slub.c 100.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

152 153 154 155 156 157 158
/*
 * Currently fastpath is not supported if preemption is enabled.
 */
#if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
#define SLUB_FASTPATH
#endif

C
Christoph Lameter 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

178 179 180 181
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
182
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
183

184 185 186 187 188 189 190
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
191 192
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
193

C
Christoph Lameter 已提交
194 195 196 197 198 199 200 201 202 203
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
204
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
205 206 207
#endif

#ifndef ARCH_SLAB_MINALIGN
208
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
209 210 211
#endif

/* Internal SLUB flags */
212 213
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
214

215 216 217 218 219
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
220 221 222 223 224 225 226 227 228
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
229
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
230 231 232 233 234
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
235
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
249
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
250 251 252 253
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
254 255 256
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
257 258 259 260
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
C
Christoph Lameter 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

281 282
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
283 284 285 286 287
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
288 289
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * The end pointer in a slab is special. It points to the first object in the
 * slab but has bit 0 set to mark it.
 *
 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
 * in the mapping set.
 */
static inline int is_end(void *addr)
{
	return (unsigned long)addr & PAGE_MAPPING_ANON;
}

void *slab_address(struct page *page)
{
	return page->end - PAGE_MAPPING_ANON;
}

307 308 309 310 311
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

312
	if (object == page->end)
313 314
		return 1;

315
	base = slab_address(page);
316 317 318 319 320 321 322 323
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
348 349
	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
		__p))
350 351 352 353 354 355 356

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
357 358 359 360
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
361 362 363
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
364
static int slub_debug;
365
#endif
C
Christoph Lameter 已提交
366 367 368

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
382
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
383 384
			newline = 0;
		}
P
Pekka Enberg 已提交
385
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
386 387 388
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
389
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
390 391 392 393 394 395
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
396
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
397 398 399
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
400
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
439 440 441 442 443
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
444 445 446 447 448 449 450
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

451
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
452
	__print_symbol("%s", (unsigned long)t->addr);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
485 486
}

487 488 489 490 491 492 493 494 495 496 497 498
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
499 500
{
	unsigned int off;	/* Offset of last byte */
501
	u8 *addr = slab_address(page);
502 503 504 505 506 507 508 509 510 511 512 513

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
514 515 516 517 518 519 520 521 522 523

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

524
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
525 526 527 528
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
529 530 531
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
532 533 534 535 536
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
537 538
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
539 540
}

541
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
542 543 544 545
{
	va_list args;
	char buf[100];

546 547
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
548
	va_end(args);
549 550
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
551 552 553 554 555 556 557 558 559
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
560
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
561 562 563 564 565 566 567 568
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

569
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
570 571 572
{
	while (bytes) {
		if (*start != (u8)value)
573
			return start;
C
Christoph Lameter 已提交
574 575 576
		start++;
		bytes--;
	}
577 578 579 580 581 582 583 584 585 586 587 588
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
589
			u8 *start, unsigned int value, unsigned int bytes)
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
609 610 611 612 613 614 615 616 617
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
618
 *
C
Christoph Lameter 已提交
619 620 621 622 623
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
624 625 626
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
627 628 629 630
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
631 632
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
633 634
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
635 636 637 638 639
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
640 641
 *
 * object + s->size
C
Christoph Lameter 已提交
642
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
643
 *
C
Christoph Lameter 已提交
644 645
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

664 665
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
666 667 668 669
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
670 671 672 673 674
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
675 676 677 678

	if (!(s->flags & SLAB_POISON))
		return 1;

679
	start = slab_address(page);
680
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
681
	length = s->objects * s->size;
682
	remainder = end - (start + length);
C
Christoph Lameter 已提交
683 684 685
	if (!remainder)
		return 1;

686 687 688 689 690 691 692 693 694 695 696
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
697 698 699 700 701 702 703 704 705 706 707 708
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

709 710
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
711 712
			return 0;
	} else {
713 714 715
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
				POISON_INUSE, s->inuse - s->objsize);
C
Christoph Lameter 已提交
716 717 718 719
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
720 721 722
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
723
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
744
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
745
		 */
746
		set_freepointer(s, p, page->end);
C
Christoph Lameter 已提交
747 748 749 750 751 752 753 754 755 756
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
757
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
758 759 760
		return 0;
	}
	if (page->inuse > s->objects) {
761 762
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
763 764 765 766 767 768 769 770
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
771 772
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
773 774 775 776 777 778 779
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

780
	while (fp != page->end && nr <= s->objects) {
C
Christoph Lameter 已提交
781 782 783 784 785 786
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
787
				set_freepointer(s, object, page->end);
C
Christoph Lameter 已提交
788 789
				break;
			} else {
790
				slab_err(s, page, "Freepointer corrupt");
791
				page->freelist = page->end;
C
Christoph Lameter 已提交
792
				page->inuse = s->objects;
793
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
794 795 796 797 798 799 800 801 802 803
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
804
		slab_err(s, page, "Wrong object count. Counter is %d but "
805
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
806
		page->inuse = s->objects - nr;
807
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
808 809 810 811
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

828
/*
C
Christoph Lameter 已提交
829
 * Tracking of fully allocated slabs for debugging purposes.
830
 */
C
Christoph Lameter 已提交
831
static void add_full(struct kmem_cache_node *n, struct page *page)
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
852 853 854 855 856 857 858 859 860 861 862 863
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
864 865 866 867 868
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
869
		object_err(s, page, object, "Object already allocated");
870
		goto bad;
C
Christoph Lameter 已提交
871 872 873 874
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
875
		goto bad;
C
Christoph Lameter 已提交
876 877
	}

C
Christoph Lameter 已提交
878
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
879 880
		goto bad;

C
Christoph Lameter 已提交
881 882 883 884 885
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
886
	return 1;
C
Christoph Lameter 已提交
887

C
Christoph Lameter 已提交
888 889 890 891 892
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
893
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
894
		 */
895
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
896
		page->inuse = s->objects;
897
		page->freelist = page->end;
C
Christoph Lameter 已提交
898 899 900 901
	}
	return 0;
}

C
Christoph Lameter 已提交
902 903
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
904 905 906 907 908
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
909
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
910 911 912 913
		goto fail;
	}

	if (on_freelist(s, page, object)) {
914
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
915 916 917 918 919 920 921 922
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
923 924
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
925
		else
926
		if (!page->slab) {
C
Christoph Lameter 已提交
927
			printk(KERN_ERR
928
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
929
						object);
930
			dump_stack();
P
Pekka Enberg 已提交
931
		} else
932 933
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
934 935
		goto fail;
	}
C
Christoph Lameter 已提交
936 937

	/* Special debug activities for freeing objects */
938
	if (!SlabFrozen(page) && page->freelist == page->end)
C
Christoph Lameter 已提交
939 940 941 942 943
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
944
	return 1;
C
Christoph Lameter 已提交
945

C
Christoph Lameter 已提交
946
fail:
947
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
948 949 950
	return 0;
}

C
Christoph Lameter 已提交
951 952
static int __init setup_slub_debug(char *str)
{
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
977
	for (; *str && *str != ','; str++) {
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
996
				"unknown. skipped\n", *str);
997
		}
C
Christoph Lameter 已提交
998 999
	}

1000
check_slabs:
C
Christoph Lameter 已提交
1001 1002
	if (*str == ',')
		slub_debug_slabs = str + 1;
1003
out:
C
Christoph Lameter 已提交
1004 1005 1006 1007 1008
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1009 1010
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1011
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
1022
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
1023 1024
	 * pointer. Fail if this happens.
	 */
1025 1026
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
1027
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1028 1029
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1030 1031 1032 1033
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1034
		    strncmp(slub_debug_slabs, name,
C
Christoph Lameter 已提交
1035
		    	strlen(slub_debug_slabs)) == 0))
1036 1037 1038 1039
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1040 1041
}
#else
C
Christoph Lameter 已提交
1042 1043
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1044

C
Christoph Lameter 已提交
1045 1046
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1047

C
Christoph Lameter 已提交
1048 1049
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1050 1051 1052 1053 1054

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1055
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1056 1057
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1058
	void (*ctor)(struct kmem_cache *, void *))
1059 1060 1061
{
	return flags;
}
C
Christoph Lameter 已提交
1062 1063
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1064 1065 1066 1067 1068
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1069
	struct page *page;
C
Christoph Lameter 已提交
1070 1071 1072 1073 1074 1075 1076 1077
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

1078 1079 1080
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1100
	setup_object_debug(s, page, object);
1101
	if (unlikely(s->ctor))
1102
		s->ctor(s, object);
C
Christoph Lameter 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1113
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1114

C
Christoph Lameter 已提交
1115 1116
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1127
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1128 1129

	start = page_address(page);
1130
	page->end = start + 1;
C
Christoph Lameter 已提交
1131 1132 1133 1134 1135

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1136
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1137 1138 1139 1140 1141
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1142
	set_freepointer(s, last, page->end);
C
Christoph Lameter 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1154
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1155 1156 1157
		void *p;

		slab_pad_check(s, page);
1158
		for_each_object(p, s, slab_address(page))
C
Christoph Lameter 已提交
1159
			check_object(s, page, p, 0);
1160
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1161 1162 1163 1164 1165
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1166
		-pages);
C
Christoph Lameter 已提交
1167

1168
	page->mapping = NULL;
C
Christoph Lameter 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1199
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1227 1228
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1229
{
C
Christoph Lameter 已提交
1230 1231
	spin_lock(&n->list_lock);
	n->nr_partial++;
1232 1233 1234 1235
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1251
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1252
 *
C
Christoph Lameter 已提交
1253
 * Must hold list_lock.
C
Christoph Lameter 已提交
1254
 */
1255
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1256 1257 1258 1259
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1260
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1261 1262 1263 1264 1265 1266
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1267
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1268 1269 1270 1271 1272 1273 1274 1275
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1276 1277
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1278 1279 1280 1281 1282 1283
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1284
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1285 1286 1287 1288 1289 1290 1291 1292
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1293
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1303 1304 1305 1306
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1307
	 *
C
Christoph Lameter 已提交
1308 1309 1310 1311
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1312 1313
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1314 1315 1316 1317 1318
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1319
	 */
1320 1321
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1332
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1364
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1365
{
C
Christoph Lameter 已提交
1366 1367
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

1368
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1369
	if (page->inuse) {
C
Christoph Lameter 已提交
1370

1371
		if (page->freelist != page->end)
1372
			add_partial(n, page, tail);
1373
		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
C
Christoph Lameter 已提交
1374
			add_full(n, page);
C
Christoph Lameter 已提交
1375
		slab_unlock(page);
C
Christoph Lameter 已提交
1376

C
Christoph Lameter 已提交
1377
	} else {
C
Christoph Lameter 已提交
1378 1379
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1380 1381 1382 1383 1384 1385
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1386
			 */
1387
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1388 1389 1390 1391 1392
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1393 1394 1395 1396 1397 1398
	}
}

/*
 * Remove the cpu slab
 */
1399
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1400
{
1401
	struct page *page = c->page;
1402
	int tail = 1;
1403 1404 1405 1406
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
1407 1408 1409 1410
	 *
	 * We need to use _is_end here because deactivate slab may
	 * be called for a debug slab. Then c->freelist may contain
	 * a dummy pointer.
1411
	 */
1412
	while (unlikely(!is_end(c->freelist))) {
1413 1414
		void **object;

1415 1416
		tail = 0;	/* Hot objects. Put the slab first */

1417
		/* Retrieve object from cpu_freelist */
1418
		object = c->freelist;
1419
		c->freelist = c->freelist[c->offset];
1420 1421

		/* And put onto the regular freelist */
1422
		object[c->offset] = page->freelist;
1423 1424 1425
		page->freelist = object;
		page->inuse--;
	}
1426
	c->page = NULL;
1427
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1428 1429
}

1430
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1431
{
1432 1433
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1434 1435 1436 1437 1438 1439
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1440
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1441
{
1442
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1443

1444 1445
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1446 1447 1448 1449 1450 1451
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1452
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1481
/*
1482 1483 1484 1485
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1486
 *
1487 1488 1489
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1490
 *
1491 1492 1493
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1494
 *
1495 1496
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1497
 */
1498
static void *__slab_alloc(struct kmem_cache *s,
1499
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1500 1501
{
	void **object;
1502
	struct page *new;
1503 1504
#ifdef SLUB_FASTPATH
	unsigned long flags;
C
Christoph Lameter 已提交
1505

1506 1507
	local_irq_save(flags);
#endif
1508
	if (!c->page)
C
Christoph Lameter 已提交
1509 1510
		goto new_slab;

1511 1512
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1513
		goto another_slab;
1514
load_freelist:
1515
	object = c->page->freelist;
1516
	if (unlikely(object == c->page->end))
C
Christoph Lameter 已提交
1517
		goto another_slab;
1518
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1519 1520
		goto debug;

1521
	object = c->page->freelist;
1522
	c->freelist = object[c->offset];
1523
	c->page->inuse = s->objects;
1524
	c->page->freelist = c->page->end;
1525
	c->node = page_to_nid(c->page);
1526
unlock_out:
1527
	slab_unlock(c->page);
1528 1529 1530 1531
out:
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1532 1533 1534
	return object;

another_slab:
1535
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1536 1537

new_slab:
1538 1539 1540
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1541
		goto load_freelist;
C
Christoph Lameter 已提交
1542 1543
	}

1544 1545 1546
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1547
	new = new_slab(s, gfpflags, node);
1548 1549 1550 1551

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1552 1553
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1554
		if (c->page)
1555 1556 1557 1558
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1559
		goto load_freelist;
C
Christoph Lameter 已提交
1560
	}
1561 1562
	object = NULL;
	goto out;
C
Christoph Lameter 已提交
1563
debug:
1564 1565
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1566
		goto another_slab;
1567

1568
	c->page->inuse++;
1569
	c->page->freelist = object[c->offset];
1570
	c->node = -1;
1571
	goto unlock_out;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1584
static __always_inline void *slab_alloc(struct kmem_cache *s,
1585
		gfp_t gfpflags, int node, void *addr)
1586 1587
{
	void **object;
1588
	struct kmem_cache_cpu *c;
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * The SLUB_FASTPATH path is provisional and is currently disabled if the
 * kernel is compiled with preemption or if the arch does not support
 * fast cmpxchg operations. There are a couple of coming changes that will
 * simplify matters and allow preemption. Ultimately we may end up making
 * SLUB_FASTPATH the default.
 *
 * 1. The introduction of the per cpu allocator will avoid array lookups
 *    through get_cpu_slab(). A special register can be used instead.
 *
 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
 *    we can realize the logic here entirely with per cpu atomics. The
 *    per cpu atomic ops will take care of the preemption issues.
 */

#ifdef SLUB_FASTPATH
	c = get_cpu_slab(s, raw_smp_processor_id());
	do {
		object = c->freelist;
		if (unlikely(is_end(object) || !node_match(c, node))) {
			object = __slab_alloc(s, gfpflags, node, addr, c);
			break;
		}
	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
								!= object);
#else
	unsigned long flags;

1618
	local_irq_save(flags);
1619
	c = get_cpu_slab(s, smp_processor_id());
1620
	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1621

1622
		object = __slab_alloc(s, gfpflags, node, addr, c);
1623 1624

	else {
1625
		object = c->freelist;
1626
		c->freelist = object[c->offset];
1627 1628
	}
	local_irq_restore(flags);
1629
#endif
1630 1631

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1632
		memset(object, 0, c->objsize);
1633

1634
	return object;
C
Christoph Lameter 已提交
1635 1636 1637 1638
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1639
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1640 1641 1642 1643 1644 1645
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1646
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1647 1648 1649 1650 1651
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1652 1653
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1654
 *
1655 1656 1657
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1658
 */
1659
static void __slab_free(struct kmem_cache *s, struct page *page,
1660
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1661 1662 1663 1664
{
	void *prior;
	void **object = (void *)x;

1665 1666 1667 1668 1669
#ifdef SLUB_FASTPATH
	unsigned long flags;

	local_irq_save(flags);
#endif
C
Christoph Lameter 已提交
1670 1671
	slab_lock(page);

1672
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1673 1674
		goto debug;
checks_ok:
1675
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1676 1677 1678
	page->freelist = object;
	page->inuse--;

1679
	if (unlikely(SlabFrozen(page)))
C
Christoph Lameter 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
1690
	if (unlikely(prior == page->end))
1691
		add_partial(get_node(s, page_to_nid(page)), page, 1);
C
Christoph Lameter 已提交
1692 1693 1694

out_unlock:
	slab_unlock(page);
1695 1696 1697
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1698 1699 1700
	return;

slab_empty:
1701
	if (prior != page->end)
C
Christoph Lameter 已提交
1702
		/*
C
Christoph Lameter 已提交
1703
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1704 1705 1706 1707
		 */
		remove_partial(s, page);

	slab_unlock(page);
1708 1709 1710
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1711 1712 1713 1714
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1715
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1716 1717
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1731
static __always_inline void slab_free(struct kmem_cache *s,
1732 1733 1734
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1735
	struct kmem_cache_cpu *c;
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
#ifdef SLUB_FASTPATH
	void **freelist;

	c = get_cpu_slab(s, raw_smp_processor_id());
	debug_check_no_locks_freed(object, s->objsize);
	do {
		freelist = c->freelist;
		barrier();
		/*
		 * If the compiler would reorder the retrieval of c->page to
		 * come before c->freelist then an interrupt could
		 * change the cpu slab before we retrieve c->freelist. We
		 * could be matching on a page no longer active and put the
		 * object onto the freelist of the wrong slab.
		 *
		 * On the other hand: If we already have the freelist pointer
		 * then any change of cpu_slab will cause the cmpxchg to fail
		 * since the freelist pointers are unique per slab.
		 */
		if (unlikely(page != c->page || c->node < 0)) {
			__slab_free(s, page, x, addr, c->offset);
			break;
		}
		object[c->offset] = freelist;
	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
#else
	unsigned long flags;

1765
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1766
	debug_check_no_locks_freed(object, s->objsize);
1767
	c = get_cpu_slab(s, smp_processor_id());
1768
	if (likely(page == c->page && c->node >= 0)) {
1769
		object[c->offset] = c->freelist;
1770
		c->freelist = object;
1771
	} else
1772
		__slab_free(s, page, x, addr, c->offset);
1773 1774

	local_irq_restore(flags);
1775
#endif
1776 1777
}

C
Christoph Lameter 已提交
1778 1779
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1780
	struct page *page;
C
Christoph Lameter 已提交
1781

1782
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1783

C
Christoph Lameter 已提交
1784
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1785 1786 1787 1788 1789 1790
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1791
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1792 1793 1794 1795 1796 1797 1798 1799

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1800 1801 1802 1803
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1804 1805 1806 1807
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1808
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1824
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1825 1826 1827 1828 1829 1830
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1842
 *
C
Christoph Lameter 已提交
1843 1844 1845 1846
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1847
 *
C
Christoph Lameter 已提交
1848 1849 1850 1851
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1852
 */
1853 1854
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1855 1856 1857
{
	int order;
	int rem;
1858
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1859

1860
	for (order = max(min_order,
1861 1862
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1863

1864
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1865

1866
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1867 1868 1869 1870
			continue;

		rem = slab_size % size;

1871
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1872 1873 1874
			break;

	}
C
Christoph Lameter 已提交
1875

C
Christoph Lameter 已提交
1876 1877 1878
	return order;
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1923
/*
C
Christoph Lameter 已提交
1924
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1938
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1939 1940
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1941 1942 1943 1944 1945 1946 1947

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1948 1949 1950 1951
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1952
	c->freelist = (void *)PAGE_MAPPING_ANON;
1953
	c->node = 0;
1954 1955
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1956 1957
}

C
Christoph Lameter 已提交
1958 1959 1960 1961 1962 1963
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1964
#ifdef CONFIG_SLUB_DEBUG
1965
	INIT_LIST_HEAD(&n->full);
1966
#endif
C
Christoph Lameter 已提交
1967 1968
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2094 2095 2096 2097 2098 2099 2100
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2101 2102
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2103
 */
2104 2105
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2106 2107 2108
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2109
	unsigned long flags;
C
Christoph Lameter 已提交
2110 2111 2112

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2113
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2114 2115

	BUG_ON(!page);
2116 2117 2118 2119 2120 2121 2122
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2123 2124 2125 2126 2127
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2128
#ifdef CONFIG_SLUB_DEBUG
2129 2130
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2131
#endif
C
Christoph Lameter 已提交
2132 2133
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
R
root 已提交
2134 2135 2136 2137 2138 2139
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2140
	add_partial(n, page, 0);
R
root 已提交
2141
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2142 2143 2144 2145 2146 2147 2148
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2149
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2167
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2220
			!s->ctor)
C
Christoph Lameter 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2232
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2233
	/*
C
Christoph Lameter 已提交
2234
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2235
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2236
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2237 2238 2239
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2240
#endif
C
Christoph Lameter 已提交
2241 2242

	/*
C
Christoph Lameter 已提交
2243 2244
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2245 2246 2247 2248
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249
		s->ctor)) {
C
Christoph Lameter 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2262
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2263 2264 2265 2266 2267 2268 2269
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2270
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2271 2272 2273 2274 2275 2276 2277 2278
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2279
#endif
C
Christoph Lameter 已提交
2280

C
Christoph Lameter 已提交
2281 2282
	/*
	 * Determine the alignment based on various parameters that the
2283 2284
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2305
	return !!s->objects;
C
Christoph Lameter 已提交
2306 2307 2308 2309 2310 2311

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2312
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2313 2314 2315 2316 2317 2318
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2319
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2320 2321 2322 2323 2324 2325

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2326
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2327
#endif
2328 2329
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2330

2331
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2332
		return 1;
2333
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2348
	struct page *page;
C
Christoph Lameter 已提交
2349 2350 2351 2352 2353 2354 2355

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2356
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2385 2386
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2407
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2408
 */
2409
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2410 2411 2412 2413 2414 2415
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2416
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2417
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2418 2419
		struct kmem_cache_node *n = get_node(s, node);

2420
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2438
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2439 2440 2441
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2442 2443
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2444 2445 2446 2447 2448 2449 2450
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2451
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
C
Christoph Lameter 已提交
2452 2453 2454
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2455
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
C
Christoph Lameter 已提交
2456 2457 2458 2459
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2460
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2461 2462 2463 2464 2465 2466 2467 2468

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2469
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2470 2471 2472 2473 2474 2475 2476 2477

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2478
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2503
			flags, NULL))
C
Christoph Lameter 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2516
#ifdef CONFIG_ZONE_DMA
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2554

2555
	realsize = kmalloc_caches[index].objsize;
2556 2557 2558 2559 2560 2561 2562 2563 2564
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2565
	}
2566 2567 2568 2569 2570 2571 2572

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2573
	up_write(&slub_lock);
2574
out:
2575
	return kmalloc_caches_dma[index];
2576 2577 2578
}
#endif

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2612 2613
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2614
	int index;
C
Christoph Lameter 已提交
2615

2616 2617 2618
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2619

2620
		index = size_index[(size - 1) / 8];
2621
	} else
2622
		index = fls(size - 1);
C
Christoph Lameter 已提交
2623 2624

#ifdef CONFIG_ZONE_DMA
2625
	if (unlikely((flags & SLUB_DMA)))
2626
		return dma_kmalloc_cache(index, flags);
2627

C
Christoph Lameter 已提交
2628 2629 2630 2631 2632 2633
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2634
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2635

2636 2637 2638 2639 2640 2641 2642
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2643 2644
		return s;

2645
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2646 2647 2648 2649 2650 2651
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2652
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2653

2654 2655 2656 2657 2658 2659 2660
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2661 2662
		return s;

2663
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2664 2665 2666 2667 2668 2669
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2670
	struct page *page;
C
Christoph Lameter 已提交
2671 2672
	struct kmem_cache *s;

2673 2674
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2675 2676
		return 0;

2677
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2678
	BUG_ON(!page);
2679 2680 2681 2682

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2711
	void *object = (void *)x;
C
Christoph Lameter 已提交
2712

2713
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2714 2715
		return;

2716
	page = virt_to_head_page(x);
2717 2718 2719 2720
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2721
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2722 2723 2724
}
EXPORT_SYMBOL(kfree);

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2738
/*
C
Christoph Lameter 已提交
2739 2740 2741 2742 2743 2744 2745 2746
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2763
	for_each_node_state(node, N_NORMAL_MEMORY) {
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2775
		 * Build lists indexed by the items in use in each slab.
2776
		 *
C
Christoph Lameter 已提交
2777 2778
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2792 2793
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2794 2795 2796 2797
			}
		}

		/*
C
Christoph Lameter 已提交
2798 2799
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2851
			BUG_ON(atomic_long_read(&n->nr_slabs));
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2927 2928 2929 2930 2931 2932 2933
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2934
	int caches = 0;
C
Christoph Lameter 已提交
2935

2936 2937
	init_alloc_cpu();

C
Christoph Lameter 已提交
2938 2939 2940
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2941
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2942 2943 2944 2945
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2946
	kmalloc_caches[0].refcount = -1;
2947
	caches++;
2948 2949

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2950 2951 2952 2953 2954 2955
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2956 2957
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2958
				"kmalloc-96", 96, GFP_KERNEL);
2959 2960 2961 2962
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2963
				"kmalloc-192", 192, GFP_KERNEL);
2964 2965
		caches++;
	}
C
Christoph Lameter 已提交
2966

2967
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2968 2969
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2970 2971
		caches++;
	}
C
Christoph Lameter 已提交
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2988
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2989 2990
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2991 2992 2993
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2994
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2995 2996 2997 2998 2999
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3000 3001 3002 3003
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3004 3005 3006 3007
#endif


	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3008 3009
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3022
	if (s->ctor)
C
Christoph Lameter 已提交
3023 3024
		return 1;

3025 3026 3027 3028 3029 3030
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3031 3032 3033 3034
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3035
		size_t align, unsigned long flags, const char *name,
3036
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3037
{
3038
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3039 3040 3041 3042

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3043
	if (ctor)
C
Christoph Lameter 已提交
3044 3045 3046 3047 3048
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3049
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3050

3051
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3052 3053 3054 3055 3056 3057
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3058
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3059 3060 3061 3062 3063
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3064
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3077
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3078 3079 3080 3081
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3082
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3083
	if (s) {
3084 3085
		int cpu;

C
Christoph Lameter 已提交
3086 3087 3088 3089 3090 3091
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3092 3093 3094 3095 3096 3097 3098

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3099
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3100
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3101 3102
		if (sysfs_slab_alias(s, name))
			goto err;
3103 3104 3105 3106 3107
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3108
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3109
			list_add(&s->list, &slab_caches);
3110 3111 3112 3113 3114 3115
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3130 3131
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3132 3133 3134 3135 3136
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3137 3138
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3139 3140

	switch (action) {
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3151
	case CPU_UP_CANCELED:
3152
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3153
	case CPU_DEAD:
3154
	case CPU_DEAD_FROZEN:
3155 3156
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3157 3158
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3159 3160 3161
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3162 3163
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3164 3165
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3166 3167 3168 3169 3170 3171 3172
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3173 3174 3175
static struct notifier_block __cpuinitdata slab_notifier = {
	&slab_cpuup_callback, NULL, 0
};
C
Christoph Lameter 已提交
3176 3177 3178 3179 3180

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3181 3182 3183 3184 3185 3186
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3187

3188
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3189
		return s;
C
Christoph Lameter 已提交
3190

3191
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3192 3193 3194 3195 3196
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3197 3198 3199 3200 3201 3202
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3203

3204
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3205
		return s;
C
Christoph Lameter 已提交
3206

3207
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3208 3209
}

C
Christoph Lameter 已提交
3210
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3211 3212
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3213 3214
{
	void *p;
3215
	void *addr = slab_address(page);
3216 3217 3218 3219 3220 3221 3222 3223

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3224 3225
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3226 3227 3228 3229
		if (!check_object(s, page, p, 0))
			return 0;
	}

3230 3231
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3232 3233 3234 3235 3236
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3237 3238
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3239 3240
{
	if (slab_trylock(page)) {
3241
		validate_slab(s, page, map);
3242 3243 3244 3245 3246 3247
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3248 3249
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3250 3251
				"on slab 0x%p\n", s->name, page);
	} else {
3252 3253
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3254 3255 3256 3257
				"slab 0x%p\n", s->name, page);
	}
}

3258 3259
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3260 3261 3262 3263 3264 3265 3266 3267
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3268
		validate_slab_slab(s, page, map);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3279
		validate_slab_slab(s, page, map);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3292
static long validate_slab_cache(struct kmem_cache *s)
3293 3294 3295
{
	int node;
	unsigned long count = 0;
3296 3297 3298 3299 3300
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3301 3302

	flush_all(s);
C
Christoph Lameter 已提交
3303
	for_each_node_state(node, N_NORMAL_MEMORY) {
3304 3305
		struct kmem_cache_node *n = get_node(s, node);

3306
		count += validate_slab_node(s, n, map);
3307
	}
3308
	kfree(map);
3309 3310 3311
	return count;
}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3367
/*
C
Christoph Lameter 已提交
3368
 * Generate lists of code addresses where slabcache objects are allocated
3369 3370 3371 3372 3373 3374
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3375 3376 3377 3378 3379 3380 3381
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3397
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3398 3399 3400 3401 3402 3403
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3404
	l = (void *)__get_free_pages(flags, order);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3418
				const struct track *track)
3419 3420 3421 3422
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3423
	unsigned long age = jiffies - track->when;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3458 3459 3460
			return 1;
		}

3461
		if (track->addr < caddr)
3462 3463 3464 3465 3466 3467
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3468
	 * Not found. Insert new tracking element.
3469
	 */
3470
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3471 3472 3473 3474 3475 3476 3477 3478
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3489 3490 3491 3492 3493 3494
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3495
	void *addr = slab_address(page);
3496
	DECLARE_BITMAP(map, s->objects);
3497 3498 3499
	void *p;

	bitmap_zero(map, s->objects);
3500 3501
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3502

3503
	for_each_object(p, s, addr)
3504 3505
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3506 3507 3508 3509 3510
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3511
	int len = 0;
3512
	unsigned long i;
3513
	struct loc_track t = { 0, 0, NULL };
3514 3515
	int node;

3516
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3517
			GFP_TEMPORARY))
3518
		return sprintf(buf, "Out of memory\n");
3519 3520 3521 3522

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3523
	for_each_node_state(node, N_NORMAL_MEMORY) {
3524 3525 3526 3527
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3528
		if (!atomic_long_read(&n->nr_slabs))
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3540
		struct location *l = &t.loc[i];
3541

3542
		if (len > PAGE_SIZE - 100)
3543
			break;
3544
		len += sprintf(buf + len, "%7ld ", l->count);
3545 3546

		if (l->addr)
3547
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3548
		else
3549
			len += sprintf(buf + len, "<not-available>");
3550 3551 3552 3553

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3554
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3555 3556 3557 3558
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3559
			len += sprintf(buf + len, " age=%ld",
3560 3561 3562
				l->min_time);

		if (l->min_pid != l->max_pid)
3563
			len += sprintf(buf + len, " pid=%ld-%ld",
3564 3565
				l->min_pid, l->max_pid);
		else
3566
			len += sprintf(buf + len, " pid=%ld",
3567 3568
				l->min_pid);

3569
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3570 3571 3572
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3573 3574 3575
					l->cpus);
		}

3576
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3577 3578 3579
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3580 3581 3582
					l->nodes);
		}

3583
		len += sprintf(buf + len, "\n");
3584 3585 3586 3587
	}

	free_loc_track(&t);
	if (!t.count)
3588 3589
		len += sprintf(buf, "No data\n");
	return len;
3590 3591
}

C
Christoph Lameter 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3618 3619
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3620

3621 3622 3623 3624
		if (!c)
			continue;

		page = c->page;
3625 3626 3627
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3628 3629 3630 3631 3632 3633 3634
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3635
				nodes[node] += x;
C
Christoph Lameter 已提交
3636
			}
3637
			per_cpu[node]++;
C
Christoph Lameter 已提交
3638 3639 3640
		}
	}

C
Christoph Lameter 已提交
3641
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3654
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3669
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3683 3684 3685 3686
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3687
			return 1;
3688
	}
C
Christoph Lameter 已提交
3689

3690
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3691 3692
		struct kmem_cache_node *n = get_node(s, node);

3693 3694 3695
		if (!n)
			continue;

3696
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3836
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3911 3912 3913 3914 3915 3916 3917 3918
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3919 3920 3921 3922 3923 3924 3925 3926
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3927 3928 3929
}
SLAB_ATTR(validate);

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3965
#ifdef CONFIG_NUMA
3966
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3967
{
3968
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3969 3970
}

3971
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3972 3973 3974 3975 3976
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3977
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3978 3979
	return length;
}
3980
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3981 3982
#endif

P
Pekka Enberg 已提交
3983
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4003
	&validate_attr.attr,
4004
	&shrink_attr.attr,
4005 4006
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4007 4008 4009 4010
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4011
	&remote_node_defrag_ratio_attr.attr,
C
Christoph Lameter 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4058 4059 4060 4061 4062 4063 4064
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4065 4066 4067 4068 4069 4070 4071
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4072
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4088
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4141
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4151
	s->kobj.kset = slab_kset;
4152 4153 4154
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4155
		return err;
4156
	}
C
Christoph Lameter 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4174
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4187
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4197 4198
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4214
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4215 4216
	int err;

4217
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4218
	if (!slab_kset) {
C
Christoph Lameter 已提交
4219 4220 4221 4222
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4223 4224
	slab_state = SYSFS;

4225
	list_for_each_entry(s, &slab_caches, list) {
4226
		err = sysfs_slab_add(s);
4227 4228 4229
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4230
	}
C
Christoph Lameter 已提交
4231 4232 4233 4234 4235 4236

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4237 4238 4239
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4249 4250 4251 4252

/*
 * The /proc/slabinfo ABI
 */
4253 4254 4255 4256 4257 4258 4259 4260
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4334
#endif /* CONFIG_SLABINFO */