slub.c 126.9 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

373 374 375 376 377 378 379
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385 386 387 388 389 390
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
391 392
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
393
			page->freelist = freelist_new;
394
			set_page_slub_counters(page, counters_new);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

411 412 413 414 415
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
416 417
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418
	if (s->flags & __CMPXCHG_DOUBLE) {
419
		if (cmpxchg_double(&page->freelist, &page->counters,
420 421 422 423 424 425
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
426 427 428
		unsigned long flags;

		local_irq_save(flags);
429
		slab_lock(page);
430 431
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
432
			page->freelist = freelist_new;
433
			set_page_slub_counters(page, counters_new);
434
			slab_unlock(page);
435
			local_irq_restore(flags);
436 437
			return 1;
		}
438
		slab_unlock(page);
439
		local_irq_restore(flags);
440 441 442 443 444 445 446 447 448 449 450 451
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
452
#ifdef CONFIG_SLUB_DEBUG
453 454 455
/*
 * Determine a map of object in use on a page.
 *
456
 * Node listlock must be held to guarantee that the page does
457 458 459 460 461 462 463 464 465 466 467
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471 472 473
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
474
static int slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

C
Christoph Lameter 已提交
480 481 482 483 484
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
485 486
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
503
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
504
{
A
Akinobu Mita 已提交
505
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
506 507

	if (addr) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
526 527
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
528
		p->pid = current->pid;
C
Christoph Lameter 已提交
529 530 531 532 533 534 535
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
536 537 538
	if (!(s->flags & SLAB_STORE_USER))
		return;

539 540
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
541 542 543 544 545 546 547
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

548
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 551 552 553 554 555 556 557 558 559
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
573 574 575
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580 581 582 583 584 585 586 587 588

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
589
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 591
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
592

593
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615 616 617 618 619

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938 939
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003
 */
1004 1005
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1006
{
1007 1008 1009
	if (!(s->flags & SLAB_STORE_USER))
		return;

1010
	lockdep_assert_held(&n->list_lock);
1011 1012 1013
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1014
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 1016 1017 1018
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1019
	lockdep_assert_held(&n->list_lock);
1020 1021 1022
	list_del(&page->lru);
}

1023 1024 1025 1026 1027 1028 1029 1030
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1031 1032 1033 1034 1035
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1036
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1046
	if (likely(n)) {
1047
		atomic_long_inc(&n->nr_slabs);
1048 1049
		atomic_long_add(objects, &n->total_objects);
	}
1050
}
1051
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 1053 1054 1055
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1056
	atomic_long_sub(objects, &n->total_objects);
1057 1058 1059
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1066
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1067 1068 1069
	init_tracking(s, object);
}

1070 1071
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1072
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077 1078
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1079
		goto bad;
C
Christoph Lameter 已提交
1080 1081
	}

1082
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1083 1084
		goto bad;

C
Christoph Lameter 已提交
1085 1086 1087 1088
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1089
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1090
	return 1;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092 1093 1094 1095 1096
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1097
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1098
		 */
1099
		slab_fix(s, "Marking all objects used");
1100
		page->inuse = page->objects;
1101
		page->freelist = NULL;
C
Christoph Lameter 已提交
1102 1103 1104 1105
	}
	return 0;
}

1106 1107 1108
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1109
{
1110
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111

1112
	spin_lock_irqsave(&n->list_lock, *flags);
1113 1114
	slab_lock(page);

C
Christoph Lameter 已提交
1115 1116 1117 1118
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1119
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1120 1121 1122 1123
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1124
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1125 1126 1127
		goto fail;
	}

1128
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129
		goto out;
C
Christoph Lameter 已提交
1130

1131
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1132
		if (!PageSlab(page)) {
1133 1134
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1135
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1136
			printk(KERN_ERR
1137
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1138
						object);
1139
			dump_stack();
P
Pekka Enberg 已提交
1140
		} else
1141 1142
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1143 1144
		goto fail;
	}
C
Christoph Lameter 已提交
1145 1146 1147 1148

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1149
	init_object(s, object, SLUB_RED_INACTIVE);
1150
out:
1151
	slab_unlock(page);
1152 1153 1154 1155 1156
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1157

C
Christoph Lameter 已提交
1158
fail:
1159 1160
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1161
	slab_fix(s, "Object at 0x%p not freed", object);
1162
	return NULL;
C
Christoph Lameter 已提交
1163 1164
}

C
Christoph Lameter 已提交
1165 1166
static int __init setup_slub_debug(char *str)
{
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1200
	for (; *str && *str != ','; str++) {
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1217 1218 1219
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1220 1221
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1222
				"unknown. skipped\n", *str);
1223
		}
C
Christoph Lameter 已提交
1224 1225
	}

1226
check_slabs:
C
Christoph Lameter 已提交
1227 1228
	if (*str == ',')
		slub_debug_slabs = str + 1;
1229
out:
C
Christoph Lameter 已提交
1230 1231 1232 1233 1234
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1235
static unsigned long kmem_cache_flags(unsigned long object_size,
1236
	unsigned long flags, const char *name,
1237
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1238 1239
{
	/*
1240
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1241
	 */
1242 1243
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1244
		flags |= slub_debug;
1245 1246

	return flags;
C
Christoph Lameter 已提交
1247 1248
}
#else
C
Christoph Lameter 已提交
1249 1250
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1251

C
Christoph Lameter 已提交
1252
static inline int alloc_debug_processing(struct kmem_cache *s,
1253
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1254

1255 1256 1257
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1258 1259 1260 1261

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1262
			void *object, u8 val) { return 1; }
1263 1264
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1265 1266
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1267
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1268
	unsigned long flags, const char *name,
1269
	void (*ctor)(void *))
1270 1271 1272
{
	return flags;
}
C
Christoph Lameter 已提交
1273
#define slub_debug 0
1274

1275 1276
#define disable_higher_order_debug 0

1277 1278
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1279 1280
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1281 1282 1283 1284
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1296 1297 1298 1299
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1300 1301 1302 1303 1304
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1305

1306 1307 1308 1309
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1310

1311
#endif /* CONFIG_SLUB_DEBUG */
1312

C
Christoph Lameter 已提交
1313 1314 1315
/*
 * Slab allocation and freeing
 */
1316 1317 1318 1319 1320
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1321 1322
	flags |= __GFP_NOTRACK;

1323
	if (node == NUMA_NO_NODE)
1324 1325
		return alloc_pages(flags, order);
	else
1326
		return alloc_pages_exact_node(node, flags, order);
1327 1328
}

C
Christoph Lameter 已提交
1329 1330
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1331
	struct page *page;
1332
	struct kmem_cache_order_objects oo = s->oo;
1333
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1334

1335 1336 1337 1338 1339
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1340
	flags |= s->allocflags;
1341

1342 1343 1344 1345 1346 1347 1348
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1349 1350 1351 1352 1353 1354 1355
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1356

1357 1358
		if (page)
			stat(s, ORDER_FALLBACK);
1359
	}
V
Vegard Nossum 已提交
1360

1361
	if (kmemcheck_enabled && page
1362
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1375 1376
	}

1377 1378 1379 1380 1381
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1382
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1383 1384 1385
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1386
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1387 1388 1389 1390 1391 1392 1393

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1394
	setup_object_debug(s, page, object);
1395
	if (unlikely(s->ctor))
1396
		s->ctor(object);
C
Christoph Lameter 已提交
1397 1398 1399 1400 1401 1402 1403 1404
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1405
	int order;
C
Christoph Lameter 已提交
1406

C
Christoph Lameter 已提交
1407
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1408

C
Christoph Lameter 已提交
1409 1410
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1411 1412 1413
	if (!page)
		goto out;

G
Glauber Costa 已提交
1414
	order = compound_order(page);
1415
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1416
	memcg_bind_pages(s, order);
1417
	page->slab_cache = s;
1418
	__SetPageSlab(page);
1419 1420
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1421 1422 1423 1424

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1425
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1426 1427

	last = start;
1428
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1429 1430 1431 1432 1433
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1434
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1435 1436

	page->freelist = start;
1437
	page->inuse = page->objects;
1438
	page->frozen = 1;
C
Christoph Lameter 已提交
1439 1440 1441 1442 1443 1444
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1445 1446
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1447

1448
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1449 1450 1451
		void *p;

		slab_pad_check(s, page);
1452 1453
		for_each_object(p, s, page_address(page),
						page->objects)
1454
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1455 1456
	}

1457
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1458

C
Christoph Lameter 已提交
1459 1460 1461
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1462
		-pages);
C
Christoph Lameter 已提交
1463

1464
	__ClearPageSlabPfmemalloc(page);
1465
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1466 1467

	memcg_release_pages(s, order);
1468
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1469 1470
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1471
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1472 1473
}

1474 1475 1476
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1477 1478 1479 1480
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1481 1482 1483 1484 1485
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1486
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1487 1488 1489 1490 1491
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1506 1507 1508 1509 1510 1511 1512 1513

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1514
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1515 1516 1517 1518
	free_slab(s, page);
}

/*
1519
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1520
 */
1521 1522
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1523
{
C
Christoph Lameter 已提交
1524
	n->nr_partial++;
1525
	if (tail == DEACTIVATE_TO_TAIL)
1526 1527 1528
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1529 1530
}

1531 1532
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1533
{
P
Peter Zijlstra 已提交
1534
	lockdep_assert_held(&n->list_lock);
1535 1536
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1537

1538 1539 1540
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1541 1542 1543 1544
	list_del(&page->lru);
	n->nr_partial--;
}

1545 1546 1547 1548 1549 1550 1551
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1552
/*
1553 1554
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1555
 *
1556
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1557
 */
1558
static inline void *acquire_slab(struct kmem_cache *s,
1559
		struct kmem_cache_node *n, struct page *page,
1560
		int mode, int *objects)
C
Christoph Lameter 已提交
1561
{
1562 1563 1564 1565
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1566 1567
	lockdep_assert_held(&n->list_lock);

1568 1569 1570 1571 1572
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1573 1574 1575
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1576
	*objects = new.objects - new.inuse;
1577
	if (mode) {
1578
		new.inuse = page->objects;
1579 1580 1581 1582
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1583

1584
	VM_BUG_ON(new.frozen);
1585
	new.frozen = 1;
1586

1587
	if (!__cmpxchg_double_slab(s, page,
1588
			freelist, counters,
1589
			new.freelist, new.counters,
1590 1591
			"acquire_slab"))
		return NULL;
1592 1593

	remove_partial(n, page);
1594
	WARN_ON(!freelist);
1595
	return freelist;
C
Christoph Lameter 已提交
1596 1597
}

1598
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1599
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1600

C
Christoph Lameter 已提交
1601
/*
C
Christoph Lameter 已提交
1602
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1603
 */
1604 1605
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1606
{
1607 1608
	struct page *page, *page2;
	void *object = NULL;
1609 1610
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1611 1612 1613 1614

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1615 1616
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1617 1618 1619 1620 1621
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1622
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1623
		void *t;
1624

1625 1626 1627
		if (!pfmemalloc_match(page, flags))
			continue;

1628
		t = acquire_slab(s, n, page, object == NULL, &objects);
1629 1630 1631
		if (!t)
			break;

1632
		available += objects;
1633
		if (!object) {
1634 1635 1636 1637
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1638
			put_cpu_partial(s, page, 0);
1639
			stat(s, CPU_PARTIAL_NODE);
1640
		}
1641 1642
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1643 1644
			break;

1645
	}
C
Christoph Lameter 已提交
1646
	spin_unlock(&n->list_lock);
1647
	return object;
C
Christoph Lameter 已提交
1648 1649 1650
}

/*
C
Christoph Lameter 已提交
1651
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1652
 */
1653
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1654
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1655 1656 1657
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1658
	struct zoneref *z;
1659 1660
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1661
	void *object;
1662
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1663 1664

	/*
C
Christoph Lameter 已提交
1665 1666 1667 1668
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1669
	 *
C
Christoph Lameter 已提交
1670 1671 1672 1673
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1674
	 *
C
Christoph Lameter 已提交
1675
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1676 1677 1678 1679 1680
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1681
	 */
1682 1683
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1684 1685
		return NULL;

1686
	do {
1687
		cpuset_mems_cookie = read_mems_allowed_begin();
1688
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1689 1690 1691 1692 1693 1694 1695
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1696
				object = get_partial_node(s, n, c, flags);
1697 1698
				if (object) {
					/*
1699 1700 1701 1702 1703
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1704 1705 1706
					 */
					return object;
				}
1707
			}
C
Christoph Lameter 已提交
1708
		}
1709
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1710 1711 1712 1713 1714 1715 1716
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1717
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1718
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1719
{
1720
	void *object;
1721
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1722

1723
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1724 1725
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1726

1727
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1728 1729
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1786
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1787 1788
}

1789
static void init_kmem_cache_cpus(struct kmem_cache *s)
1790 1791 1792 1793 1794 1795
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1796

C
Christoph Lameter 已提交
1797 1798 1799
/*
 * Remove the cpu slab
 */
1800 1801
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1802
{
1803 1804 1805 1806 1807
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1808
	int tail = DEACTIVATE_TO_HEAD;
1809 1810 1811 1812
	struct page new;
	struct page old;

	if (page->freelist) {
1813
		stat(s, DEACTIVATE_REMOTE_FREES);
1814
		tail = DEACTIVATE_TO_TAIL;
1815 1816
	}

1817
	/*
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1835
			VM_BUG_ON(!new.frozen);
1836

1837
		} while (!__cmpxchg_double_slab(s, page,
1838 1839 1840 1841 1842 1843 1844
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1845
	/*
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1858
	 */
1859
redo:
1860

1861 1862
	old.freelist = page->freelist;
	old.counters = page->counters;
1863
	VM_BUG_ON(!old.frozen);
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1876
	if (!new.inuse && n->nr_partial > s->min_partial)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1909

P
Peter Zijlstra 已提交
1910
			remove_full(s, n, page);
1911 1912 1913 1914

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1915
			stat(s, tail);
1916 1917

		} else if (m == M_FULL) {
1918

1919 1920 1921 1922 1923 1924 1925
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1926
	if (!__cmpxchg_double_slab(s, page,
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1939
	}
C
Christoph Lameter 已提交
1940 1941
}

1942 1943 1944
/*
 * Unfreeze all the cpu partial slabs.
 *
1945 1946 1947
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1948
 */
1949 1950
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1951
{
1952
#ifdef CONFIG_SLUB_CPU_PARTIAL
1953
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1954
	struct page *page, *discard_page = NULL;
1955 1956 1957 1958 1959 1960

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1961 1962 1963 1964 1965 1966 1967 1968 1969

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1970 1971 1972 1973 1974

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1975
			VM_BUG_ON(!old.frozen);
1976 1977 1978 1979 1980 1981

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1982
		} while (!__cmpxchg_double_slab(s, page,
1983 1984 1985 1986
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1987
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1988 1989
			page->next = discard_page;
			discard_page = page;
1990 1991 1992
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1993 1994 1995 1996 1997
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1998 1999 2000 2001 2002 2003 2004 2005 2006

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2007
#endif
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2019
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2020
{
2021
#ifdef CONFIG_SLUB_CPU_PARTIAL
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2041
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2042
				local_irq_restore(flags);
2043
				oldpage = NULL;
2044 2045
				pobjects = 0;
				pages = 0;
2046
				stat(s, CPU_PARTIAL_DRAIN);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2057 2058
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2059
#endif
2060 2061
}

2062
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2063
{
2064
	stat(s, CPUSLAB_FLUSH);
2065 2066 2067 2068 2069
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2070 2071 2072 2073
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2074
 *
C
Christoph Lameter 已提交
2075 2076
 * Called from IPI handler with interrupts disabled.
 */
2077
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2078
{
2079
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2080

2081 2082 2083 2084
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2085
		unfreeze_partials(s, c);
2086
	}
C
Christoph Lameter 已提交
2087 2088 2089 2090 2091 2092
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2093
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2094 2095
}

2096 2097 2098 2099 2100
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2101
	return c->page || c->partial;
2102 2103
}

C
Christoph Lameter 已提交
2104 2105
static void flush_all(struct kmem_cache *s)
{
2106
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2107 2108
}

2109 2110 2111 2112
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2113
static inline int node_match(struct page *page, int node)
2114 2115
{
#ifdef CONFIG_NUMA
2116
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2117 2118 2119 2120 2121
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2159
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2160 2161
		s->size, oo_order(s->oo), oo_order(s->min));

2162
	if (oo_order(s->min) > get_order(s->object_size))
2163 2164 2165
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2175 2176 2177
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2178 2179 2180 2181 2182 2183 2184

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2185 2186 2187
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2188
	void *freelist;
2189 2190
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2191

2192
	freelist = get_partial(s, flags, node, c);
2193

2194 2195 2196 2197
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2198 2199 2200 2201 2202 2203 2204 2205 2206
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2207
		freelist = page->freelist;
2208 2209 2210 2211 2212 2213
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2214
		freelist = NULL;
2215

2216
	return freelist;
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2227
/*
2228 2229
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2230 2231 2232 2233
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2234 2235
 *
 * This function must be called with interrupt disabled.
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2246

2247
		new.counters = counters;
2248
		VM_BUG_ON(!new.frozen);
2249 2250 2251 2252

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2253
	} while (!__cmpxchg_double_slab(s, page,
2254 2255 2256 2257 2258 2259 2260
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2261
/*
2262 2263 2264 2265 2266 2267
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2268
 *
2269 2270 2271
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2272
 *
2273
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2274 2275
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2276
 */
2277 2278
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2279
{
2280
	void *freelist;
2281
	struct page *page;
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2293

2294 2295
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2296
		goto new_slab;
2297
redo:
2298

2299
	if (unlikely(!node_match(page, node))) {
2300
		stat(s, ALLOC_NODE_MISMATCH);
2301
		deactivate_slab(s, page, c->freelist);
2302 2303
		c->page = NULL;
		c->freelist = NULL;
2304 2305
		goto new_slab;
	}
C
Christoph Lameter 已提交
2306

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2319
	/* must check again c->freelist in case of cpu migration or IRQ */
2320 2321
	freelist = c->freelist;
	if (freelist)
2322
		goto load_freelist;
2323

2324
	stat(s, ALLOC_SLOWPATH);
2325

2326
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2327

2328
	if (!freelist) {
2329 2330
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2331
		goto new_slab;
2332
	}
C
Christoph Lameter 已提交
2333

2334
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2335

2336
load_freelist:
2337 2338 2339 2340 2341
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2342
	VM_BUG_ON(!c->page->frozen);
2343
	c->freelist = get_freepointer(s, freelist);
2344 2345
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2346
	return freelist;
C
Christoph Lameter 已提交
2347 2348

new_slab:
2349

2350
	if (c->partial) {
2351 2352
		page = c->page = c->partial;
		c->partial = page->next;
2353 2354 2355
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2356 2357
	}

2358
	freelist = new_slab_objects(s, gfpflags, node, &c);
2359

2360 2361 2362
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2363

2364 2365
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2366
	}
2367

2368
	page = c->page;
2369
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2370
		goto load_freelist;
2371

2372
	/* Only entered in the debug case */
2373 2374
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2375
		goto new_slab;	/* Slab failed checks. Next slab needed */
2376

2377
	deactivate_slab(s, page, get_freepointer(s, freelist));
2378 2379
	c->page = NULL;
	c->freelist = NULL;
2380
	local_irq_restore(flags);
2381
	return freelist;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2394
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2395
		gfp_t gfpflags, int node, unsigned long addr)
2396 2397
{
	void **object;
2398
	struct kmem_cache_cpu *c;
2399
	struct page *page;
2400
	unsigned long tid;
2401

2402
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2403
		return NULL;
2404

2405
	s = memcg_kmem_get_cache(s, gfpflags);
2406 2407 2408 2409 2410 2411
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2412 2413 2414 2415 2416
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2417
	 */
2418
	preempt_disable();
2419
	c = __this_cpu_ptr(s->cpu_slab);
2420 2421 2422 2423 2424 2425 2426 2427

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2428
	preempt_enable();
2429

2430
	object = c->freelist;
2431
	page = c->page;
L
Libin 已提交
2432
	if (unlikely(!object || !node_match(page, node)))
2433
		object = __slab_alloc(s, gfpflags, node, addr, c);
2434 2435

	else {
2436 2437
		void *next_object = get_freepointer_safe(s, object);

2438
		/*
L
Lucas De Marchi 已提交
2439
		 * The cmpxchg will only match if there was no additional
2440 2441
		 * operation and if we are on the right processor.
		 *
2442 2443
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2444 2445 2446 2447
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2448 2449 2450
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2451
		 */
2452
		if (unlikely(!this_cpu_cmpxchg_double(
2453 2454
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2455
				next_object, next_tid(tid)))) {
2456 2457 2458 2459

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2460
		prefetch_freepointer(s, next_object);
2461
		stat(s, ALLOC_FASTPATH);
2462
	}
2463

2464
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2465
		memset(object, 0, s->object_size);
2466

2467
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2468

2469
	return object;
C
Christoph Lameter 已提交
2470 2471
}

2472 2473 2474 2475 2476 2477
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2478 2479
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2480
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2481

2482 2483
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2484 2485

	return ret;
C
Christoph Lameter 已提交
2486 2487 2488
}
EXPORT_SYMBOL(kmem_cache_alloc);

2489
#ifdef CONFIG_TRACING
2490 2491
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2492
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2493 2494 2495 2496
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2497 2498
#endif

C
Christoph Lameter 已提交
2499 2500 2501
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2502
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2503

2504
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2505
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2506 2507

	return ret;
C
Christoph Lameter 已提交
2508 2509 2510
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2511
#ifdef CONFIG_TRACING
2512
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2513
				    gfp_t gfpflags,
2514
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2515
{
2516
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2517 2518 2519 2520

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2521
}
2522
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2523
#endif
2524
#endif
E
Eduard - Gabriel Munteanu 已提交
2525

C
Christoph Lameter 已提交
2526
/*
2527 2528
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2529
 *
2530 2531 2532
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2533
 */
2534
static void __slab_free(struct kmem_cache *s, struct page *page,
2535
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2536 2537 2538
{
	void *prior;
	void **object = (void *)x;
2539 2540 2541 2542
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2543
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2544

2545
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2546

2547 2548
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2549
		return;
C
Christoph Lameter 已提交
2550

2551
	do {
2552 2553 2554 2555
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2556 2557 2558 2559 2560 2561
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2562
		if ((!new.inuse || !prior) && !was_frozen) {
2563

P
Peter Zijlstra 已提交
2564
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2565 2566

				/*
2567 2568 2569 2570
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2571 2572 2573
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2574
			} else { /* Needs to be taken off a list */
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2588
		}
C
Christoph Lameter 已提交
2589

2590 2591 2592 2593
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2594

2595
	if (likely(!n)) {
2596 2597 2598 2599 2600

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2601
		if (new.frozen && !was_frozen) {
2602
			put_cpu_partial(s, page, 1);
2603 2604
			stat(s, CPU_PARTIAL_FREE);
		}
2605
		/*
2606 2607 2608 2609 2610
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2611
                return;
2612
        }
C
Christoph Lameter 已提交
2613

2614 2615 2616
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2617
	/*
2618 2619
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2620
	 */
2621 2622
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2623
			remove_full(s, n, page);
2624 2625
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2626
	}
2627
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2628 2629 2630
	return;

slab_empty:
2631
	if (prior) {
C
Christoph Lameter 已提交
2632
		/*
2633
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2634
		 */
2635
		remove_partial(n, page);
2636
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2637
	} else {
2638
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2639 2640
		remove_full(s, n, page);
	}
2641

2642
	spin_unlock_irqrestore(&n->list_lock, flags);
2643
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2644 2645 2646
	discard_slab(s, page);
}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2658
static __always_inline void slab_free(struct kmem_cache *s,
2659
			struct page *page, void *x, unsigned long addr)
2660 2661
{
	void **object = (void *)x;
2662
	struct kmem_cache_cpu *c;
2663
	unsigned long tid;
2664

2665 2666
	slab_free_hook(s, x);

2667 2668 2669 2670 2671 2672 2673
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2674
	preempt_disable();
2675
	c = __this_cpu_ptr(s->cpu_slab);
2676

2677
	tid = c->tid;
2678
	preempt_enable();
2679

2680
	if (likely(page == c->page)) {
2681
		set_freepointer(s, object, c->freelist);
2682

2683
		if (unlikely(!this_cpu_cmpxchg_double(
2684 2685 2686 2687 2688 2689 2690
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2691
		stat(s, FREE_FASTPATH);
2692
	} else
2693
		__slab_free(s, page, x, addr);
2694 2695 2696

}

C
Christoph Lameter 已提交
2697 2698
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2699 2700
	s = cache_from_obj(s, x);
	if (!s)
2701
		return;
2702
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2703
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2704 2705 2706 2707
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2708 2709 2710 2711
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2712 2713 2714 2715
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2716
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2727
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2728
static int slub_min_objects;
C
Christoph Lameter 已提交
2729 2730 2731

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2732
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2733 2734 2735 2736 2737 2738
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2739 2740 2741 2742
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2743
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2744 2745 2746 2747 2748 2749
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2750
 *
C
Christoph Lameter 已提交
2751 2752 2753 2754
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2755
 *
C
Christoph Lameter 已提交
2756 2757 2758 2759
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2760
 */
2761
static inline int slab_order(int size, int min_objects,
2762
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2763 2764 2765
{
	int order;
	int rem;
2766
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2767

2768
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2769
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2770

2771
	for (order = max(min_order,
2772 2773
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2774

2775
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2776

2777
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2778 2779
			continue;

2780
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2781

2782
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2783 2784 2785
			break;

	}
C
Christoph Lameter 已提交
2786

C
Christoph Lameter 已提交
2787 2788 2789
	return order;
}

2790
static inline int calculate_order(int size, int reserved)
2791 2792 2793 2794
{
	int order;
	int min_objects;
	int fraction;
2795
	int max_objects;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2806 2807
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2808
	max_objects = order_objects(slub_max_order, size, reserved);
2809 2810
	min_objects = min(min_objects, max_objects);

2811
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2812
		fraction = 16;
2813 2814
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2815
					slub_max_order, fraction, reserved);
2816 2817 2818 2819
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2820
		min_objects--;
2821 2822 2823 2824 2825 2826
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2827
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2828 2829 2830 2831 2832 2833
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2834
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2835
	if (order < MAX_ORDER)
2836 2837 2838 2839
		return order;
	return -ENOSYS;
}

2840
static void
2841
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2842 2843 2844 2845
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2846
#ifdef CONFIG_SLUB_DEBUG
2847
	atomic_long_set(&n->nr_slabs, 0);
2848
	atomic_long_set(&n->total_objects, 0);
2849
	INIT_LIST_HEAD(&n->full);
2850
#endif
C
Christoph Lameter 已提交
2851 2852
}

2853
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2854
{
2855
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2856
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2857

2858
	/*
2859 2860
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2861
	 */
2862 2863
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2864 2865 2866 2867 2868

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2869

2870
	return 1;
2871 2872
}

2873 2874
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2875 2876 2877 2878 2879
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2880 2881
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2882
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2883
 */
2884
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2885 2886 2887 2888
{
	struct page *page;
	struct kmem_cache_node *n;

2889
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2890

2891
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2892 2893

	BUG_ON(!page);
2894 2895 2896 2897 2898 2899 2900
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2901 2902
	n = page->freelist;
	BUG_ON(!n);
2903
	page->freelist = get_freepointer(kmem_cache_node, n);
2904
	page->inuse = 1;
2905
	page->frozen = 0;
2906
	kmem_cache_node->node[node] = n;
2907
#ifdef CONFIG_SLUB_DEBUG
2908
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2909
	init_tracking(kmem_cache_node, n);
2910
#endif
2911
	init_kmem_cache_node(n);
2912
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2913

2914
	/*
2915 2916
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2917
	 */
2918
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2919 2920 2921 2922 2923 2924
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2925
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2926
		struct kmem_cache_node *n = s->node[node];
2927

2928
		if (n)
2929 2930
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2931 2932 2933 2934
		s->node[node] = NULL;
	}
}

2935
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2936 2937 2938
{
	int node;

C
Christoph Lameter 已提交
2939
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2940 2941
		struct kmem_cache_node *n;

2942
		if (slab_state == DOWN) {
2943
			early_kmem_cache_node_alloc(node);
2944 2945
			continue;
		}
2946
		n = kmem_cache_alloc_node(kmem_cache_node,
2947
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2948

2949 2950 2951
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2952
		}
2953

C
Christoph Lameter 已提交
2954
		s->node[node] = n;
2955
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2956 2957 2958 2959
	}
	return 1;
}

2960
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2961 2962 2963 2964 2965 2966 2967 2968
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2969 2970 2971 2972
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2973
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2974 2975
{
	unsigned long flags = s->flags;
2976
	unsigned long size = s->object_size;
2977
	int order;
C
Christoph Lameter 已提交
2978

2979 2980 2981 2982 2983 2984 2985 2986
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2987 2988 2989 2990 2991 2992
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2993
			!s->ctor)
C
Christoph Lameter 已提交
2994 2995 2996 2997 2998 2999
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3000
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3001
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3002
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3003
	 */
3004
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3005
		size += sizeof(void *);
C
Christoph Lameter 已提交
3006
#endif
C
Christoph Lameter 已提交
3007 3008

	/*
C
Christoph Lameter 已提交
3009 3010
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3011 3012 3013 3014
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3015
		s->ctor)) {
C
Christoph Lameter 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3028
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3029 3030 3031 3032 3033 3034 3035
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3036
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3037 3038 3039 3040
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3041
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3042 3043 3044
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3045
#endif
C
Christoph Lameter 已提交
3046

C
Christoph Lameter 已提交
3047 3048 3049 3050 3051
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3052
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3053
	s->size = size;
3054 3055 3056
	if (forced_order >= 0)
		order = forced_order;
	else
3057
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3058

3059
	if (order < 0)
C
Christoph Lameter 已提交
3060 3061
		return 0;

3062
	s->allocflags = 0;
3063
	if (order)
3064 3065 3066
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3067
		s->allocflags |= GFP_DMA;
3068 3069 3070 3071

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3072 3073 3074
	/*
	 * Determine the number of objects per slab
	 */
3075 3076
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3077 3078
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3079

3080
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3081 3082
}

3083
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3084
{
3085
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3086
	s->reserved = 0;
C
Christoph Lameter 已提交
3087

3088 3089
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3090

3091
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3092
		goto error;
3093 3094 3095 3096 3097
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3098
		if (get_order(s->size) > get_order(s->object_size)) {
3099 3100 3101 3102 3103 3104
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3105

3106 3107
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3108 3109 3110 3111 3112
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3113 3114 3115 3116
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3132
	 * B) The number of objects in cpu partial slabs to extract from the
3133 3134
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3135
	 */
3136
	if (!kmem_cache_has_cpu_partial(s))
3137 3138
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3139 3140 3141 3142 3143 3144 3145 3146
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3147
#ifdef CONFIG_NUMA
3148
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3149
#endif
3150
	if (!init_kmem_cache_nodes(s))
3151
		goto error;
C
Christoph Lameter 已提交
3152

3153
	if (alloc_kmem_cache_cpus(s))
3154
		return 0;
3155

3156
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3157 3158 3159 3160
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3161 3162
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3163
	return -EINVAL;
C
Christoph Lameter 已提交
3164 3165
}

3166 3167 3168 3169 3170 3171
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3172 3173
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3174 3175
	if (!map)
		return;
3176
	slab_err(s, page, text, s->name);
3177 3178
	slab_lock(page);

3179
	get_map(s, page, map);
3180 3181 3182 3183 3184 3185 3186 3187 3188
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3189
	kfree(map);
3190 3191 3192
#endif
}

C
Christoph Lameter 已提交
3193
/*
C
Christoph Lameter 已提交
3194
 * Attempt to free all partial slabs on a node.
3195 3196
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3197
 */
C
Christoph Lameter 已提交
3198
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3199 3200 3201
{
	struct page *page, *h;

3202
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3203
		if (!page->inuse) {
3204
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3205
			discard_slab(s, page);
3206 3207
		} else {
			list_slab_objects(s, page,
3208
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3209
		}
3210
	}
C
Christoph Lameter 已提交
3211 3212 3213
}

/*
C
Christoph Lameter 已提交
3214
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3215
 */
3216
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3217 3218 3219 3220 3221
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3222
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3223 3224
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3225 3226
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3227 3228
			return 1;
	}
3229
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3230 3231 3232 3233
	free_kmem_cache_nodes(s);
	return 0;
}

3234
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3235
{
3236
	int rc = kmem_cache_close(s);
3237

3238 3239
	if (!rc) {
		/*
3240 3241 3242
		 * Since slab_attr_store may take the slab_mutex, we should
		 * release the lock while removing the sysfs entry in order to
		 * avoid a deadlock. Because this is pretty much the last
3243 3244 3245 3246 3247 3248
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3249
		sysfs_slab_remove(s);
3250 3251
		mutex_lock(&slab_mutex);
	}
3252 3253

	return rc;
C
Christoph Lameter 已提交
3254 3255 3256 3257 3258 3259 3260 3261
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3262
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3263 3264 3265 3266 3267 3268 3269 3270

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3271
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3272
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3273 3274 3275 3276 3277 3278 3279 3280

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3281
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3298
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3299
	void *ret;
C
Christoph Lameter 已提交
3300

3301
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3302
		return kmalloc_large(size, flags);
3303

3304
	s = kmalloc_slab(size, flags);
3305 3306

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3307 3308
		return s;

3309
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3310

3311
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3312 3313

	return ret;
C
Christoph Lameter 已提交
3314 3315 3316
}
EXPORT_SYMBOL(__kmalloc);

3317
#ifdef CONFIG_NUMA
3318 3319
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3320
	struct page *page;
3321
	void *ptr = NULL;
3322

3323
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3324
	page = alloc_pages_node(node, flags, get_order(size));
3325
	if (page)
3326 3327
		ptr = page_address(page);

3328
	kmalloc_large_node_hook(ptr, size, flags);
3329
	return ptr;
3330 3331
}

C
Christoph Lameter 已提交
3332 3333
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3334
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3335
	void *ret;
C
Christoph Lameter 已提交
3336

3337
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3338 3339
		ret = kmalloc_large_node(size, flags, node);

3340 3341 3342
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3343 3344 3345

		return ret;
	}
3346

3347
	s = kmalloc_slab(size, flags);
3348 3349

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3350 3351
		return s;

3352
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3353

3354
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3355 3356

	return ret;
C
Christoph Lameter 已提交
3357 3358 3359 3360 3361 3362
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3363
	struct page *page;
C
Christoph Lameter 已提交
3364

3365
	if (unlikely(object == ZERO_SIZE_PTR))
3366 3367
		return 0;

3368 3369
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3370 3371
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3372
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3373
	}
C
Christoph Lameter 已提交
3374

3375
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3376
}
K
Kirill A. Shutemov 已提交
3377
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3378 3379 3380 3381

void kfree(const void *x)
{
	struct page *page;
3382
	void *object = (void *)x;
C
Christoph Lameter 已提交
3383

3384 3385
	trace_kfree(_RET_IP_, x);

3386
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3387 3388
		return;

3389
	page = virt_to_head_page(x);
3390
	if (unlikely(!PageSlab(page))) {
3391
		BUG_ON(!PageCompound(page));
3392
		kfree_hook(x);
3393
		__free_memcg_kmem_pages(page, compound_order(page));
3394 3395
		return;
	}
3396
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3397 3398 3399
}
EXPORT_SYMBOL(kfree);

3400
/*
C
Christoph Lameter 已提交
3401 3402 3403 3404 3405 3406 3407 3408
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3409 3410 3411 3412 3413 3414 3415 3416
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3417
	int objects = oo_objects(s->max);
3418
	struct list_head *slabs_by_inuse =
3419
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3420 3421 3422 3423 3424 3425
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3426
	for_each_node_state(node, N_NORMAL_MEMORY) {
3427 3428 3429 3430 3431
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3432
		for (i = 0; i < objects; i++)
3433 3434 3435 3436 3437
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3438
		 * Build lists indexed by the items in use in each slab.
3439
		 *
C
Christoph Lameter 已提交
3440 3441
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3442 3443
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3444 3445 3446
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3447 3448 3449
		}

		/*
C
Christoph Lameter 已提交
3450 3451
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3452
		 */
3453
		for (i = objects - 1; i > 0; i--)
3454 3455 3456
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3457 3458 3459 3460

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3461 3462 3463 3464 3465 3466 3467
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3468 3469 3470 3471
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3472
	mutex_lock(&slab_mutex);
3473 3474
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3475
	mutex_unlock(&slab_mutex);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3487
	offline_node = marg->status_change_nid_normal;
3488 3489 3490 3491 3492 3493 3494 3495

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3496
	mutex_lock(&slab_mutex);
3497 3498 3499 3500 3501 3502
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3503
			 * and offline_pages() function shouldn't call this
3504 3505
			 * callback. So, we must fail.
			 */
3506
			BUG_ON(slabs_node(s, offline_node));
3507 3508

			s->node[offline_node] = NULL;
3509
			kmem_cache_free(kmem_cache_node, n);
3510 3511
		}
	}
3512
	mutex_unlock(&slab_mutex);
3513 3514 3515 3516 3517 3518 3519
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3520
	int nid = marg->status_change_nid_normal;
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3531
	 * We are bringing a node online. No memory is available yet. We must
3532 3533 3534
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3535
	mutex_lock(&slab_mutex);
3536 3537 3538 3539 3540 3541
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3542
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3543 3544 3545 3546
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3547
		init_kmem_cache_node(n);
3548 3549 3550
		s->node[nid] = n;
	}
out:
3551
	mutex_unlock(&slab_mutex);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3575 3576 3577 3578
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3579 3580 3581
	return ret;
}

3582 3583 3584 3585
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3586

C
Christoph Lameter 已提交
3587 3588 3589 3590
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3591 3592
/*
 * Used for early kmem_cache structures that were allocated using
3593 3594
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3595 3596
 */

3597
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3598 3599
{
	int node;
3600
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3601

3602
	memcpy(s, static_cache, kmem_cache->object_size);
3603

3604 3605 3606 3607 3608 3609
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3610 3611 3612 3613 3614 3615
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3616
				p->slab_cache = s;
3617

L
Li Zefan 已提交
3618
#ifdef CONFIG_SLUB_DEBUG
3619
			list_for_each_entry(p, &n->full, lru)
3620
				p->slab_cache = s;
3621 3622 3623
#endif
		}
	}
3624 3625
	list_add(&s->list, &slab_caches);
	return s;
3626 3627
}

C
Christoph Lameter 已提交
3628 3629
void __init kmem_cache_init(void)
{
3630 3631
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3632

3633 3634 3635
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3636 3637
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3638

3639 3640
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3641

3642
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3643 3644 3645 3646

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3647 3648 3649 3650
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3651

3652
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3653

3654 3655 3656 3657 3658
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3659
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3660 3661

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3662
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3663 3664 3665

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3666
#endif
C
Christoph Lameter 已提交
3667

I
Ingo Molnar 已提交
3668
	printk(KERN_INFO
3669
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3670
		" CPUs=%d, Nodes=%d\n",
3671
		cache_line_size(),
C
Christoph Lameter 已提交
3672 3673 3674 3675
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3676 3677 3678 3679
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3680 3681 3682 3683 3684 3685 3686 3687
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3688 3689 3690
	if (!is_root_cache(s))
		return 1;

3691
	if (s->ctor)
C
Christoph Lameter 已提交
3692 3693
		return 1;

3694 3695 3696 3697 3698 3699
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3700 3701 3702
	return 0;
}

3703 3704
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3705
{
3706
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3707 3708 3709 3710

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3711
	if (ctor)
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3717
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3718

3719
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3720 3721 3722 3723 3724 3725
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3726
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3727
			continue;
C
Christoph Lameter 已提交
3728 3729 3730 3731
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3732
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3743
struct kmem_cache *
3744 3745
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3746 3747 3748
{
	struct kmem_cache *s;

3749
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3750 3751 3752 3753 3754 3755
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3756
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3757
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3758

3759 3760
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3761
			s = NULL;
3762
		}
3763
	}
C
Christoph Lameter 已提交
3764

3765 3766
	return s;
}
P
Pekka Enberg 已提交
3767

3768
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3769
{
3770 3771 3772 3773 3774
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3775

3776 3777 3778 3779
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3780
	memcg_propagate_slab_attrs(s);
3781 3782 3783
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3784

3785
	return err;
C
Christoph Lameter 已提交
3786 3787 3788 3789
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3790 3791
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3792
 */
3793
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3794 3795 3796
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3797 3798
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3799 3800 3801

	switch (action) {
	case CPU_UP_CANCELED:
3802
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3803
	case CPU_DEAD:
3804
	case CPU_DEAD_FROZEN:
3805
		mutex_lock(&slab_mutex);
3806 3807 3808 3809 3810
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3811
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3812 3813 3814 3815 3816 3817 3818
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3819
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3820
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3821
};
C
Christoph Lameter 已提交
3822 3823 3824

#endif

3825
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3826
{
3827
	struct kmem_cache *s;
3828
	void *ret;
3829

3830
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3831 3832
		return kmalloc_large(size, gfpflags);

3833
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3834

3835
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3836
		return s;
C
Christoph Lameter 已提交
3837

3838
	ret = slab_alloc(s, gfpflags, caller);
3839

L
Lucas De Marchi 已提交
3840
	/* Honor the call site pointer we received. */
3841
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3842 3843

	return ret;
C
Christoph Lameter 已提交
3844 3845
}

3846
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3847
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3848
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3849
{
3850
	struct kmem_cache *s;
3851
	void *ret;
3852

3853
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3854 3855 3856 3857 3858 3859 3860 3861
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3862

3863
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3864

3865
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3866
		return s;
C
Christoph Lameter 已提交
3867

3868
	ret = slab_alloc_node(s, gfpflags, node, caller);
3869

L
Lucas De Marchi 已提交
3870
	/* Honor the call site pointer we received. */
3871
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3872 3873

	return ret;
C
Christoph Lameter 已提交
3874
}
3875
#endif
C
Christoph Lameter 已提交
3876

3877
#ifdef CONFIG_SYSFS
3878 3879 3880 3881 3882 3883 3884 3885 3886
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3887
#endif
3888

3889
#ifdef CONFIG_SLUB_DEBUG
3890 3891
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3892 3893
{
	void *p;
3894
	void *addr = page_address(page);
3895 3896 3897 3898 3899 3900

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3901
	bitmap_zero(map, page->objects);
3902

3903 3904 3905 3906 3907
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3908 3909
	}

3910
	for_each_object(p, s, addr, page->objects)
3911
		if (!test_bit(slab_index(p, s, addr), map))
3912
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3913 3914 3915 3916
				return 0;
	return 1;
}

3917 3918
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3919
{
3920 3921 3922
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3923 3924
}

3925 3926
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3927 3928 3929 3930 3931 3932 3933 3934
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3935
		validate_slab_slab(s, page, map);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3946
		validate_slab_slab(s, page, map);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3959
static long validate_slab_cache(struct kmem_cache *s)
3960 3961 3962
{
	int node;
	unsigned long count = 0;
3963
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3964 3965 3966 3967
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3968 3969

	flush_all(s);
C
Christoph Lameter 已提交
3970
	for_each_node_state(node, N_NORMAL_MEMORY) {
3971 3972
		struct kmem_cache_node *n = get_node(s, node);

3973
		count += validate_slab_node(s, n, map);
3974
	}
3975
	kfree(map);
3976 3977
	return count;
}
3978
/*
C
Christoph Lameter 已提交
3979
 * Generate lists of code addresses where slabcache objects are allocated
3980 3981 3982 3983 3984
 * and freed.
 */

struct location {
	unsigned long count;
3985
	unsigned long addr;
3986 3987 3988 3989 3990
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3991
	DECLARE_BITMAP(cpus, NR_CPUS);
3992
	nodemask_t nodes;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4008
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4009 4010 4011 4012 4013 4014
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4015
	l = (void *)__get_free_pages(flags, order);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4029
				const struct track *track)
4030 4031 4032
{
	long start, end, pos;
	struct location *l;
4033
	unsigned long caddr;
4034
	unsigned long age = jiffies - track->when;
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4066 4067
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4068 4069
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4070 4071 4072
			return 1;
		}

4073
		if (track->addr < caddr)
4074 4075 4076 4077 4078 4079
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4080
	 * Not found. Insert new tracking element.
4081
	 */
4082
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4083 4084 4085 4086 4087 4088 4089 4090
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4091 4092 4093 4094 4095 4096
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4097 4098
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4099 4100
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4101 4102 4103 4104
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4105
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4106
		unsigned long *map)
4107
{
4108
	void *addr = page_address(page);
4109 4110
	void *p;

4111
	bitmap_zero(map, page->objects);
4112
	get_map(s, page, map);
4113

4114
	for_each_object(p, s, addr, page->objects)
4115 4116
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4117 4118 4119 4120 4121
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4122
	int len = 0;
4123
	unsigned long i;
4124
	struct loc_track t = { 0, 0, NULL };
4125
	int node;
E
Eric Dumazet 已提交
4126 4127
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4128

E
Eric Dumazet 已提交
4129 4130 4131
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4132
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4133
	}
4134 4135 4136
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4137
	for_each_node_state(node, N_NORMAL_MEMORY) {
4138 4139 4140 4141
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4142
		if (!atomic_long_read(&n->nr_slabs))
4143 4144 4145 4146
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4147
			process_slab(&t, s, page, alloc, map);
4148
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4149
			process_slab(&t, s, page, alloc, map);
4150 4151 4152 4153
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4154
		struct location *l = &t.loc[i];
4155

H
Hugh Dickins 已提交
4156
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4157
			break;
4158
		len += sprintf(buf + len, "%7ld ", l->count);
4159 4160

		if (l->addr)
J
Joe Perches 已提交
4161
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4162
		else
4163
			len += sprintf(buf + len, "<not-available>");
4164 4165

		if (l->sum_time != l->min_time) {
4166
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4167 4168 4169
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4170
		} else
4171
			len += sprintf(buf + len, " age=%ld",
4172 4173 4174
				l->min_time);

		if (l->min_pid != l->max_pid)
4175
			len += sprintf(buf + len, " pid=%ld-%ld",
4176 4177
				l->min_pid, l->max_pid);
		else
4178
			len += sprintf(buf + len, " pid=%ld",
4179 4180
				l->min_pid);

R
Rusty Russell 已提交
4181 4182
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4183 4184
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4185 4186
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4187
						 to_cpumask(l->cpus));
4188 4189
		}

4190
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4191 4192
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4193 4194 4195
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4196 4197
		}

4198
		len += sprintf(buf + len, "\n");
4199 4200 4201
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4202
	kfree(map);
4203
	if (!t.count)
4204 4205
		len += sprintf(buf, "No data\n");
	return len;
4206
}
4207
#endif
4208

4209 4210 4211 4212 4213
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4214
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4271
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4272
enum slab_stat_type {
4273 4274 4275 4276 4277
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4278 4279
};

4280
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4281 4282 4283
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4284
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4285

4286 4287
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4288 4289 4290 4291 4292 4293
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4294
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4295 4296
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4297

4298 4299
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4300

4301
		for_each_possible_cpu(cpu) {
4302 4303
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4304
			int node;
4305
			struct page *page;
4306

4307
			page = ACCESS_ONCE(c->page);
4308 4309
			if (!page)
				continue;
4310

4311 4312 4313 4314 4315 4316 4317
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4318

4319 4320 4321 4322
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4323
			if (page) {
L
Li Zefan 已提交
4324 4325 4326 4327 4328 4329 4330
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4331 4332
				total += x;
				nodes[node] += x;
4333
			}
C
Christoph Lameter 已提交
4334 4335 4336
		}
	}

4337
	lock_memory_hotplug();
4338
#ifdef CONFIG_SLUB_DEBUG
4339 4340 4341 4342
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4343 4344 4345 4346 4347
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4348
			else
4349
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4350 4351 4352 4353
			total += x;
			nodes[node] += x;
		}

4354 4355 4356
	} else
#endif
	if (flags & SO_PARTIAL) {
4357 4358
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4359

4360 4361 4362 4363
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4364
			else
4365
				x = n->nr_partial;
C
Christoph Lameter 已提交
4366 4367 4368 4369 4370 4371
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4372
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4373 4374 4375 4376
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4377
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4378 4379 4380 4381
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4382
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4383 4384 4385 4386
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4387
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4388 4389
		struct kmem_cache_node *n = get_node(s, node);

4390 4391 4392
		if (!n)
			continue;

4393
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4394 4395 4396 4397
			return 1;
	}
	return 0;
}
4398
#endif
C
Christoph Lameter 已提交
4399 4400

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4401
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4402 4403 4404 4405 4406 4407 4408 4409

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4410 4411
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4412 4413 4414

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4415
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4431
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4432 4433 4434 4435 4436
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4437
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4438 4439 4440
}
SLAB_ATTR_RO(objs_per_slab);

4441 4442 4443
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4444 4445 4446
	unsigned long order;
	int err;

4447
	err = kstrtoul(buf, 10, &order);
4448 4449
	if (err)
		return err;
4450 4451 4452 4453 4454 4455 4456 4457

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4458 4459
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4460
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4461
}
4462
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4475
	err = kstrtoul(buf, 10, &min);
4476 4477 4478
	if (err)
		return err;

4479
	set_min_partial(s, min);
4480 4481 4482 4483
	return length;
}
SLAB_ATTR(min_partial);

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4495
	err = kstrtoul(buf, 10, &objects);
4496 4497
	if (err)
		return err;
4498
	if (objects && !kmem_cache_has_cpu_partial(s))
4499
		return -EINVAL;
4500 4501 4502 4503 4504 4505 4506

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4507 4508
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4509 4510 4511
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4523
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4524 4525 4526 4527 4528
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4529
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4530 4531 4532 4533 4534
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4535
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4536 4537 4538
}
SLAB_ATTR_RO(objects);

4539 4540 4541 4542 4543 4544
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4611 4612 4613 4614 4615 4616
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4617
#ifdef CONFIG_SLUB_DEBUG
4618 4619 4620 4621 4622 4623
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4624 4625 4626 4627 4628 4629
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4639 4640
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4641
		s->flags |= SLAB_DEBUG_FREE;
4642
	}
C
Christoph Lameter 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4656 4657
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4658
		s->flags |= SLAB_TRACE;
4659
	}
C
Christoph Lameter 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4676 4677
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4678
		s->flags |= SLAB_RED_ZONE;
4679
	}
4680
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4697 4698
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4699
		s->flags |= SLAB_POISON;
4700
	}
4701
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4718 4719
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4720
		s->flags |= SLAB_STORE_USER;
4721
	}
4722
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4723 4724 4725 4726
	return length;
}
SLAB_ATTR(store_user);

4727 4728 4729 4730 4731 4732 4733 4734
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4735 4736 4737 4738 4739 4740 4741 4742
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4743 4744
}
SLAB_ATTR(validate);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4778
#endif
4779

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4799
#ifdef CONFIG_NUMA
4800
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4801
{
4802
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4803 4804
}

4805
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4806 4807
				const char *buf, size_t length)
{
4808 4809 4810
	unsigned long ratio;
	int err;

4811
	err = kstrtoul(buf, 10, &ratio);
4812 4813 4814
	if (err)
		return err;

4815
	if (ratio <= 100)
4816
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4817 4818 4819

	return length;
}
4820
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4821 4822
#endif

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4835
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4836 4837 4838 4839 4840 4841 4842

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4843
#ifdef CONFIG_SMP
4844 4845
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4846
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4847
	}
4848
#endif
4849 4850 4851 4852
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4853 4854 4855 4856 4857
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4858
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4859 4860
}

4861 4862 4863 4864 4865
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4866 4867 4868 4869 4870 4871 4872 4873 4874
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4886
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4887 4888 4889 4890 4891 4892 4893
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4894
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4895
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4896 4897
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4898 4899
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4900 4901
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4902 4903
#endif

P
Pekka Enberg 已提交
4904
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4905 4906 4907 4908
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4909
	&min_partial_attr.attr,
4910
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4911
	&objects_attr.attr,
4912
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4913 4914 4915 4916 4917 4918 4919 4920
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4921
	&shrink_attr.attr,
4922
	&reserved_attr.attr,
4923
	&slabs_cpu_partial_attr.attr,
4924
#ifdef CONFIG_SLUB_DEBUG
4925 4926 4927 4928
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4929 4930 4931
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4932
	&validate_attr.attr,
4933 4934
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4935
#endif
C
Christoph Lameter 已提交
4936 4937 4938 4939
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4940
	&remote_node_defrag_ratio_attr.attr,
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4953
	&alloc_node_mismatch_attr.attr,
4954 4955 4956 4957 4958 4959 4960
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4961
	&deactivate_bypass_attr.attr,
4962
	&order_fallback_attr.attr,
4963 4964
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4965 4966
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4967 4968
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4969
#endif
4970 4971 4972 4973
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5015 5016 5017
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5018

5019 5020 5021 5022
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5040
		for_each_memcg_cache_index(i) {
5041
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5042 5043 5044 5045 5046 5047
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5048 5049 5050
	return err;
}

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5104
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5122
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5123 5124 5125
	.filter = uevent_filter,
};

5126
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5127 5128 5129 5130

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5131 5132
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5155 5156
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5157 5158 5159
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5160 5161 5162

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5163 5164
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5165 5166
#endif

C
Christoph Lameter 已提交
5167 5168 5169 5170 5171 5172 5173 5174
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5175
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5176 5177 5178 5179 5180 5181 5182

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5183
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5193
	s->kobj.kset = slab_kset;
5194
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5195 5196
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5197
		return err;
5198
	}
C
Christoph Lameter 已提交
5199 5200

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5201 5202 5203
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5204
		return err;
5205
	}
C
Christoph Lameter 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5217
	if (slab_state < FULL)
5218 5219 5220 5221 5222 5223
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5224 5225
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5226
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5227 5228 5229 5230
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5231
 * available lest we lose that information.
C
Christoph Lameter 已提交
5232 5233 5234 5235 5236 5237 5238
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5239
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5240 5241 5242 5243 5244

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5245
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5246 5247 5248
		/*
		 * If we have a leftover link then remove it.
		 */
5249 5250
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5266
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5267 5268
	int err;

5269
	mutex_lock(&slab_mutex);
5270

5271
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5272
	if (!slab_kset) {
5273
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5274 5275 5276 5277
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5278
	slab_state = FULL;
5279

5280
	list_for_each_entry(s, &slab_caches, list) {
5281
		err = sysfs_slab_add(s);
5282 5283 5284
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5285
	}
C
Christoph Lameter 已提交
5286 5287 5288 5289 5290 5291

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5292 5293
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5294
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5295 5296 5297
		kfree(al);
	}

5298
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5299 5300 5301 5302 5303
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5304
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5305 5306 5307 5308

/*
 * The /proc/slabinfo ABI
 */
5309
#ifdef CONFIG_SLABINFO
5310
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5311 5312
{
	unsigned long nr_slabs = 0;
5313 5314
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5315 5316 5317 5318 5319 5320 5321 5322
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5323 5324
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5325
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5326 5327
	}

5328 5329 5330 5331 5332 5333
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5334 5335
}

5336
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5337 5338 5339
{
}

5340 5341
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5342
{
5343
	return -EIO;
5344
}
5345
#endif /* CONFIG_SLABINFO */