437
	page = c->page;
D
Dave Hansen 已提交
2438
	if (unlikely(!object || !node_match(page, node))) {
2439
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2440 2441
		stat(s, ALLOC_SLOWPATH);
	} else {
2442 2443
		void *next_object = get_freepointer_safe(s, object);

2444
		/*
L
Lucas De Marchi 已提交
2445
		 * The cmpxchg will only match if there was no additional
2446 2447
		 * operation and if we are on the right processor.
		 *
2448 2449
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2450 2451 2452 2453
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2454 2455 2456
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2457
		 */
2458
		if (unlikely(!this_cpu_cmpxchg_double(
2459 2460
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2461
				next_object, next_tid(tid)))) {
2462 2463 2464 2465

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2466
		prefetch_freepointer(s, next_object);
2467
		stat(s, ALLOC_FASTPATH);
2468
	}
2469

2470
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2471
		memset(object, 0, s->object_size);
2472

2473
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2474

2475
	return object;
C
Christoph Lameter 已提交
2476 2477
}

2478 2479 2480 2481 2482 2483
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2484 2485
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2486
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2487

2488 2489
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2490 2491

	return ret;
C
Christoph Lameter 已提交
2492 2493 2494
}
EXPORT_SYMBOL(kmem_cache_alloc);

2495
#ifdef CONFIG_TRACING
2496 2497
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2498
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2499 2500 2501 2502
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2503 2504
#endif

C
Christoph Lameter 已提交
2505 2506 2507
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2508
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2509

2510
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2511
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2512 2513

	return ret;
C
Christoph Lameter 已提交
2514 2515 2516
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2517
#ifdef CONFIG_TRACING
2518
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2519
				    gfp_t gfpflags,
2520
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2521
{
2522
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2523 2524 2525 2526

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2527
}
2528
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2529
#endif
2530
#endif
E
Eduard - Gabriel Munteanu 已提交
2531

C
Christoph Lameter 已提交
2532
/*
K
Kim Phillips 已提交
2533
 * Slow path handling. This may still be called frequently since objects
2534
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2535
 *
2536 2537 2538
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2539
 */
2540
static void __slab_free(struct kmem_cache *s, struct page *page,
2541
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2542 2543 2544
{
	void *prior;
	void **object = (void *)x;
2545 2546 2547 2548
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2549
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2550

2551
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2552

2553 2554
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2555
		return;
C
Christoph Lameter 已提交
2556

2557
	do {
2558 2559 2560 2561
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2562 2563 2564 2565 2566 2567
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2568
		if ((!new.inuse || !prior) && !was_frozen) {
2569

P
Peter Zijlstra 已提交
2570
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2571 2572

				/*
2573 2574 2575 2576
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2577 2578 2579
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2580
			} else { /* Needs to be taken off a list */
2581

2582
				n = get_node(s, page_to_nid(page));
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2594
		}
C
Christoph Lameter 已提交
2595

2596 2597 2598 2599
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2600

2601
	if (likely(!n)) {
2602 2603 2604 2605 2606

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2607
		if (new.frozen && !was_frozen) {
2608
			put_cpu_partial(s, page, 1);
2609 2610
			stat(s, CPU_PARTIAL_FREE);
		}
2611
		/*
2612 2613 2614
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2615 2616 2617 2618
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2619

2620
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2621 2622
		goto slab_empty;

C
Christoph Lameter 已提交
2623
	/*
2624 2625
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2626
	 */
2627 2628
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2629
			remove_full(s, n, page);
2630 2631
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2632
	}
2633
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2634 2635 2636
	return;

slab_empty:
2637
	if (prior) {
C
Christoph Lameter 已提交
2638
		/*
2639
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2640
		 */
2641
		remove_partial(n, page);
2642
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2643
	} else {
2644
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2645 2646
		remove_full(s, n, page);
	}
2647

2648
	spin_unlock_irqrestore(&n->list_lock, flags);
2649
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2650 2651 2652
	discard_slab(s, page);
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2664
static __always_inline void slab_free(struct kmem_cache *s,
2665
			struct page *page, void *x, unsigned long addr)
2666 2667
{
	void **object = (void *)x;
2668
	struct kmem_cache_cpu *c;
2669
	unsigned long tid;
2670

2671 2672
	slab_free_hook(s, x);

2673 2674 2675 2676 2677 2678 2679
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2680 2681 2682 2683
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2684

2685 2686
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2687

2688
	if (likely(page == c->page)) {
2689
		set_freepointer(s, object, c->freelist);
2690

2691
		if (unlikely(!this_cpu_cmpxchg_double(
2692 2693 2694 2695 2696 2697 2698
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2699
		stat(s, FREE_FASTPATH);
2700
	} else
2701
		__slab_free(s, page, x, addr);
2702 2703 2704

}

C
Christoph Lameter 已提交
2705 2706
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2707 2708
	s = cache_from_obj(s, x);
	if (!s)
2709
		return;
2710
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2711
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2712 2713 2714 2715
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2716 2717 2718 2719
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2720 2721 2722 2723
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2724
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2735
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2736
static int slub_min_objects;
C
Christoph Lameter 已提交
2737 2738 2739 2740

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2741 2742 2743 2744
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2745
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2746 2747 2748 2749 2750 2751
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2752
 *
C
Christoph Lameter 已提交
2753 2754 2755 2756
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2757
 *
C
Christoph Lameter 已提交
2758 2759 2760 2761
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2762
 */
2763
static inline int slab_order(int size, int min_objects,
2764
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2765 2766 2767
{
	int order;
	int rem;
2768
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2769

2770
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772

2773
	for (order = max(min_order,
2774 2775
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2776

2777
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2778

2779
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2780 2781
			continue;

2782
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2783

2784
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2785 2786 2787
			break;

	}
C
Christoph Lameter 已提交
2788

C
Christoph Lameter 已提交
2789 2790 2791
	return order;
}

2792
static inline int calculate_order(int size, int reserved)
2793 2794 2795 2796
{
	int order;
	int min_objects;
	int fraction;
2797
	int max_objects;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2808 2809
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810
	max_objects = order_objects(slub_max_order, size, reserved);
2811 2812
	min_objects = min(min_objects, max_objects);

2813
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2814
		fraction = 16;
2815 2816
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2817
					slub_max_order, fraction, reserved);
2818 2819 2820 2821
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2822
		min_objects--;
2823 2824 2825 2826 2827 2828
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2829
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 2831 2832 2833 2834 2835
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2836
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2837
	if (order < MAX_ORDER)
2838 2839 2840 2841
		return order;
	return -ENOSYS;
}

2842
static void
2843
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2844 2845 2846 2847
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2848
#ifdef CONFIG_SLUB_DEBUG
2849
	atomic_long_set(&n->nr_slabs, 0);
2850
	atomic_long_set(&n->total_objects, 0);
2851
	INIT_LIST_HEAD(&n->full);
2852
#endif
C
Christoph Lameter 已提交
2853 2854
}

2855
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856
{
2857
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859

2860
	/*
2861 2862
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2863
	 */
2864 2865
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2866 2867 2868 2869 2870

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2871

2872
	return 1;
2873 2874
}

2875 2876
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2877 2878 2879 2880 2881
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2882 2883
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2885
 */
2886
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2887 2888 2889 2890
{
	struct page *page;
	struct kmem_cache_node *n;

2891
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2892

2893
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2894 2895

	BUG_ON(!page);
2896
	if (page_to_nid(page) != node) {
2897 2898
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2899 2900
	}

C
Christoph Lameter 已提交
2901 2902
	n = page->freelist;
	BUG_ON(!n);
2903
	page->freelist = get_freepointer(kmem_cache_node, n);
2904
	page->inuse = 1;
2905
	page->frozen = 0;
2906
	kmem_cache_node->node[node] = n;
2907
#ifdef CONFIG_SLUB_DEBUG
2908
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2909
	init_tracking(kmem_cache_node, n);
2910
#endif
2911
	init_kmem_cache_node(n);
2912
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2913

2914
	/*
2915 2916
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2917
	 */
2918
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2919 2920 2921 2922 2923
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2924
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2925

C
Christoph Lameter 已提交
2926 2927
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2928 2929 2930 2931
		s->node[node] = NULL;
	}
}

2932
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2933 2934 2935
{
	int node;

C
Christoph Lameter 已提交
2936
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2937 2938
		struct kmem_cache_node *n;

2939
		if (slab_state == DOWN) {
2940
			early_kmem_cache_node_alloc(node);
2941 2942
			continue;
		}
2943
		n = kmem_cache_alloc_node(kmem_cache_node,
2944
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2945

2946 2947 2948
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2949
		}
2950

C
Christoph Lameter 已提交
2951
		s->node[node] = n;
2952
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2953 2954 2955 2956
	}
	return 1;
}

2957
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2958 2959 2960 2961 2962 2963 2964 2965
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2966 2967 2968 2969
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2970
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2971 2972
{
	unsigned long flags = s->flags;
2973
	unsigned long size = s->object_size;
2974
	int order;
C
Christoph Lameter 已提交
2975

2976 2977 2978 2979 2980 2981 2982 2983
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2984 2985 2986 2987 2988 2989
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2990
			!s->ctor)
C
Christoph Lameter 已提交
2991 2992 2993 2994 2995 2996
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2997
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2998
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2999
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3000
	 */
3001
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3002
		size += sizeof(void *);
C
Christoph Lameter 已提交
3003
#endif
C
Christoph Lameter 已提交
3004 3005

	/*
C
Christoph Lameter 已提交
3006 3007
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3008 3009 3010 3011
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3012
		s->ctor)) {
C
Christoph Lameter 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3025
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3026 3027 3028 3029 3030 3031 3032
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3033
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3034 3035 3036 3037
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3038
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3039 3040 3041
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3042
#endif
C
Christoph Lameter 已提交
3043

C
Christoph Lameter 已提交
3044 3045 3046 3047 3048
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3049
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3050
	s->size = size;
3051 3052 3053
	if (forced_order >= 0)
		order = forced_order;
	else
3054
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3055

3056
	if (order < 0)
C
Christoph Lameter 已提交
3057 3058
		return 0;

3059
	s->allocflags = 0;
3060
	if (order)
3061 3062 3063
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3064
		s->allocflags |= GFP_DMA;
3065 3066 3067 3068

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3069 3070 3071
	/*
	 * Determine the number of objects per slab
	 */
3072 3073
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3074 3075
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3076

3077
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3078 3079
}

3080
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3081
{
3082
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3083
	s->reserved = 0;
C
Christoph Lameter 已提交
3084

3085 3086
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3087

3088
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3089
		goto error;
3090 3091 3092 3093 3094
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3095
		if (get_order(s->size) > get_order(s->object_size)) {
3096 3097 3098 3099 3100 3101
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3102

3103 3104
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3105 3106 3107 3108 3109
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3110 3111 3112 3113
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3129
	 * B) The number of objects in cpu partial slabs to extract from the
3130 3131
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3132
	 */
3133
	if (!kmem_cache_has_cpu_partial(s))
3134 3135
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3136 3137 3138 3139 3140 3141 3142 3143
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3144
#ifdef CONFIG_NUMA
3145
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3146
#endif
3147
	if (!init_kmem_cache_nodes(s))
3148
		goto error;
C
Christoph Lameter 已提交
3149

3150
	if (alloc_kmem_cache_cpus(s))
3151
		return 0;
3152

3153
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3154 3155 3156 3157
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3158 3159
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3160
	return -EINVAL;
C
Christoph Lameter 已提交
3161 3162
}

3163 3164 3165 3166 3167 3168
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3169 3170
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3171 3172
	if (!map)
		return;
3173
	slab_err(s, page, text, s->name);
3174 3175
	slab_lock(page);

3176
	get_map(s, page, map);
3177 3178 3179
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3180
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3181 3182 3183 3184
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3185
	kfree(map);
3186 3187 3188
#endif
}

C
Christoph Lameter 已提交
3189
/*
C
Christoph Lameter 已提交
3190
 * Attempt to free all partial slabs on a node.
3191 3192
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3193
 */
C
Christoph Lameter 已提交
3194
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3195 3196 3197
{
	struct page *page, *h;

3198
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3199
		if (!page->inuse) {
3200
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3201
			discard_slab(s, page);
3202 3203
		} else {
			list_slab_objects(s, page,
3204
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3205
		}
3206
	}
C
Christoph Lameter 已提交
3207 3208 3209
}

/*
C
Christoph Lameter 已提交
3210
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3211
 */
3212
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3213 3214
{
	int node;
C
Christoph Lameter 已提交
3215
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3216 3217 3218

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3219
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3220 3221
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3222 3223
			return 1;
	}
3224
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3225 3226 3227 3228
	free_kmem_cache_nodes(s);
	return 0;
}

3229
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3230
{
3231
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3232 3233 3234 3235 3236 3237 3238 3239
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3240
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3241 3242 3243 3244 3245 3246 3247 3248

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3249
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3250
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3251 3252 3253 3254 3255 3256 3257 3258

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3259
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3260 3261 3262 3263 3264 3265 3266 3267

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3268
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3269
	void *ret;
C
Christoph Lameter 已提交
3270

3271
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3272
		return kmalloc_large(size, flags);
3273

3274
	s = kmalloc_slab(size, flags);
3275 3276

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3277 3278
		return s;

3279
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3280

3281
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3282 3283

	return ret;
C
Christoph Lameter 已提交
3284 3285 3286
}
EXPORT_SYMBOL(__kmalloc);

3287
#ifdef CONFIG_NUMA
3288 3289
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3290
	struct page *page;
3291
	void *ptr = NULL;
3292

V
Vladimir Davydov 已提交
3293 3294
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3295
	if (page)
3296 3297
		ptr = page_address(page);

3298
	kmalloc_large_node_hook(ptr, size, flags);
3299
	return ptr;
3300 3301
}

C
Christoph Lameter 已提交
3302 3303
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3304
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3305
	void *ret;
C
Christoph Lameter 已提交
3306

3307
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3308 3309
		ret = kmalloc_large_node(size, flags, node);

3310 3311 3312
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3313 3314 3315

		return ret;
	}
3316

3317
	s = kmalloc_slab(size, flags);
3318 3319

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3320 3321
		return s;

3322
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3323

3324
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3325 3326

	return ret;
C
Christoph Lameter 已提交
3327 3328 3329 3330 3331 3332
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3333
	struct page *page;
C
Christoph Lameter 已提交
3334

3335
	if (unlikely(object == ZERO_SIZE_PTR))
3336 3337
		return 0;

3338 3339
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3340 3341
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3342
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3343
	}
C
Christoph Lameter 已提交
3344

3345
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3346
}
K
Kirill A. Shutemov 已提交
3347
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3348 3349 3350 3351

void kfree(const void *x)
{
	struct page *page;
3352
	void *object = (void *)x;
C
Christoph Lameter 已提交
3353

3354 3355
	trace_kfree(_RET_IP_, x);

3356
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3357 3358
		return;

3359
	page = virt_to_head_page(x);
3360
	if (unlikely(!PageSlab(page))) {
3361
		BUG_ON(!PageCompound(page));
3362
		kfree_hook(x);
V
Vladimir Davydov 已提交
3363
		__free_kmem_pages(page, compound_order(page));
3364 3365
		return;
	}
3366
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3367 3368 3369
}
EXPORT_SYMBOL(kfree);

3370 3371
#define SHRINK_PROMOTE_MAX 32

3372
/*
3373 3374 3375
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3376 3377 3378 3379
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3380
 */
3381
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3382 3383 3384 3385 3386 3387
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3388 3389
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3390
	unsigned long flags;
3391
	int ret = 0;
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3408
	flush_all(s);
C
Christoph Lameter 已提交
3409
	for_each_kmem_cache_node(s, node, n) {
3410 3411 3412
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3413 3414 3415 3416

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3417
		 * Build lists of slabs to discard or promote.
3418
		 *
C
Christoph Lameter 已提交
3419 3420
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3421 3422
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3433
				n->nr_partial--;
3434 3435
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3436 3437 3438
		}

		/*
3439 3440
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3441
		 */
3442 3443
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3444 3445

		spin_unlock_irqrestore(&n->list_lock, flags);
3446 3447

		/* Release empty slabs */
3448
		list_for_each_entry_safe(page, t, &discard, lru)
3449
			discard_slab(s, page);
3450 3451 3452

		if (slabs_node(s, node))
			ret = 1;
3453 3454
	}

3455
	return ret;
3456 3457
}

3458 3459 3460 3461
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3462
	mutex_lock(&slab_mutex);
3463
	list_for_each_entry(s, &slab_caches, list)
3464
		__kmem_cache_shrink(s, false);
3465
	mutex_unlock(&slab_mutex);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3477
	offline_node = marg->status_change_nid_normal;
3478 3479 3480 3481 3482 3483 3484 3485

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3486
	mutex_lock(&slab_mutex);
3487 3488 3489 3490 3491 3492
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3493
			 * and offline_pages() function shouldn't call this
3494 3495
			 * callback. So, we must fail.
			 */
3496
			BUG_ON(slabs_node(s, offline_node));
3497 3498

			s->node[offline_node] = NULL;
3499
			kmem_cache_free(kmem_cache_node, n);
3500 3501
		}
	}
3502
	mutex_unlock(&slab_mutex);
3503 3504 3505 3506 3507 3508 3509
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3510
	int nid = marg->status_change_nid_normal;
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3521
	 * We are bringing a node online. No memory is available yet. We must
3522 3523 3524
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3525
	mutex_lock(&slab_mutex);
3526 3527 3528 3529 3530 3531
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3532
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3533 3534 3535 3536
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3537
		init_kmem_cache_node(n);
3538 3539 3540
		s->node[nid] = n;
	}
out:
3541
	mutex_unlock(&slab_mutex);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3565 3566 3567 3568
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3569 3570 3571
	return ret;
}

3572 3573 3574 3575
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3576

C
Christoph Lameter 已提交
3577 3578 3579 3580
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3581 3582
/*
 * Used for early kmem_cache structures that were allocated using
3583 3584
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3585 3586
 */

3587
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3588 3589
{
	int node;
3590
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3591
	struct kmem_cache_node *n;
3592

3593
	memcpy(s, static_cache, kmem_cache->object_size);
3594

3595 3596 3597 3598 3599 3600
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3601
	for_each_kmem_cache_node(s, node, n) {
3602 3603
		struct page *p;

C
Christoph Lameter 已提交
3604 3605
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3606

L
Li Zefan 已提交
3607
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3608 3609
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3610 3611
#endif
	}
3612
	slab_init_memcg_params(s);
3613 3614
	list_add(&s->list, &slab_caches);
	return s;
3615 3616
}

C
Christoph Lameter 已提交
3617 3618
void __init kmem_cache_init(void)
{
3619 3620
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3621

3622 3623 3624
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3625 3626
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3627

3628 3629
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3630

3631
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3632 3633 3634 3635

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3636 3637 3638 3639
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3640

3641
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3642

3643 3644 3645 3646 3647
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3648
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3649 3650

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3651
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3652 3653 3654

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3655
#endif
C
Christoph Lameter 已提交
3656

3657
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3658
		cache_line_size(),
C
Christoph Lameter 已提交
3659 3660 3661 3662
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3663 3664 3665 3666
void __init kmem_cache_init_late(void)
{
}

3667
struct kmem_cache *
3668 3669
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3670
{
3671
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3672

3673
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3674 3675
	if (s) {
		s->refcount++;
3676

C
Christoph Lameter 已提交
3677 3678 3679 3680
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3681
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3682
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3683

3684
		for_each_memcg_cache(c, s) {
3685 3686 3687 3688 3689
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3690 3691
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3692
			s = NULL;
3693
		}
3694
	}
C
Christoph Lameter 已提交
3695

3696 3697
	return s;
}
P
Pekka Enberg 已提交
3698

3699
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3700
{
3701 3702 3703 3704 3705
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3706

3707 3708 3709 3710
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3711
	memcg_propagate_slab_attrs(s);
3712 3713 3714
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3715

3716
	return err;
C
Christoph Lameter 已提交
3717 3718 3719 3720
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3721 3722
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3723
 */
3724
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3725 3726 3727
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3728 3729
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3730 3731 3732

	switch (action) {
	case CPU_UP_CANCELED:
3733
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3734
	case CPU_DEAD:
3735
	case CPU_DEAD_FROZEN:
3736
		mutex_lock(&slab_mutex);
3737 3738 3739 3740 3741
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3742
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3743 3744 3745 3746 3747 3748 3749
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3750
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3751
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3752
};
C
Christoph Lameter 已提交
3753 3754 3755

#endif

3756
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3757
{
3758
	struct kmem_cache *s;
3759
	void *ret;
3760

3761
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3762 3763
		return kmalloc_large(size, gfpflags);

3764
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3765

3766
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3767
		return s;
C
Christoph Lameter 已提交
3768

3769
	ret = slab_alloc(s, gfpflags, caller);
3770

L
Lucas De Marchi 已提交
3771
	/* Honor the call site pointer we received. */
3772
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3773 3774

	return ret;
C
Christoph Lameter 已提交
3775 3776
}

3777
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3778
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3779
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3780
{
3781
	struct kmem_cache *s;
3782
	void *ret;
3783

3784
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3785 3786 3787 3788 3789 3790 3791 3792
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3793

3794
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3795

3796
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3797
		return s;
C
Christoph Lameter 已提交
3798

3799
	ret = slab_alloc_node(s, gfpflags, node, caller);
3800

L
Lucas De Marchi 已提交
3801
	/* Honor the call site pointer we received. */
3802
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3803 3804

	return ret;
C
Christoph Lameter 已提交
3805
}
3806
#endif
C
Christoph Lameter 已提交
3807

3808
#ifdef CONFIG_SYSFS
3809 3810 3811 3812 3813 3814 3815 3816 3817
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3818
#endif
3819

3820
#ifdef CONFIG_SLUB_DEBUG
3821 3822
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3823 3824
{
	void *p;
3825
	void *addr = page_address(page);
3826 3827 3828 3829 3830 3831

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3832
	bitmap_zero(map, page->objects);
3833

3834 3835 3836 3837 3838
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3839 3840
	}

3841
	for_each_object(p, s, addr, page->objects)
3842
		if (!test_bit(slab_index(p, s, addr), map))
3843
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3844 3845 3846 3847
				return 0;
	return 1;
}

3848 3849
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3850
{
3851 3852 3853
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3854 3855
}

3856 3857
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3858 3859 3860 3861 3862 3863 3864 3865
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3866
		validate_slab_slab(s, page, map);
3867 3868 3869
		count++;
	}
	if (count != n->nr_partial)
3870 3871
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3872 3873 3874 3875 3876

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3877
		validate_slab_slab(s, page, map);
3878 3879 3880
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3881 3882
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3883 3884 3885 3886 3887 3888

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3889
static long validate_slab_cache(struct kmem_cache *s)
3890 3891 3892
{
	int node;
	unsigned long count = 0;
3893
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3894
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3895
	struct kmem_cache_node *n;
3896 3897 3898

	if (!map)
		return -ENOMEM;
3899 3900

	flush_all(s);
C
Christoph Lameter 已提交
3901
	for_each_kmem_cache_node(s, node, n)
3902 3903
		count += validate_slab_node(s, n, map);
	kfree(map);
3904 3905
	return count;
}
3906
/*
C
Christoph Lameter 已提交
3907
 * Generate lists of code addresses where slabcache objects are allocated
3908 3909 3910 3911 3912
 * and freed.
 */

struct location {
	unsigned long count;
3913
	unsigned long addr;
3914 3915 3916 3917 3918
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3919
	DECLARE_BITMAP(cpus, NR_CPUS);
3920
	nodemask_t nodes;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3936
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3937 3938 3939 3940 3941 3942
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3943
	l = (void *)__get_free_pages(flags, order);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3957
				const struct track *track)
3958 3959 3960
{
	long start, end, pos;
	struct location *l;
3961
	unsigned long caddr;
3962
	unsigned long age = jiffies - track->when;
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
3994 3995
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
3996 3997
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3998 3999 4000
			return 1;
		}

4001
		if (track->addr < caddr)
4002 4003 4004 4005 4006 4007
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4008
	 * Not found. Insert new tracking element.
4009
	 */
4010
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4011 4012 4013 4014 4015 4016 4017 4018
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4019 4020 4021 4022 4023 4024
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4025 4026
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4027 4028
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4029 4030 4031 4032
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4033
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4034
		unsigned long *map)
4035
{
4036
	void *addr = page_address(page);
4037 4038
	void *p;

4039
	bitmap_zero(map, page->objects);
4040
	get_map(s, page, map);
4041

4042
	for_each_object(p, s, addr, page->objects)
4043 4044
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4045 4046 4047 4048 4049
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4050
	int len = 0;
4051
	unsigned long i;
4052
	struct loc_track t = { 0, 0, NULL };
4053
	int node;
E
Eric Dumazet 已提交
4054 4055
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4056
	struct kmem_cache_node *n;
4057

E
Eric Dumazet 已提交
4058 4059 4060
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4061
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4062
	}
4063 4064 4065
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4066
	for_each_kmem_cache_node(s, node, n) {
4067 4068 4069
		unsigned long flags;
		struct page *page;

4070
		if (!atomic_long_read(&n->nr_slabs))
4071 4072 4073 4074
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4075
			process_slab(&t, s, page, alloc, map);
4076
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4077
			process_slab(&t, s, page, alloc, map);
4078 4079 4080 4081
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4082
		struct location *l = &t.loc[i];
4083

H
Hugh Dickins 已提交
4084
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4085
			break;
4086
		len += sprintf(buf + len, "%7ld ", l->count);
4087 4088

		if (l->addr)
J
Joe Perches 已提交
4089
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4090
		else
4091
			len += sprintf(buf + len, "<not-available>");
4092 4093

		if (l->sum_time != l->min_time) {
4094
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4095 4096 4097
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4098
		} else
4099
			len += sprintf(buf + len, " age=%ld",
4100 4101 4102
				l->min_time);

		if (l->min_pid != l->max_pid)
4103
			len += sprintf(buf + len, " pid=%ld-%ld",
4104 4105
				l->min_pid, l->max_pid);
		else
4106
			len += sprintf(buf + len, " pid=%ld",
4107 4108
				l->min_pid);

R
Rusty Russell 已提交
4109 4110
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4111 4112 4113 4114
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4115

4116
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4117 4118 4119 4120
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4121

4122
		len += sprintf(buf + len, "\n");
4123 4124 4125
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4126
	kfree(map);
4127
	if (!t.count)
4128 4129
		len += sprintf(buf, "No data\n");
	return len;
4130
}
4131
#endif
4132

4133
#ifdef SLUB_RESILIENCY_TEST
4134
static void __init resiliency_test(void)
4135 4136 4137
{
	u8 *p;

4138
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4139

4140 4141 4142
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4143 4144 4145

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4146 4147
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4148 4149 4150 4151 4152 4153

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4154 4155 4156
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4157 4158 4159 4160 4161

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4162 4163 4164
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4165 4166
	validate_slab_cache(kmalloc_caches[6]);

4167
	pr_err("\nB. Corruption after free\n");
4168 4169 4170
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4171
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4172 4173 4174 4175 4176
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4177
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4178 4179 4180 4181 4182
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4183
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4184 4185 4186 4187 4188 4189 4190 4191
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4192
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4193
enum slab_stat_type {
4194 4195 4196 4197 4198
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4199 4200
};

4201
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4202 4203 4204
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4205
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4206

4207 4208
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4209 4210 4211 4212 4213 4214
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4215
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4216 4217
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4218

4219 4220
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4221

4222
		for_each_possible_cpu(cpu) {
4223 4224
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4225
			int node;
4226
			struct page *page;
4227

4228
			page = ACCESS_ONCE(c->page);
4229 4230
			if (!page)
				continue;
4231

4232 4233 4234 4235 4236 4237 4238
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4239

4240 4241 4242 4243
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4244
			if (page) {
L
Li Zefan 已提交
4245 4246 4247 4248 4249 4250 4251
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4252 4253
				total += x;
				nodes[node] += x;
4254
			}
C
Christoph Lameter 已提交
4255 4256 4257
		}
	}

4258
	get_online_mems();
4259
#ifdef CONFIG_SLUB_DEBUG
4260
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4261 4262 4263
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4264

4265 4266 4267 4268 4269
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4270
			else
4271
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4272 4273 4274 4275
			total += x;
			nodes[node] += x;
		}

4276 4277 4278
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4279
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4280

C
Christoph Lameter 已提交
4281
		for_each_kmem_cache_node(s, node, n) {
4282 4283 4284 4285
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4286
			else
4287
				x = n->nr_partial;
C
Christoph Lameter 已提交
4288 4289 4290 4291 4292 4293
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4294
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4295 4296 4297 4298
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4299
	put_online_mems();
C
Christoph Lameter 已提交
4300 4301 4302 4303
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4304
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4305 4306 4307
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4308
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4309

C
Christoph Lameter 已提交
4310
	for_each_kmem_cache_node(s, node, n)
4311
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4312
			return 1;
C
Christoph Lameter 已提交
4313

C
Christoph Lameter 已提交
4314 4315
	return 0;
}
4316
#endif
C
Christoph Lameter 已提交
4317 4318

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4319
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4320 4321 4322 4323 4324 4325 4326 4327

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4328 4329
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4330 4331 4332

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4333
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4349
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4350 4351 4352 4353 4354
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4355
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4356 4357 4358
}
SLAB_ATTR_RO(objs_per_slab);

4359 4360 4361
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4362 4363 4364
	unsigned long order;
	int err;

4365
	err = kstrtoul(buf, 10, &order);
4366 4367
	if (err)
		return err;
4368 4369 4370 4371 4372 4373 4374 4375

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4376 4377
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4378
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4379
}
4380
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4381

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4393
	err = kstrtoul(buf, 10, &min);
4394 4395 4396
	if (err)
		return err;

4397
	set_min_partial(s, min);
4398 4399 4400 4401
	return length;
}
SLAB_ATTR(min_partial);

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4413
	err = kstrtoul(buf, 10, &objects);
4414 4415
	if (err)
		return err;
4416
	if (objects && !kmem_cache_has_cpu_partial(s))
4417
		return -EINVAL;
4418 4419 4420 4421 4422 4423 4424

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4425 4426
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4427 4428 4429
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4430 4431 4432 4433 4434
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4435
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4436 4437 4438 4439 4440
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4441
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4442 4443 4444 4445 4446
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4447
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4448 4449 4450 4451 4452
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4453
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4454 4455 4456
}
SLAB_ATTR_RO(objects);

4457 4458 4459 4460 4461 4462
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4529 4530 4531 4532 4533 4534
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4535
#ifdef CONFIG_SLUB_DEBUG
4536 4537 4538 4539 4540 4541
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4542 4543 4544 4545 4546 4547
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4557 4558
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4559
		s->flags |= SLAB_DEBUG_FREE;
4560
	}
C
Christoph Lameter 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4573 4574 4575 4576 4577 4578 4579 4580
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4581
	s->flags &= ~SLAB_TRACE;
4582 4583
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4584
		s->flags |= SLAB_TRACE;
4585
	}
C
Christoph Lameter 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4602 4603
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4604
		s->flags |= SLAB_RED_ZONE;
4605
	}
4606
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4623 4624
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4625
		s->flags |= SLAB_POISON;
4626
	}
4627
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4644 4645
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4646
		s->flags |= SLAB_STORE_USER;
4647
	}
4648
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4649 4650 4651 4652
	return length;
}
SLAB_ATTR(store_user);

4653 4654 4655 4656 4657 4658 4659 4660
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4661 4662 4663 4664 4665 4666 4667 4668
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4669 4670
}
SLAB_ATTR(validate);
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4698 4699 4700
	if (s->refcount > 1)
		return -EINVAL;

4701 4702 4703 4704 4705 4706
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4707
#endif
4708

4709 4710 4711 4712 4713 4714 4715 4716
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4717 4718 4719
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4720 4721 4722 4723 4724
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4725
#ifdef CONFIG_NUMA
4726
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4727
{
4728
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4729 4730
}

4731
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4732 4733
				const char *buf, size_t length)
{
4734 4735 4736
	unsigned long ratio;
	int err;

4737
	err = kstrtoul(buf, 10, &ratio);
4738 4739 4740
	if (err)
		return err;

4741
	if (ratio <= 100)
4742
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4743 4744 4745

	return length;
}
4746
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4747 4748
#endif

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4761
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4762 4763 4764 4765 4766 4767 4768

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4769
#ifdef CONFIG_SMP
4770 4771
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4772
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4773
	}
4774
#endif
4775 4776 4777 4778
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4779 4780 4781 4782 4783
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4784
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4785 4786
}

4787 4788 4789 4790 4791
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4812
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4813 4814 4815 4816 4817 4818 4819
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4820
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4821
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4822 4823
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4824 4825
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4826 4827
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4828 4829
#endif

P
Pekka Enberg 已提交
4830
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4831 4832 4833 4834
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4835
	&min_partial_attr.attr,
4836
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4837
	&objects_attr.attr,
4838
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4839 4840 4841 4842 4843 4844 4845 4846
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4847
	&shrink_attr.attr,
4848
	&reserved_attr.attr,
4849
	&slabs_cpu_partial_attr.attr,
4850
#ifdef CONFIG_SLUB_DEBUG
4851 4852 4853 4854
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4855 4856 4857
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4858
	&validate_attr.attr,
4859 4860
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4861
#endif
C
Christoph Lameter 已提交
4862 4863 4864 4865
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4866
	&remote_node_defrag_ratio_attr.attr,
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4879
	&alloc_node_mismatch_attr.attr,
4880 4881 4882 4883 4884 4885 4886
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4887
	&deactivate_bypass_attr.attr,
4888
	&order_fallback_attr.attr,
4889 4890
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4891 4892
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4893 4894
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4895
#endif
4896 4897 4898 4899
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4941 4942
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4943
		struct kmem_cache *c;
C
Christoph Lameter 已提交
4944

4945 4946 4947 4948
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4966 4967
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
4968 4969 4970
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
4971 4972 4973
	return err;
}

4974 4975 4976 4977 4978
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
4979
	struct kmem_cache *root_cache;
4980

4981
	if (is_root_cache(s))
4982 4983
		return;

4984
	root_cache = s->memcg_params.root_cache;
4985

4986 4987 4988 4989
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
4990
	if (!root_cache->max_attr_size)
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5012
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5013 5014 5015 5016 5017 5018 5019 5020
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5021
		attr->show(root_cache, buf);
5022 5023 5024 5025 5026 5027 5028 5029
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5030 5031 5032 5033 5034
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5035
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5036 5037 5038 5039 5040 5041
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5042
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5054
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5055 5056 5057
	.filter = uevent_filter,
};

5058
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5059

5060 5061 5062 5063
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5064
		return s->memcg_params.root_cache->memcg_kset;
5065 5066 5067 5068
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5069 5070 5071
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5072 5073
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5096 5097
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5098 5099 5100
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5101

C
Christoph Lameter 已提交
5102 5103 5104 5105 5106 5107 5108 5109
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5110
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5111 5112 5113 5114 5115 5116 5117

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5118
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5128
	s->kobj.kset = cache_kset(s);
5129
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5130 5131
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5132 5133

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5134 5135
	if (err)
		goto out_del_kobj;
5136 5137 5138 5139 5140

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5141 5142
			err = -ENOMEM;
			goto out_del_kobj;
5143 5144 5145 5146
		}
	}
#endif

C
Christoph Lameter 已提交
5147 5148 5149 5150 5151
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5152 5153 5154 5155 5156 5157 5158 5159 5160
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5161 5162
}

5163
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5164
{
5165
	if (slab_state < FULL)
5166 5167 5168 5169 5170 5171
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5172 5173 5174
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5175 5176
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5177
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5178 5179 5180 5181
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5182
 * available lest we lose that information.
C
Christoph Lameter 已提交
5183 5184 5185 5186 5187 5188 5189
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5190
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5191 5192 5193 5194 5195

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5196
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5197 5198 5199
		/*
		 * If we have a leftover link then remove it.
		 */
5200 5201
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5217
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5218 5219
	int err;

5220
	mutex_lock(&slab_mutex);
5221

5222
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5223
	if (!slab_kset) {
5224
		mutex_unlock(&slab_mutex);
5225
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5226 5227 5228
		return -ENOSYS;
	}

5229
	slab_state = FULL;
5230

5231
	list_for_each_entry(s, &slab_caches, list) {
5232
		err = sysfs_slab_add(s);
5233
		if (err)
5234 5235
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5236
	}
C
Christoph Lameter 已提交
5237 5238 5239 5240 5241 5242

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5243
		if (err)
5244 5245
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5246 5247 5248
		kfree(al);
	}

5249
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5250 5251 5252 5253 5254
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5255
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5256 5257 5258 5259

/*
 * The /proc/slabinfo ABI
 */
5260
#ifdef CONFIG_SLABINFO
5261
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5262 5263
{
	unsigned long nr_slabs = 0;
5264 5265
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5266
	int node;
C
Christoph Lameter 已提交
5267
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5268

C
Christoph Lameter 已提交
5269
	for_each_kmem_cache_node(s, node, n) {
5270 5271
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5272
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5273 5274
	}

5275 5276 5277 5278 5279 5280
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5281 5282
}

5283
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5284 5285 5286
{
}

5287 5288
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5289
{
5290
	return -EIO;
5291
}
5292
#endif /* CONFIG_SLABINFO */