slub.c 127.3 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
213
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
214
#else
215 216 217
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
218
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
219 220
#endif

221
static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 223
{
#ifdef CONFIG_SLUB_STATS
224 225 226 227 228
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
229 230 231
#endif
}

C
Christoph Lameter 已提交
232 233 234 235 236 237 238 239 240
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
241
/* Verify that a pointer has an address that is valid within a slab page */
242 243 244 245 246
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

247
	if (!object)
248 249
		return 1;

250
	base = page_address(page);
251
	if (object < base || object >= base + page->objects * s->size ||
252 253 254 255 256 257 258
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

259 260 261 262 263
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

264 265 266 267 268
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

269 270 271 272 273 274 275 276 277 278 279 280
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

281 282 283 284 285 286
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
287 288
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 290 291 292 293 294 295 296
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

297 298 299 300 301 302 303 304
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305
		return s->object_size;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

321 322 323 324 325
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

326
static inline struct kmem_cache_order_objects oo_make(int order,
327
		unsigned long size, int reserved)
328 329
{
	struct kmem_cache_order_objects x = {
330
		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 332 333 334 335 336 337
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
338
	return x.x >> OO_SHIFT;
339 340 341 342
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
343
	return x.x & OO_MASK;
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

374 375 376 377 378 379 380
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
381 382
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383
	if (s->flags & __CMPXCHG_DOUBLE) {
384
		if (cmpxchg_double(&page->freelist, &page->counters,
385 386 387 388 389 390 391
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
392 393
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
394
			page->freelist = freelist_new;
395
			set_page_slub_counters(page, counters_new);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

412 413 414 415 416
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
417 418
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419
	if (s->flags & __CMPXCHG_DOUBLE) {
420
		if (cmpxchg_double(&page->freelist, &page->counters,
421 422 423 424 425 426
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
427 428 429
		unsigned long flags;

		local_irq_save(flags);
430
		slab_lock(page);
431 432
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
433
			page->freelist = freelist_new;
434
			set_page_slub_counters(page, counters_new);
435
			slab_unlock(page);
436
			local_irq_restore(flags);
437 438
			return 1;
		}
439
		slab_unlock(page);
440
		local_irq_restore(flags);
441 442 443 444 445 446 447 448 449 450 451 452
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
453
#ifdef CONFIG_SLUB_DEBUG
454 455 456
/*
 * Determine a map of object in use on a page.
 *
457
 * Node listlock must be held to guarantee that the page does
458 459 460 461 462 463 464 465 466 467 468
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
469 470 471
/*
 * Debug settings:
 */
472 473 474
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
475
static int slub_debug;
476
#endif
C
Christoph Lameter 已提交
477 478

static char *slub_debug_slabs;
479
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
480

C
Christoph Lameter 已提交
481 482 483 484 485
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
486 487
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
504
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
505
{
A
Akinobu Mita 已提交
506
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
507 508

	if (addr) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
527 528
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
529
		p->pid = current->pid;
C
Christoph Lameter 已提交
530 531 532 533 534 535 536
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
537 538 539
	if (!(s->flags & SLAB_STORE_USER))
		return;

540 541
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
542 543 544 545 546 547 548
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

549
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 552 553 554 555 556 557 558 559 560
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
561 562 563 564 565 566 567 568 569 570 571 572 573
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
574 575 576
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
577 578 579 580 581 582 583 584 585 586 587 588 589

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
590
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
591 592
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
593

594
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
609 610
{
	unsigned int off;	/* Offset of last byte */
611
	u8 *addr = page_address(page);
612 613 614 615 616 617 618 619 620

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
621
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
622

623
	print_section("Object ", p, min_t(unsigned long, s->object_size,
624
				PAGE_SIZE));
C
Christoph Lameter 已提交
625
	if (s->flags & SLAB_RED_ZONE)
626 627
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
628 629 630 631 632 633

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

634
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
635 636 637 638
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
639
		print_section("Padding ", p + off, s->size - off);
640 641

	dump_stack();
C
Christoph Lameter 已提交
642 643 644 645 646
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
647
	slab_bug(s, "%s", reason);
648
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
649 650
}

651 652
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
653 654 655 656
{
	va_list args;
	char buf[100];

657 658
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
659
	va_end(args);
660
	slab_bug(s, "%s", buf);
661
	print_page_info(page);
C
Christoph Lameter 已提交
662 663 664
	dump_stack();
}

665
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
666 667 668 669
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
670 671
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
672 673 674
	}

	if (s->flags & SLAB_RED_ZONE)
675
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
676 677
}

678 679 680 681 682 683 684 685 686
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
687
			u8 *start, unsigned int value, unsigned int bytes)
688 689 690 691
{
	u8 *fault;
	u8 *end;

692
	fault = memchr_inv(start, value, bytes);
693 694 695 696 697 698 699 700 701 702 703 704 705 706
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
707 708 709 710 711 712 713 714 715
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
716
 *
C
Christoph Lameter 已提交
717 718 719
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
720
 * object + s->object_size
C
Christoph Lameter 已提交
721
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
722
 * 	Padding is extended by another word if Redzoning is enabled and
723
 * 	object_size == inuse.
C
Christoph Lameter 已提交
724
 *
C
Christoph Lameter 已提交
725 726 727 728
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
729 730
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
731 732
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
733
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
734
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
735 736 737
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
738 739
 *
 * object + s->size
C
Christoph Lameter 已提交
740
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
741
 *
742
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
743
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

762 763
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
764 765
}

766
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
767 768
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
769 770 771 772 773
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
774 775 776 777

	if (!(s->flags & SLAB_POISON))
		return 1;

778
	start = page_address(page);
779
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
780 781
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
782 783 784
	if (!remainder)
		return 1;

785
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
786 787 788 789 790 791
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
792
	print_section("Padding ", end - remainder, remainder);
793

E
Eric Dumazet 已提交
794
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
795
	return 0;
C
Christoph Lameter 已提交
796 797 798
}

static int check_object(struct kmem_cache *s, struct page *page,
799
					void *object, u8 val)
C
Christoph Lameter 已提交
800 801
{
	u8 *p = object;
802
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
803 804

	if (s->flags & SLAB_RED_ZONE) {
805
		if (!check_bytes_and_report(s, page, object, "Redzone",
806
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
807 808
			return 0;
	} else {
809
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
810
			check_bytes_and_report(s, page, p, "Alignment padding",
811 812
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
813
		}
C
Christoph Lameter 已提交
814 815 816
	}

	if (s->flags & SLAB_POISON) {
817
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
818
			(!check_bytes_and_report(s, page, p, "Poison", p,
819
					POISON_FREE, s->object_size - 1) ||
820
			 !check_bytes_and_report(s, page, p, "Poison",
821
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
822 823 824 825 826 827 828
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

829
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
830 831 832 833 834 835 836 837 838 839
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
840
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
841
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
842
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
843
		 */
844
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
845 846 847 848 849 850 851
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
852 853
	int maxobj;

C
Christoph Lameter 已提交
854 855 856
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
857
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
858 859
		return 0;
	}
860

861
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
862 863 864 865 866 867
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
868
		slab_err(s, page, "inuse %u > max %u",
869
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
870 871 872 873 874 875 876 877
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
878 879
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
880 881 882 883
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
884
	void *fp;
C
Christoph Lameter 已提交
885
	void *object = NULL;
886
	unsigned long max_objects;
C
Christoph Lameter 已提交
887

888
	fp = page->freelist;
889
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
890 891 892 893 894 895
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
896
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
897
			} else {
898
				slab_err(s, page, "Freepointer corrupt");
899
				page->freelist = NULL;
900
				page->inuse = page->objects;
901
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
902 903 904 905 906 907 908 909 910
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

911
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
912 913
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
914 915 916 917 918 919 920

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
921
	if (page->inuse != page->objects - nr) {
922
		slab_err(s, page, "Wrong object count. Counter is %d but "
923 924
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
925
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
926 927 928 929
	}
	return search == NULL;
}

930 931
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
932 933 934 935 936 937 938 939 940
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
941 942
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
943 944 945 946 947

		dump_stack();
	}
}

948 949 950 951
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
952 953 954 955 956 957 958 959 960 961
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

962 963
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
964
	flags &= gfp_allowed_mask;
965 966 967
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

968
	return should_failslab(s->object_size, flags, s->flags);
969 970
}

971 972
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
973
{
974
	flags &= gfp_allowed_mask;
975
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
976
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
977 978 979 980 981 982
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

983
	/*
X
Xie XiuQi 已提交
984
	 * Trouble is that we may no longer disable interrupts in the fast path
985 986 987 988 989 990 991 992
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
993 994
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
995 996 997
		local_irq_restore(flags);
	}
#endif
998
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
999
		debug_check_no_obj_freed(x, s->object_size);
1000 1001
}

1002
/*
C
Christoph Lameter 已提交
1003
 * Tracking of fully allocated slabs for debugging purposes.
1004
 */
1005 1006
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1007
{
1008 1009 1010
	if (!(s->flags & SLAB_STORE_USER))
		return;

1011
	lockdep_assert_held(&n->list_lock);
1012 1013 1014
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1015
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016 1017 1018 1019
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1020
	lockdep_assert_held(&n->list_lock);
1021 1022 1023
	list_del(&page->lru);
}

1024 1025 1026 1027 1028 1029 1030 1031
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1032 1033 1034 1035 1036
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1037
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1047
	if (likely(n)) {
1048
		atomic_long_inc(&n->nr_slabs);
1049 1050
		atomic_long_add(objects, &n->total_objects);
	}
1051
}
1052
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053 1054 1055 1056
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1057
	atomic_long_sub(objects, &n->total_objects);
1058 1059 1060
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1061 1062 1063 1064 1065 1066
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1067
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1068 1069 1070
	init_tracking(s, object);
}

1071 1072
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1073
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1074 1075 1076 1077 1078 1079
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1080
		goto bad;
C
Christoph Lameter 已提交
1081 1082
	}

1083
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1084 1085
		goto bad;

C
Christoph Lameter 已提交
1086 1087 1088 1089
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1090
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1091
	return 1;
C
Christoph Lameter 已提交
1092

C
Christoph Lameter 已提交
1093 1094 1095 1096 1097
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1098
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1099
		 */
1100
		slab_fix(s, "Marking all objects used");
1101
		page->inuse = page->objects;
1102
		page->freelist = NULL;
C
Christoph Lameter 已提交
1103 1104 1105 1106
	}
	return 0;
}

1107 1108 1109
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1110
{
1111
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1112

1113
	spin_lock_irqsave(&n->list_lock, *flags);
1114 1115
	slab_lock(page);

C
Christoph Lameter 已提交
1116 1117 1118 1119
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1120
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1121 1122 1123 1124
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1125
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1126 1127 1128
		goto fail;
	}

1129
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1130
		goto out;
C
Christoph Lameter 已提交
1131

1132
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1133
		if (!PageSlab(page)) {
1134 1135
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1136
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1137
			printk(KERN_ERR
1138
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1139
						object);
1140
			dump_stack();
P
Pekka Enberg 已提交
1141
		} else
1142 1143
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1144 1145
		goto fail;
	}
C
Christoph Lameter 已提交
1146 1147 1148 1149

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1150
	init_object(s, object, SLUB_RED_INACTIVE);
1151
out:
1152
	slab_unlock(page);
1153 1154 1155 1156 1157
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1158

C
Christoph Lameter 已提交
1159
fail:
1160 1161
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1162
	slab_fix(s, "Object at 0x%p not freed", object);
1163
	return NULL;
C
Christoph Lameter 已提交
1164 1165
}

C
Christoph Lameter 已提交
1166 1167
static int __init setup_slub_debug(char *str)
{
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1182 1183 1184 1185 1186 1187 1188 1189 1190
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1201
	for (; *str && *str != ','; str++) {
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1218 1219 1220
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1221 1222
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1223
				"unknown. skipped\n", *str);
1224
		}
C
Christoph Lameter 已提交
1225 1226
	}

1227
check_slabs:
C
Christoph Lameter 已提交
1228 1229
	if (*str == ',')
		slub_debug_slabs = str + 1;
1230
out:
C
Christoph Lameter 已提交
1231 1232 1233 1234 1235
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1236
static unsigned long kmem_cache_flags(unsigned long object_size,
1237
	unsigned long flags, const char *name,
1238
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1239 1240
{
	/*
1241
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1242
	 */
1243 1244
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1245
		flags |= slub_debug;
1246 1247

	return flags;
C
Christoph Lameter 已提交
1248 1249
}
#else
C
Christoph Lameter 已提交
1250 1251
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1252

C
Christoph Lameter 已提交
1253
static inline int alloc_debug_processing(struct kmem_cache *s,
1254
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1255

1256 1257 1258
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1259 1260 1261 1262

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1263
			void *object, u8 val) { return 1; }
1264 1265
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1266 1267
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1268
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1269
	unsigned long flags, const char *name,
1270
	void (*ctor)(void *))
1271 1272 1273
{
	return flags;
}
C
Christoph Lameter 已提交
1274
#define slub_debug 0
1275

1276 1277
#define disable_higher_order_debug 0

1278 1279
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1280 1281
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1282 1283 1284 1285
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1297 1298 1299 1300
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1301 1302 1303 1304 1305
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1306

1307 1308 1309 1310
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1311

1312
#endif /* CONFIG_SLUB_DEBUG */
1313

C
Christoph Lameter 已提交
1314 1315 1316
/*
 * Slab allocation and freeing
 */
1317 1318 1319 1320 1321
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1322 1323
	flags |= __GFP_NOTRACK;

1324
	if (node == NUMA_NO_NODE)
1325 1326
		return alloc_pages(flags, order);
	else
1327
		return alloc_pages_exact_node(node, flags, order);
1328 1329
}

C
Christoph Lameter 已提交
1330 1331
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1332
	struct page *page;
1333
	struct kmem_cache_order_objects oo = s->oo;
1334
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1335

1336 1337 1338 1339 1340
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1341
	flags |= s->allocflags;
1342

1343 1344 1345 1346 1347 1348 1349
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1350 1351
	if (unlikely(!page)) {
		oo = s->min;
1352
		alloc_gfp = flags;
1353 1354 1355 1356
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1357
		page = alloc_slab_page(alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1358

1359 1360
		if (page)
			stat(s, ORDER_FALLBACK);
1361
	}
V
Vegard Nossum 已提交
1362

1363
	if (kmemcheck_enabled && page
1364
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 1366
		int pages = 1 << oo_order(oo);

1367
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1368 1369 1370 1371 1372 1373 1374 1375 1376

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1377 1378
	}

1379 1380 1381 1382 1383
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1384
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1385 1386 1387
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1389 1390 1391 1392 1393 1394 1395

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1396
	setup_object_debug(s, page, object);
1397
	if (unlikely(s->ctor))
1398
		s->ctor(object);
C
Christoph Lameter 已提交
1399 1400 1401 1402 1403 1404 1405 1406
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1407
	int order;
C
Christoph Lameter 已提交
1408

C
Christoph Lameter 已提交
1409
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1410

C
Christoph Lameter 已提交
1411 1412
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1413 1414 1415
	if (!page)
		goto out;

G
Glauber Costa 已提交
1416
	order = compound_order(page);
1417
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1418
	memcg_bind_pages(s, order);
1419
	page->slab_cache = s;
1420
	__SetPageSlab(page);
1421 1422
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1423 1424 1425 1426

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1427
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1428 1429

	last = start;
1430
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1431 1432 1433 1434 1435
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1436
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1437 1438

	page->freelist = start;
1439
	page->inuse = page->objects;
1440
	page->frozen = 1;
C
Christoph Lameter 已提交
1441 1442 1443 1444 1445 1446
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1447 1448
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1449

1450
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1451 1452 1453
		void *p;

		slab_pad_check(s, page);
1454 1455
		for_each_object(p, s, page_address(page),
						page->objects)
1456
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1457 1458
	}

1459
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1460

C
Christoph Lameter 已提交
1461 1462 1463
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1464
		-pages);
C
Christoph Lameter 已提交
1465

1466
	__ClearPageSlabPfmemalloc(page);
1467
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1468 1469

	memcg_release_pages(s, order);
1470
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1471 1472
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1473
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1474 1475
}

1476 1477 1478
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1479 1480 1481 1482
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1483 1484 1485 1486 1487
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1488
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1489 1490 1491 1492 1493
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1508 1509 1510 1511 1512 1513 1514 1515

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1516
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1517 1518 1519 1520
	free_slab(s, page);
}

/*
1521
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1522
 */
1523 1524
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1525
{
C
Christoph Lameter 已提交
1526
	n->nr_partial++;
1527
	if (tail == DEACTIVATE_TO_TAIL)
1528 1529 1530
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1531 1532
}

1533 1534
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1535
{
P
Peter Zijlstra 已提交
1536
	lockdep_assert_held(&n->list_lock);
1537 1538
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1539

1540 1541 1542
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1543 1544 1545 1546
	list_del(&page->lru);
	n->nr_partial--;
}

1547 1548 1549 1550 1551 1552 1553
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1554
/*
1555 1556
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1557
 *
1558
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1559
 */
1560
static inline void *acquire_slab(struct kmem_cache *s,
1561
		struct kmem_cache_node *n, struct page *page,
1562
		int mode, int *objects)
C
Christoph Lameter 已提交
1563
{
1564 1565 1566 1567
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1568 1569
	lockdep_assert_held(&n->list_lock);

1570 1571 1572 1573 1574
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1575 1576 1577
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1578
	*objects = new.objects - new.inuse;
1579
	if (mode) {
1580
		new.inuse = page->objects;
1581 1582 1583 1584
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1585

1586
	VM_BUG_ON(new.frozen);
1587
	new.frozen = 1;
1588

1589
	if (!__cmpxchg_double_slab(s, page,
1590
			freelist, counters,
1591
			new.freelist, new.counters,
1592 1593
			"acquire_slab"))
		return NULL;
1594 1595

	remove_partial(n, page);
1596
	WARN_ON(!freelist);
1597
	return freelist;
C
Christoph Lameter 已提交
1598 1599
}

1600
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1601
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1602

C
Christoph Lameter 已提交
1603
/*
C
Christoph Lameter 已提交
1604
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1605
 */
1606 1607
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1608
{
1609 1610
	struct page *page, *page2;
	void *object = NULL;
1611 1612
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1613 1614 1615 1616

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1617 1618
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1619 1620 1621 1622 1623
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1624
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1625
		void *t;
1626

1627 1628 1629
		if (!pfmemalloc_match(page, flags))
			continue;

1630
		t = acquire_slab(s, n, page, object == NULL, &objects);
1631 1632 1633
		if (!t)
			break;

1634
		available += objects;
1635
		if (!object) {
1636 1637 1638 1639
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1640
			put_cpu_partial(s, page, 0);
1641
			stat(s, CPU_PARTIAL_NODE);
1642
		}
1643 1644
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1645 1646
			break;

1647
	}
C
Christoph Lameter 已提交
1648
	spin_unlock(&n->list_lock);
1649
	return object;
C
Christoph Lameter 已提交
1650 1651 1652
}

/*
C
Christoph Lameter 已提交
1653
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1654
 */
1655
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1656
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1657 1658 1659
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1660
	struct zoneref *z;
1661 1662
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1663
	void *object;
1664
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1665 1666

	/*
C
Christoph Lameter 已提交
1667 1668 1669 1670
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1671
	 *
C
Christoph Lameter 已提交
1672 1673 1674 1675
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1676
	 *
C
Christoph Lameter 已提交
1677
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1678 1679 1680 1681 1682
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1683
	 */
1684 1685
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1686 1687
		return NULL;

1688
	do {
1689
		cpuset_mems_cookie = read_mems_allowed_begin();
1690
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1691 1692 1693 1694 1695 1696 1697
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1698
				object = get_partial_node(s, n, c, flags);
1699 1700
				if (object) {
					/*
1701 1702 1703 1704 1705
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1706 1707 1708
					 */
					return object;
				}
1709
			}
C
Christoph Lameter 已提交
1710
		}
1711
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1712 1713 1714 1715 1716 1717 1718
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1719
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1721
{
1722
	void *object;
1723
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1724

1725
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 1727
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1728

1729
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1788
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 1790
}

1791
static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 1793 1794 1795 1796 1797
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1798

C
Christoph Lameter 已提交
1799 1800 1801
/*
 * Remove the cpu slab
 */
1802 1803
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1804
{
1805 1806 1807 1808 1809
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1810
	int tail = DEACTIVATE_TO_HEAD;
1811 1812 1813 1814
	struct page new;
	struct page old;

	if (page->freelist) {
1815
		stat(s, DEACTIVATE_REMOTE_FREES);
1816
		tail = DEACTIVATE_TO_TAIL;
1817 1818
	}

1819
	/*
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1837
			VM_BUG_ON(!new.frozen);
1838

1839
		} while (!__cmpxchg_double_slab(s, page,
1840 1841 1842 1843 1844 1845 1846
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1847
	/*
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1860
	 */
1861
redo:
1862

1863 1864
	old.freelist = page->freelist;
	old.counters = page->counters;
1865
	VM_BUG_ON(!old.frozen);
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1878
	if (!new.inuse && n->nr_partial > s->min_partial)
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1911

P
Peter Zijlstra 已提交
1912
			remove_full(s, n, page);
1913 1914 1915 1916

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1917
			stat(s, tail);
1918 1919

		} else if (m == M_FULL) {
1920

1921 1922 1923 1924 1925 1926 1927
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1928
	if (!__cmpxchg_double_slab(s, page,
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1941
	}
C
Christoph Lameter 已提交
1942 1943
}

1944 1945 1946
/*
 * Unfreeze all the cpu partial slabs.
 *
1947 1948 1949
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1950
 */
1951 1952
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1953
{
1954
#ifdef CONFIG_SLUB_CPU_PARTIAL
1955
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956
	struct page *page, *discard_page = NULL;
1957 1958 1959 1960 1961 1962

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1963 1964 1965 1966 1967 1968 1969 1970 1971

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1972 1973 1974 1975 1976

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1977
			VM_BUG_ON(!old.frozen);
1978 1979 1980 1981 1982 1983

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1984
		} while (!__cmpxchg_double_slab(s, page,
1985 1986 1987 1988
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1989
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990 1991
			page->next = discard_page;
			discard_page = page;
1992 1993 1994
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1995 1996 1997 1998 1999
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2000 2001 2002 2003 2004 2005 2006 2007 2008

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2009
#endif
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2021
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022
{
2023
#ifdef CONFIG_SLUB_CPU_PARTIAL
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2043
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044
				local_irq_restore(flags);
2045
				oldpage = NULL;
2046 2047
				pobjects = 0;
				pages = 0;
2048
				stat(s, CPU_PARTIAL_DRAIN);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2059 2060
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2061
#endif
2062 2063
}

2064
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2065
{
2066
	stat(s, CPUSLAB_FLUSH);
2067 2068 2069 2070 2071
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2072 2073 2074 2075
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2076
 *
C
Christoph Lameter 已提交
2077 2078
 * Called from IPI handler with interrupts disabled.
 */
2079
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2080
{
2081
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2082

2083 2084 2085 2086
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2087
		unfreeze_partials(s, c);
2088
	}
C
Christoph Lameter 已提交
2089 2090 2091 2092 2093 2094
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2095
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2096 2097
}

2098 2099 2100 2101 2102
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2103
	return c->page || c->partial;
2104 2105
}

C
Christoph Lameter 已提交
2106 2107
static void flush_all(struct kmem_cache *s)
{
2108
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2109 2110
}

2111 2112 2113 2114
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2115
static inline int node_match(struct page *page, int node)
2116 2117
{
#ifdef CONFIG_NUMA
2118
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119 2120 2121 2122 2123
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2161
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2162 2163
		s->size, oo_order(s->oo), oo_order(s->min));

2164
	if (oo_order(s->min) > get_order(s->object_size))
2165 2166 2167
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2177 2178 2179
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2180 2181 2182 2183 2184 2185 2186

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2187 2188 2189
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2190
	void *freelist;
2191 2192
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2193

2194
	freelist = get_partial(s, flags, node, c);
2195

2196 2197 2198 2199
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2200 2201 2202 2203 2204 2205 2206 2207 2208
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2209
		freelist = page->freelist;
2210 2211 2212 2213 2214 2215
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2216
		freelist = NULL;
2217

2218
	return freelist;
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2229
/*
2230 2231
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2232 2233 2234 2235
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2236 2237
 *
 * This function must be called with interrupt disabled.
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2248

2249
		new.counters = counters;
2250
		VM_BUG_ON(!new.frozen);
2251 2252 2253 2254

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2255
	} while (!__cmpxchg_double_slab(s, page,
2256 2257 2258 2259 2260 2261 2262
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2263
/*
2264 2265 2266 2267 2268 2269
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2270
 *
2271 2272 2273
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2274
 *
2275
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2276 2277
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2278
 */
2279 2280
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2281
{
2282
	void *freelist;
2283
	struct page *page;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2295

2296 2297
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2298
		goto new_slab;
2299
redo:
2300

2301
	if (unlikely(!node_match(page, node))) {
2302
		stat(s, ALLOC_NODE_MISMATCH);
2303
		deactivate_slab(s, page, c->freelist);
2304 2305
		c->page = NULL;
		c->freelist = NULL;
2306 2307
		goto new_slab;
	}
C
Christoph Lameter 已提交
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2321
	/* must check again c->freelist in case of cpu migration or IRQ */
2322 2323
	freelist = c->freelist;
	if (freelist)
2324
		goto load_freelist;
2325

2326
	stat(s, ALLOC_SLOWPATH);
2327

2328
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2329

2330
	if (!freelist) {
2331 2332
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2333
		goto new_slab;
2334
	}
C
Christoph Lameter 已提交
2335

2336
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2337

2338
load_freelist:
2339 2340 2341 2342 2343
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2344
	VM_BUG_ON(!c->page->frozen);
2345
	c->freelist = get_freepointer(s, freelist);
2346 2347
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2348
	return freelist;
C
Christoph Lameter 已提交
2349 2350

new_slab:
2351

2352
	if (c->partial) {
2353 2354
		page = c->page = c->partial;
		c->partial = page->next;
2355 2356 2357
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2358 2359
	}

2360
	freelist = new_slab_objects(s, gfpflags, node, &c);
2361

2362 2363 2364
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2365

2366 2367
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2368
	}
2369

2370
	page = c->page;
2371
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372
		goto load_freelist;
2373

2374
	/* Only entered in the debug case */
2375 2376
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2377
		goto new_slab;	/* Slab failed checks. Next slab needed */
2378

2379
	deactivate_slab(s, page, get_freepointer(s, freelist));
2380 2381
	c->page = NULL;
	c->freelist = NULL;
2382
	local_irq_restore(flags);
2383
	return freelist;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2396
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397
		gfp_t gfpflags, int node, unsigned long addr)
2398 2399
{
	void **object;
2400
	struct kmem_cache_cpu *c;
2401
	struct page *page;
2402
	unsigned long tid;
2403

2404
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2405
		return NULL;
2406

2407
	s = memcg_kmem_get_cache(s, gfpflags);
2408 2409 2410 2411 2412 2413
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2414 2415 2416 2417 2418
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2419
	 */
2420
	preempt_disable();
2421
	c = __this_cpu_ptr(s->cpu_slab);
2422 2423 2424 2425 2426 2427 2428 2429

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2430
	preempt_enable();
2431

2432
	object = c->freelist;
2433
	page = c->page;
L
Libin 已提交
2434
	if (unlikely(!object || !node_match(page, node)))
2435
		object = __slab_alloc(s, gfpflags, node, addr, c);
2436 2437

	else {
2438 2439
		void *next_object = get_freepointer_safe(s, object);

2440
		/*
L
Lucas De Marchi 已提交
2441
		 * The cmpxchg will only match if there was no additional
2442 2443
		 * operation and if we are on the right processor.
		 *
2444 2445
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2446 2447 2448 2449
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2450 2451 2452
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2453
		 */
2454
		if (unlikely(!this_cpu_cmpxchg_double(
2455 2456
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2457
				next_object, next_tid(tid)))) {
2458 2459 2460 2461

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2462
		prefetch_freepointer(s, next_object);
2463
		stat(s, ALLOC_FASTPATH);
2464
	}
2465

2466
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2467
		memset(object, 0, s->object_size);
2468

2469
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2470

2471
	return object;
C
Christoph Lameter 已提交
2472 2473
}

2474 2475 2476 2477 2478 2479
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2480 2481
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2482
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2483

2484 2485
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2486 2487

	return ret;
C
Christoph Lameter 已提交
2488 2489 2490
}
EXPORT_SYMBOL(kmem_cache_alloc);

2491
#ifdef CONFIG_TRACING
2492 2493
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2494
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495 2496 2497 2498
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2499 2500
#endif

C
Christoph Lameter 已提交
2501 2502 2503
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2504
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2505

2506
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2508 2509

	return ret;
C
Christoph Lameter 已提交
2510 2511 2512
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2513
#ifdef CONFIG_TRACING
2514
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2515
				    gfp_t gfpflags,
2516
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2517
{
2518
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519 2520 2521 2522

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2523
}
2524
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2525
#endif
2526
#endif
E
Eduard - Gabriel Munteanu 已提交
2527

C
Christoph Lameter 已提交
2528
/*
2529 2530
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2531
 *
2532 2533 2534
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2535
 */
2536
static void __slab_free(struct kmem_cache *s, struct page *page,
2537
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2538 2539 2540
{
	void *prior;
	void **object = (void *)x;
2541 2542 2543 2544
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2545
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2546

2547
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2548

2549 2550
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2551
		return;
C
Christoph Lameter 已提交
2552

2553
	do {
2554 2555 2556 2557
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2558 2559 2560 2561 2562 2563
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2564
		if ((!new.inuse || !prior) && !was_frozen) {
2565

P
Peter Zijlstra 已提交
2566
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2567 2568

				/*
2569 2570 2571 2572
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2573 2574 2575
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2576
			} else { /* Needs to be taken off a list */
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2590
		}
C
Christoph Lameter 已提交
2591

2592 2593 2594 2595
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2596

2597
	if (likely(!n)) {
2598 2599 2600 2601 2602

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2603
		if (new.frozen && !was_frozen) {
2604
			put_cpu_partial(s, page, 1);
2605 2606
			stat(s, CPU_PARTIAL_FREE);
		}
2607
		/*
2608 2609 2610 2611 2612
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2613
                return;
2614
        }
C
Christoph Lameter 已提交
2615

2616 2617 2618
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2619
	/*
2620 2621
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2622
	 */
2623 2624
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2625
			remove_full(s, n, page);
2626 2627
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2628
	}
2629
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2630 2631 2632
	return;

slab_empty:
2633
	if (prior) {
C
Christoph Lameter 已提交
2634
		/*
2635
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2636
		 */
2637
		remove_partial(n, page);
2638
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2639
	} else {
2640
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2641 2642
		remove_full(s, n, page);
	}
2643

2644
	spin_unlock_irqrestore(&n->list_lock, flags);
2645
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2646 2647 2648
	discard_slab(s, page);
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2660
static __always_inline void slab_free(struct kmem_cache *s,
2661
			struct page *page, void *x, unsigned long addr)
2662 2663
{
	void **object = (void *)x;
2664
	struct kmem_cache_cpu *c;
2665
	unsigned long tid;
2666

2667 2668
	slab_free_hook(s, x);

2669 2670 2671 2672 2673 2674 2675
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2676
	preempt_disable();
2677
	c = __this_cpu_ptr(s->cpu_slab);
2678

2679
	tid = c->tid;
2680
	preempt_enable();
2681

2682
	if (likely(page == c->page)) {
2683
		set_freepointer(s, object, c->freelist);
2684

2685
		if (unlikely(!this_cpu_cmpxchg_double(
2686 2687 2688 2689 2690 2691 2692
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2693
		stat(s, FREE_FASTPATH);
2694
	} else
2695
		__slab_free(s, page, x, addr);
2696 2697 2698

}

C
Christoph Lameter 已提交
2699 2700
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2701 2702
	s = cache_from_obj(s, x);
	if (!s)
2703
		return;
2704
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2706 2707 2708 2709
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2710 2711 2712 2713
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2714 2715 2716 2717
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2718
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2729
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730
static int slub_min_objects;
C
Christoph Lameter 已提交
2731 2732 2733

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2734
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2735 2736 2737 2738 2739 2740
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2741 2742 2743 2744
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2745
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2746 2747 2748 2749 2750 2751
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2752
 *
C
Christoph Lameter 已提交
2753 2754 2755 2756
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2757
 *
C
Christoph Lameter 已提交
2758 2759 2760 2761
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2762
 */
2763
static inline int slab_order(int size, int min_objects,
2764
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2765 2766 2767
{
	int order;
	int rem;
2768
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2769

2770
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772

2773
	for (order = max(min_order,
2774 2775
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2776

2777
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2778

2779
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2780 2781
			continue;

2782
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2783

2784
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2785 2786 2787
			break;

	}
C
Christoph Lameter 已提交
2788

C
Christoph Lameter 已提交
2789 2790 2791
	return order;
}

2792
static inline int calculate_order(int size, int reserved)
2793 2794 2795 2796
{
	int order;
	int min_objects;
	int fraction;
2797
	int max_objects;
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2808 2809
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810
	max_objects = order_objects(slub_max_order, size, reserved);
2811 2812
	min_objects = min(min_objects, max_objects);

2813
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2814
		fraction = 16;
2815 2816
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2817
					slub_max_order, fraction, reserved);
2818 2819 2820 2821
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2822
		min_objects--;
2823 2824 2825 2826 2827 2828
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2829
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 2831 2832 2833 2834 2835
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2836
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2837
	if (order < MAX_ORDER)
2838 2839 2840 2841
		return order;
	return -ENOSYS;
}

2842
static void
2843
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2844 2845 2846 2847
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2848
#ifdef CONFIG_SLUB_DEBUG
2849
	atomic_long_set(&n->nr_slabs, 0);
2850
	atomic_long_set(&n->total_objects, 0);
2851
	INIT_LIST_HEAD(&n->full);
2852
#endif
C
Christoph Lameter 已提交
2853 2854
}

2855
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856
{
2857
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859

2860
	/*
2861 2862
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2863
	 */
2864 2865
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2866 2867 2868 2869 2870

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2871

2872
	return 1;
2873 2874
}

2875 2876
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2877 2878 2879 2880 2881
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2882 2883
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2885
 */
2886
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2887 2888 2889 2890
{
	struct page *page;
	struct kmem_cache_node *n;

2891
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2892

2893
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2894 2895

	BUG_ON(!page);
2896 2897 2898 2899 2900 2901 2902
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2903 2904
	n = page->freelist;
	BUG_ON(!n);
2905
	page->freelist = get_freepointer(kmem_cache_node, n);
2906
	page->inuse = 1;
2907
	page->frozen = 0;
2908
	kmem_cache_node->node[node] = n;
2909
#ifdef CONFIG_SLUB_DEBUG
2910
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911
	init_tracking(kmem_cache_node, n);
2912
#endif
2913
	init_kmem_cache_node(n);
2914
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2915

2916
	/*
2917 2918
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2919
	 */
2920
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2921 2922 2923 2924 2925 2926
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2927
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2928
		struct kmem_cache_node *n = s->node[node];
2929

2930
		if (n)
2931 2932
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2933 2934 2935 2936
		s->node[node] = NULL;
	}
}

2937
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2938 2939 2940
{
	int node;

C
Christoph Lameter 已提交
2941
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2942 2943
		struct kmem_cache_node *n;

2944
		if (slab_state == DOWN) {
2945
			early_kmem_cache_node_alloc(node);
2946 2947
			continue;
		}
2948
		n = kmem_cache_alloc_node(kmem_cache_node,
2949
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2950

2951 2952 2953
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2954
		}
2955

C
Christoph Lameter 已提交
2956
		s->node[node] = n;
2957
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2958 2959 2960 2961
	}
	return 1;
}

2962
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963 2964 2965 2966 2967 2968 2969 2970
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2971 2972 2973 2974
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2975
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2976 2977
{
	unsigned long flags = s->flags;
2978
	unsigned long size = s->object_size;
2979
	int order;
C
Christoph Lameter 已提交
2980

2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2989 2990 2991 2992 2993 2994
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995
			!s->ctor)
C
Christoph Lameter 已提交
2996 2997 2998 2999 3000 3001
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3002
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3003
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3004
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3005
	 */
3006
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3007
		size += sizeof(void *);
C
Christoph Lameter 已提交
3008
#endif
C
Christoph Lameter 已提交
3009 3010

	/*
C
Christoph Lameter 已提交
3011 3012
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3013 3014 3015 3016
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017
		s->ctor)) {
C
Christoph Lameter 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3030
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3031 3032 3033 3034 3035 3036 3037
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3038
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3039 3040 3041 3042
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3043
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3044 3045 3046
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3047
#endif
C
Christoph Lameter 已提交
3048

C
Christoph Lameter 已提交
3049 3050 3051 3052 3053
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3054
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3055
	s->size = size;
3056 3057 3058
	if (forced_order >= 0)
		order = forced_order;
	else
3059
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3060

3061
	if (order < 0)
C
Christoph Lameter 已提交
3062 3063
		return 0;

3064
	s->allocflags = 0;
3065
	if (order)
3066 3067 3068
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3069
		s->allocflags |= GFP_DMA;
3070 3071 3072 3073

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3074 3075 3076
	/*
	 * Determine the number of objects per slab
	 */
3077 3078
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3079 3080
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3081

3082
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3083 3084
}

3085
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3086
{
3087
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088
	s->reserved = 0;
C
Christoph Lameter 已提交
3089

3090 3091
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3092

3093
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3094
		goto error;
3095 3096 3097 3098 3099
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3100
		if (get_order(s->size) > get_order(s->object_size)) {
3101 3102 3103 3104 3105 3106
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3107

3108 3109
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 3111 3112 3113 3114
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3115 3116 3117 3118
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3134
	 * B) The number of objects in cpu partial slabs to extract from the
3135 3136
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3137
	 */
3138
	if (!kmem_cache_has_cpu_partial(s))
3139 3140
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3141 3142 3143 3144 3145 3146 3147 3148
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3149
#ifdef CONFIG_NUMA
3150
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3151
#endif
3152
	if (!init_kmem_cache_nodes(s))
3153
		goto error;
C
Christoph Lameter 已提交
3154

3155
	if (alloc_kmem_cache_cpus(s))
3156
		return 0;
3157

3158
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3159 3160 3161 3162
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3163 3164
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3165
	return -EINVAL;
C
Christoph Lameter 已提交
3166 3167
}

3168 3169 3170 3171 3172 3173
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3174 3175
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3176 3177
	if (!map)
		return;
3178
	slab_err(s, page, text, s->name);
3179 3180
	slab_lock(page);

3181
	get_map(s, page, map);
3182 3183 3184 3185 3186 3187 3188 3189 3190
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3191
	kfree(map);
3192 3193 3194
#endif
}

C
Christoph Lameter 已提交
3195
/*
C
Christoph Lameter 已提交
3196
 * Attempt to free all partial slabs on a node.
3197 3198
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3199
 */
C
Christoph Lameter 已提交
3200
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3201 3202 3203
{
	struct page *page, *h;

3204
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3205
		if (!page->inuse) {
3206
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3207
			discard_slab(s, page);
3208 3209
		} else {
			list_slab_objects(s, page,
3210
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3211
		}
3212
	}
C
Christoph Lameter 已提交
3213 3214 3215
}

/*
C
Christoph Lameter 已提交
3216
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3217
 */
3218
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3219 3220 3221 3222 3223
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3224
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3225 3226
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3227 3228
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3229 3230
			return 1;
	}
3231
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3232 3233 3234 3235
	free_kmem_cache_nodes(s);
	return 0;
}

3236
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3237
{
3238
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3239 3240 3241 3242 3243 3244 3245 3246
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3247
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3248 3249 3250 3251 3252 3253 3254 3255

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3256
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3257
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3258 3259 3260 3261 3262 3263 3264 3265

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3266
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3283
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3284
	void *ret;
C
Christoph Lameter 已提交
3285

3286
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287
		return kmalloc_large(size, flags);
3288

3289
	s = kmalloc_slab(size, flags);
3290 3291

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3292 3293
		return s;

3294
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3295

3296
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3297 3298

	return ret;
C
Christoph Lameter 已提交
3299 3300 3301
}
EXPORT_SYMBOL(__kmalloc);

3302
#ifdef CONFIG_NUMA
3303 3304
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3305
	struct page *page;
3306
	void *ptr = NULL;
3307

3308
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3309
	page = alloc_pages_node(node, flags, get_order(size));
3310
	if (page)
3311 3312
		ptr = page_address(page);

3313
	kmalloc_large_node_hook(ptr, size, flags);
3314
	return ptr;
3315 3316
}

C
Christoph Lameter 已提交
3317 3318
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3319
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3320
	void *ret;
C
Christoph Lameter 已提交
3321

3322
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3323 3324
		ret = kmalloc_large_node(size, flags, node);

3325 3326 3327
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3328 3329 3330

		return ret;
	}
3331

3332
	s = kmalloc_slab(size, flags);
3333 3334

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 3336
		return s;

3337
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3338

3339
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3340 3341

	return ret;
C
Christoph Lameter 已提交
3342 3343 3344 3345 3346 3347
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3348
	struct page *page;
C
Christoph Lameter 已提交
3349

3350
	if (unlikely(object == ZERO_SIZE_PTR))
3351 3352
		return 0;

3353 3354
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3355 3356
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3357
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3358
	}
C
Christoph Lameter 已提交
3359

3360
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3361
}
K
Kirill A. Shutemov 已提交
3362
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3363 3364 3365 3366

void kfree(const void *x)
{
	struct page *page;
3367
	void *object = (void *)x;
C
Christoph Lameter 已提交
3368

3369 3370
	trace_kfree(_RET_IP_, x);

3371
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3372 3373
		return;

3374
	page = virt_to_head_page(x);
3375
	if (unlikely(!PageSlab(page))) {
3376
		BUG_ON(!PageCompound(page));
3377
		kfree_hook(x);
3378
		__free_memcg_kmem_pages(page, compound_order(page));
3379 3380
		return;
	}
3381
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3382 3383 3384
}
EXPORT_SYMBOL(kfree);

3385
/*
C
Christoph Lameter 已提交
3386 3387 3388 3389 3390 3391 3392 3393
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3394 3395 3396 3397 3398 3399 3400 3401
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3402
	int objects = oo_objects(s->max);
3403
	struct list_head *slabs_by_inuse =
3404
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3405 3406 3407 3408 3409 3410
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3411
	for_each_node_state(node, N_NORMAL_MEMORY) {
3412 3413 3414 3415 3416
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3417
		for (i = 0; i < objects; i++)
3418 3419 3420 3421 3422
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3423
		 * Build lists indexed by the items in use in each slab.
3424
		 *
C
Christoph Lameter 已提交
3425 3426
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3427 3428
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3429 3430 3431
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3432 3433 3434
		}

		/*
C
Christoph Lameter 已提交
3435 3436
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3437
		 */
3438
		for (i = objects - 1; i > 0; i--)
3439 3440 3441
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3442 3443 3444 3445

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3446 3447 3448 3449 3450 3451 3452
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3453 3454 3455 3456
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3457
	mutex_lock(&slab_mutex);
3458 3459
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3460
	mutex_unlock(&slab_mutex);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3472
	offline_node = marg->status_change_nid_normal;
3473 3474 3475 3476 3477 3478 3479 3480

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3481
	mutex_lock(&slab_mutex);
3482 3483 3484 3485 3486 3487
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3488
			 * and offline_pages() function shouldn't call this
3489 3490
			 * callback. So, we must fail.
			 */
3491
			BUG_ON(slabs_node(s, offline_node));
3492 3493

			s->node[offline_node] = NULL;
3494
			kmem_cache_free(kmem_cache_node, n);
3495 3496
		}
	}
3497
	mutex_unlock(&slab_mutex);
3498 3499 3500 3501 3502 3503 3504
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3505
	int nid = marg->status_change_nid_normal;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3516
	 * We are bringing a node online. No memory is available yet. We must
3517 3518 3519
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3520
	mutex_lock(&slab_mutex);
3521 3522 3523 3524 3525 3526
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3527
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3528 3529 3530 3531
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3532
		init_kmem_cache_node(n);
3533 3534 3535
		s->node[nid] = n;
	}
out:
3536
	mutex_unlock(&slab_mutex);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3560 3561 3562 3563
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3564 3565 3566
	return ret;
}

3567 3568 3569 3570
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3571

C
Christoph Lameter 已提交
3572 3573 3574 3575
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3576 3577
/*
 * Used for early kmem_cache structures that were allocated using
3578 3579
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3580 3581
 */

3582
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3583 3584
{
	int node;
3585
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3586

3587
	memcpy(s, static_cache, kmem_cache->object_size);
3588

3589 3590 3591 3592 3593 3594
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3595 3596 3597 3598 3599 3600
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3601
				p->slab_cache = s;
3602

L
Li Zefan 已提交
3603
#ifdef CONFIG_SLUB_DEBUG
3604
			list_for_each_entry(p, &n->full, lru)
3605
				p->slab_cache = s;
3606 3607 3608
#endif
		}
	}
3609 3610
	list_add(&s->list, &slab_caches);
	return s;
3611 3612
}

C
Christoph Lameter 已提交
3613 3614
void __init kmem_cache_init(void)
{
3615 3616
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3617

3618 3619 3620
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3621 3622
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3623

3624 3625
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3626

3627
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3628 3629 3630 3631

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3632 3633 3634 3635
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3636

3637
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3638

3639 3640 3641 3642 3643
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3644
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3645 3646

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3647
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3648 3649 3650

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3651
#endif
C
Christoph Lameter 已提交
3652

I
Ingo Molnar 已提交
3653
	printk(KERN_INFO
3654
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3655
		" CPUs=%d, Nodes=%d\n",
3656
		cache_line_size(),
C
Christoph Lameter 已提交
3657 3658 3659 3660
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3661 3662 3663 3664
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3665 3666 3667 3668 3669 3670 3671 3672
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3673 3674 3675
	if (!is_root_cache(s))
		return 1;

3676
	if (s->ctor)
C
Christoph Lameter 已提交
3677 3678
		return 1;

3679 3680 3681 3682 3683 3684
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3685 3686 3687
	return 0;
}

3688 3689
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3690
{
3691
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3692 3693 3694 3695

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3696
	if (ctor)
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3702
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3703

3704
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3705 3706 3707 3708 3709 3710
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3711
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3712
			continue;
C
Christoph Lameter 已提交
3713 3714 3715 3716
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3717
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3728
struct kmem_cache *
3729 3730
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3731 3732 3733
{
	struct kmem_cache *s;

3734
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3735
	if (s) {
3736 3737 3738
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3739
		s->refcount++;
3740

C
Christoph Lameter 已提交
3741 3742 3743 3744
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3745
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3746
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3757 3758
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3759
			s = NULL;
3760
		}
3761
	}
C
Christoph Lameter 已提交
3762

3763 3764
	return s;
}
P
Pekka Enberg 已提交
3765

3766
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767
{
3768 3769 3770 3771 3772
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3773

3774 3775 3776 3777
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3778
	memcg_propagate_slab_attrs(s);
3779 3780 3781
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3782

3783
	return err;
C
Christoph Lameter 已提交
3784 3785 3786 3787
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3788 3789
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3790
 */
3791
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3792 3793 3794
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3795 3796
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3797 3798 3799

	switch (action) {
	case CPU_UP_CANCELED:
3800
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3801
	case CPU_DEAD:
3802
	case CPU_DEAD_FROZEN:
3803
		mutex_lock(&slab_mutex);
3804 3805 3806 3807 3808
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3809
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3810 3811 3812 3813 3814 3815 3816
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3817
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3818
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3819
};
C
Christoph Lameter 已提交
3820 3821 3822

#endif

3823
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3824
{
3825
	struct kmem_cache *s;
3826
	void *ret;
3827

3828
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829 3830
		return kmalloc_large(size, gfpflags);

3831
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3832

3833
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834
		return s;
C
Christoph Lameter 已提交
3835

3836
	ret = slab_alloc(s, gfpflags, caller);
3837

L
Lucas De Marchi 已提交
3838
	/* Honor the call site pointer we received. */
3839
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840 3841

	return ret;
C
Christoph Lameter 已提交
3842 3843
}

3844
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3845
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3847
{
3848
	struct kmem_cache *s;
3849
	void *ret;
3850

3851
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 3853 3854 3855 3856 3857 3858 3859
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3860

3861
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3862

3863
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864
		return s;
C
Christoph Lameter 已提交
3865

3866
	ret = slab_alloc_node(s, gfpflags, node, caller);
3867

L
Lucas De Marchi 已提交
3868
	/* Honor the call site pointer we received. */
3869
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870 3871

	return ret;
C
Christoph Lameter 已提交
3872
}
3873
#endif
C
Christoph Lameter 已提交
3874

3875
#ifdef CONFIG_SYSFS
3876 3877 3878 3879 3880 3881 3882 3883 3884
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3885
#endif
3886

3887
#ifdef CONFIG_SLUB_DEBUG
3888 3889
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3890 3891
{
	void *p;
3892
	void *addr = page_address(page);
3893 3894 3895 3896 3897 3898

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3899
	bitmap_zero(map, page->objects);
3900

3901 3902 3903 3904 3905
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3906 3907
	}

3908
	for_each_object(p, s, addr, page->objects)
3909
		if (!test_bit(slab_index(p, s, addr), map))
3910
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911 3912 3913 3914
				return 0;
	return 1;
}

3915 3916
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3917
{
3918 3919 3920
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3921 3922
}

3923 3924
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3925 3926 3927 3928 3929 3930 3931 3932
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3933
		validate_slab_slab(s, page, map);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3944
		validate_slab_slab(s, page, map);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3957
static long validate_slab_cache(struct kmem_cache *s)
3958 3959 3960
{
	int node;
	unsigned long count = 0;
3961
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 3963 3964 3965
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3966 3967

	flush_all(s);
C
Christoph Lameter 已提交
3968
	for_each_node_state(node, N_NORMAL_MEMORY) {
3969 3970
		struct kmem_cache_node *n = get_node(s, node);

3971
		count += validate_slab_node(s, n, map);
3972
	}
3973
	kfree(map);
3974 3975
	return count;
}
3976
/*
C
Christoph Lameter 已提交
3977
 * Generate lists of code addresses where slabcache objects are allocated
3978 3979 3980 3981 3982
 * and freed.
 */

struct location {
	unsigned long count;
3983
	unsigned long addr;
3984 3985 3986 3987 3988
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3989
	DECLARE_BITMAP(cpus, NR_CPUS);
3990
	nodemask_t nodes;
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4006
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 4008 4009 4010 4011 4012
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4013
	l = (void *)__get_free_pages(flags, order);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4027
				const struct track *track)
4028 4029 4030
{
	long start, end, pos;
	struct location *l;
4031
	unsigned long caddr;
4032
	unsigned long age = jiffies - track->when;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4064 4065
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4066 4067
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 4069 4070
			return 1;
		}

4071
		if (track->addr < caddr)
4072 4073 4074 4075 4076 4077
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4078
	 * Not found. Insert new tracking element.
4079
	 */
4080
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 4082 4083 4084 4085 4086 4087 4088
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4089 4090 4091 4092 4093 4094
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4095 4096
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 4098
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 4100 4101 4102
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4103
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4104
		unsigned long *map)
4105
{
4106
	void *addr = page_address(page);
4107 4108
	void *p;

4109
	bitmap_zero(map, page->objects);
4110
	get_map(s, page, map);
4111

4112
	for_each_object(p, s, addr, page->objects)
4113 4114
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4115 4116 4117 4118 4119
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4120
	int len = 0;
4121
	unsigned long i;
4122
	struct loc_track t = { 0, 0, NULL };
4123
	int node;
E
Eric Dumazet 已提交
4124 4125
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4126

E
Eric Dumazet 已提交
4127 4128 4129
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4130
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4131
	}
4132 4133 4134
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4135
	for_each_node_state(node, N_NORMAL_MEMORY) {
4136 4137 4138 4139
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4140
		if (!atomic_long_read(&n->nr_slabs))
4141 4142 4143 4144
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4145
			process_slab(&t, s, page, alloc, map);
4146
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4147
			process_slab(&t, s, page, alloc, map);
4148 4149 4150 4151
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4152
		struct location *l = &t.loc[i];
4153

H
Hugh Dickins 已提交
4154
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155
			break;
4156
		len += sprintf(buf + len, "%7ld ", l->count);
4157 4158

		if (l->addr)
J
Joe Perches 已提交
4159
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160
		else
4161
			len += sprintf(buf + len, "<not-available>");
4162 4163

		if (l->sum_time != l->min_time) {
4164
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4165 4166 4167
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4168
		} else
4169
			len += sprintf(buf + len, " age=%ld",
4170 4171 4172
				l->min_time);

		if (l->min_pid != l->max_pid)
4173
			len += sprintf(buf + len, " pid=%ld-%ld",
4174 4175
				l->min_pid, l->max_pid);
		else
4176
			len += sprintf(buf + len, " pid=%ld",
4177 4178
				l->min_pid);

R
Rusty Russell 已提交
4179 4180
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4181 4182
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4183 4184
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4185
						 to_cpumask(l->cpus));
4186 4187
		}

4188
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 4190
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4191 4192 4193
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4194 4195
		}

4196
		len += sprintf(buf + len, "\n");
4197 4198 4199
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4200
	kfree(map);
4201
	if (!t.count)
4202 4203
		len += sprintf(buf, "No data\n");
	return len;
4204
}
4205
#endif
4206

4207 4208 4209 4210 4211
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4212
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4269
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4270
enum slab_stat_type {
4271 4272 4273 4274 4275
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4276 4277
};

4278
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4279 4280 4281
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4282
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4283

4284 4285
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4286 4287 4288 4289 4290 4291
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4292
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293 4294
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4295

4296 4297
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4298

4299
		for_each_possible_cpu(cpu) {
4300 4301
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4302
			int node;
4303
			struct page *page;
4304

4305
			page = ACCESS_ONCE(c->page);
4306 4307
			if (!page)
				continue;
4308

4309 4310 4311 4312 4313 4314 4315
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4316

4317 4318 4319 4320
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4321
			if (page) {
L
Li Zefan 已提交
4322 4323 4324 4325 4326 4327 4328
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4329 4330
				total += x;
				nodes[node] += x;
4331
			}
C
Christoph Lameter 已提交
4332 4333 4334
		}
	}

4335
	lock_memory_hotplug();
4336
#ifdef CONFIG_SLUB_DEBUG
4337 4338 4339 4340
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4341 4342 4343 4344 4345
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4346
			else
4347
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4348 4349 4350 4351
			total += x;
			nodes[node] += x;
		}

4352 4353 4354
	} else
#endif
	if (flags & SO_PARTIAL) {
4355 4356
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4357

4358 4359 4360 4361
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4362
			else
4363
				x = n->nr_partial;
C
Christoph Lameter 已提交
4364 4365 4366 4367 4368 4369
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4370
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4371 4372 4373 4374
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4375
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4376 4377 4378 4379
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4380
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4381 4382 4383 4384
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4385
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4386 4387
		struct kmem_cache_node *n = get_node(s, node);

4388 4389 4390
		if (!n)
			continue;

4391
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4392 4393 4394 4395
			return 1;
	}
	return 0;
}
4396
#endif
C
Christoph Lameter 已提交
4397 4398

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4400 4401 4402 4403 4404 4405 4406 4407

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4408 4409
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4410 4411 4412

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4413
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4429
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4430 4431 4432 4433 4434
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4435
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4436 4437 4438
}
SLAB_ATTR_RO(objs_per_slab);

4439 4440 4441
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4442 4443 4444
	unsigned long order;
	int err;

4445
	err = kstrtoul(buf, 10, &order);
4446 4447
	if (err)
		return err;
4448 4449 4450 4451 4452 4453 4454 4455

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4456 4457
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4458
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4459
}
4460
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4473
	err = kstrtoul(buf, 10, &min);
4474 4475 4476
	if (err)
		return err;

4477
	set_min_partial(s, min);
4478 4479 4480 4481
	return length;
}
SLAB_ATTR(min_partial);

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4493
	err = kstrtoul(buf, 10, &objects);
4494 4495
	if (err)
		return err;
4496
	if (objects && !kmem_cache_has_cpu_partial(s))
4497
		return -EINVAL;
4498 4499 4500 4501 4502 4503 4504

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4505 4506
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4507 4508 4509
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4521
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4522 4523 4524 4525 4526
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4527
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4528 4529 4530 4531 4532
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4533
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4534 4535 4536
}
SLAB_ATTR_RO(objects);

4537 4538 4539 4540 4541 4542
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4609 4610 4611 4612 4613 4614
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4615
#ifdef CONFIG_SLUB_DEBUG
4616 4617 4618 4619 4620 4621
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4622 4623 4624 4625 4626 4627
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4637 4638
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4639
		s->flags |= SLAB_DEBUG_FREE;
4640
	}
C
Christoph Lameter 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4654 4655
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4656
		s->flags |= SLAB_TRACE;
4657
	}
C
Christoph Lameter 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4674 4675
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4676
		s->flags |= SLAB_RED_ZONE;
4677
	}
4678
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4695 4696
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4697
		s->flags |= SLAB_POISON;
4698
	}
4699
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4716 4717
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4718
		s->flags |= SLAB_STORE_USER;
4719
	}
4720
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4721 4722 4723 4724
	return length;
}
SLAB_ATTR(store_user);

4725 4726 4727 4728 4729 4730 4731 4732
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4733 4734 4735 4736 4737 4738 4739 4740
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4741 4742
}
SLAB_ATTR(validate);
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4776
#endif
4777

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4797
#ifdef CONFIG_NUMA
4798
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4799
{
4800
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4801 4802
}

4803
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4804 4805
				const char *buf, size_t length)
{
4806 4807 4808
	unsigned long ratio;
	int err;

4809
	err = kstrtoul(buf, 10, &ratio);
4810 4811 4812
	if (err)
		return err;

4813
	if (ratio <= 100)
4814
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4815 4816 4817

	return length;
}
4818
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4819 4820
#endif

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4833
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834 4835 4836 4837 4838 4839 4840

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4841
#ifdef CONFIG_SMP
4842 4843
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4844
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4845
	}
4846
#endif
4847 4848 4849 4850
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4851 4852 4853 4854 4855
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4856
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4857 4858
}

4859 4860 4861 4862 4863
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885 4886 4887 4888 4889 4890 4891
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894 4895
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896 4897
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898 4899
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4900 4901
#endif

P
Pekka Enberg 已提交
4902
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4903 4904 4905 4906
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4907
	&min_partial_attr.attr,
4908
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4909
	&objects_attr.attr,
4910
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4911 4912 4913 4914 4915 4916 4917 4918
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4919
	&shrink_attr.attr,
4920
	&reserved_attr.attr,
4921
	&slabs_cpu_partial_attr.attr,
4922
#ifdef CONFIG_SLUB_DEBUG
4923 4924 4925 4926
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4927 4928 4929
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4930
	&validate_attr.attr,
4931 4932
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4933
#endif
C
Christoph Lameter 已提交
4934 4935 4936 4937
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4938
	&remote_node_defrag_ratio_attr.attr,
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4951
	&alloc_node_mismatch_attr.attr,
4952 4953 4954 4955 4956 4957 4958
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4959
	&deactivate_bypass_attr.attr,
4960
	&order_fallback_attr.attr,
4961 4962
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4963 4964
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4965 4966
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4967
#endif
4968 4969 4970 4971
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5013 5014 5015
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5016

5017 5018 5019 5020
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5038
		for_each_memcg_cache_index(i) {
5039
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040 5041 5042 5043 5044 5045
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5046 5047 5048
	return err;
}

5049 5050 5051 5052 5053
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5054
	struct kmem_cache *root_cache;
5055

5056
	if (is_root_cache(s))
5057 5058
		return;

5059 5060
	root_cache = s->memcg_params->root_cache;

5061 5062 5063 5064
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5065
	if (!root_cache->max_attr_size)
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5087
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088 5089 5090 5091 5092 5093 5094 5095
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5096
		attr->show(root_cache, buf);
5097 5098 5099 5100 5101 5102 5103 5104
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5105 5106 5107 5108 5109
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5110
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5111 5112 5113 5114 5115 5116
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5117
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5129
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5130 5131 5132
	.filter = uevent_filter,
};

5133
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5144 5145 5146
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5147 5148
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5171 5172
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5173 5174 5175
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5176 5177 5178

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5179 5180
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5181 5182
#endif

C
Christoph Lameter 已提交
5183 5184 5185 5186 5187 5188 5189 5190
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5191
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5192 5193 5194 5195 5196 5197 5198

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5199
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5209
	s->kobj.kset = cache_kset(s);
5210
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211 5212
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5213 5214

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215 5216
	if (err)
		goto out_del_kobj;
5217 5218 5219 5220 5221

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5222 5223
			err = -ENOMEM;
			goto out_del_kobj;
5224 5225 5226 5227
		}
	}
#endif

C
Christoph Lameter 已提交
5228 5229 5230 5231 5232
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5233 5234 5235 5236 5237 5238 5239 5240 5241
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5242 5243
}

5244
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5245
{
5246
	if (slab_state < FULL)
5247 5248 5249 5250 5251 5252
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5253 5254 5255
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5256 5257
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5258
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5259 5260 5261 5262
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5263
 * available lest we lose that information.
C
Christoph Lameter 已提交
5264 5265 5266 5267 5268 5269 5270
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5271
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5272 5273 5274 5275 5276

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5277
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5278 5279 5280
		/*
		 * If we have a leftover link then remove it.
		 */
5281 5282
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5298
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5299 5300
	int err;

5301
	mutex_lock(&slab_mutex);
5302

5303
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304
	if (!slab_kset) {
5305
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5306 5307 5308 5309
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5310
	slab_state = FULL;
5311

5312
	list_for_each_entry(s, &slab_caches, list) {
5313
		err = sysfs_slab_add(s);
5314 5315 5316
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5317
	}
C
Christoph Lameter 已提交
5318 5319 5320 5321 5322 5323

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5324 5325
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5326
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5327 5328 5329
		kfree(al);
	}

5330
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5331 5332 5333 5334 5335
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5336
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5337 5338 5339 5340

/*
 * The /proc/slabinfo ABI
 */
5341
#ifdef CONFIG_SLABINFO
5342
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5343 5344
{
	unsigned long nr_slabs = 0;
5345 5346
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5347 5348 5349 5350 5351 5352 5353 5354
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5355 5356
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5357
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5358 5359
	}

5360 5361 5362 5363 5364 5365
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5366 5367
}

5368
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5369 5370 5371
{
}

5372 5373
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5374
{
5375
	return -EIO;
5376
}
5377
#endif /* CONFIG_SLABINFO */