slub.c 127.6 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
21
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
22
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
23 24 25 26
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
27
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
28
#include <linux/kallsyms.h>
29
#include <linux/memory.h>
R
Roman Zippel 已提交
30
#include <linux/math64.h>
A
Akinobu Mita 已提交
31
#include <linux/fault-inject.h>
32
#include <linux/stacktrace.h>
33
#include <linux/prefetch.h>
34
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
35

36 37
#include <trace/events/kmem.h>

38 39
#include "internal.h"

C
Christoph Lameter 已提交
40 41
/*
 * Lock order:
42
 *   1. slab_mutex (Global Mutex)
43 44
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
45
 *
46
 *   slab_mutex
47
 *
48
 *   The role of the slab_mutex is to protect the list of all the slabs
49 50 51 52 53 54 55 56 57 58 59 60 61 62
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
83 84
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
85
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
86 87
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
88 89 90 91 92 93 94
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
95 96 97 98 99 100 101 102 103 104 105 106
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
107
 * 			freelist that allows lockless access to
108 109
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
110 111 112
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
113
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
114 115
 */

116 117
static inline int kmem_cache_debug(struct kmem_cache *s)
{
118
#ifdef CONFIG_SLUB_DEBUG
119
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120
#else
121
	return 0;
122
#endif
123
}
124

C
Christoph Lameter 已提交
125 126 127 128 129 130 131 132 133 134 135
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

136 137 138
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

139 140 141 142
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
143
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
144

145 146 147 148 149 150 151
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
152 153
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
154

155
/*
156 157 158
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
159
 */
160
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161

C
Christoph Lameter 已提交
162 163 164 165
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 167
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
168 169

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
170
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
171

172 173
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
174
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175

C
Christoph Lameter 已提交
176
/* Internal SLUB flags */
C
Christoph Lameter 已提交
177
#define __OBJECT_POISON		0x80000000UL /* Poison object */
178
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
179 180 181 182 183

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

184 185 186
/*
 * Tracking user of a slab.
 */
187
#define TRACK_ADDRS_COUNT 16
188
struct track {
189
	unsigned long addr;	/* Called from address */
190 191 192
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
193 194 195 196 197 198 199
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

200
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
201 202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210

211
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
212 213
#endif

214
static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 216
{
#ifdef CONFIG_SLUB_STATS
217
	__this_cpu_inc(s->cpu_slab->stat[si]);
218 219 220
#endif
}

C
Christoph Lameter 已提交
221 222 223 224 225 226 227 228 229
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
230
/* Verify that a pointer has an address that is valid within a slab page */
231 232 233 234 235
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

236
	if (!object)
237 238
		return 1;

239
	base = page_address(page);
240
	if (object < base || object >= base + page->objects * s->size ||
241 242 243 244 245 246 247
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

248 249 250 251 252
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

253 254 255 256 257
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

258 259 260 261 262 263 264 265 266 267 268 269
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

270 271 272 273 274 275
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
276 277
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 279 280 281 282 283 284 285
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

286 287 288 289 290 291 292 293
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294
		return s->object_size;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

310 311 312 313 314
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

315
static inline struct kmem_cache_order_objects oo_make(int order,
316
		unsigned long size, int reserved)
317 318
{
	struct kmem_cache_order_objects x = {
319
		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 321 322 323 324 325 326
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
327
	return x.x >> OO_SHIFT;
328 329 330 331
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
332
	return x.x & OO_MASK;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

348 349 350 351 352 353 354
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
355 356
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357
	if (s->flags & __CMPXCHG_DOUBLE) {
358
		if (cmpxchg_double(&page->freelist, &page->counters,
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

385 386 387 388 389
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
390 391
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392
	if (s->flags & __CMPXCHG_DOUBLE) {
393
		if (cmpxchg_double(&page->freelist, &page->counters,
394 395 396 397 398 399
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
400 401 402
		unsigned long flags;

		local_irq_save(flags);
403
		slab_lock(page);
404 405 406
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
407
			slab_unlock(page);
408
			local_irq_restore(flags);
409 410
			return 1;
		}
411
		slab_unlock(page);
412
		local_irq_restore(flags);
413 414 415 416 417 418 419 420 421 422 423 424
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
425
#ifdef CONFIG_SLUB_DEBUG
426 427 428
/*
 * Determine a map of object in use on a page.
 *
429
 * Node listlock must be held to guarantee that the page does
430 431 432 433 434 435 436 437 438 439 440
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
441 442 443
/*
 * Debug settings:
 */
444 445 446
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
447
static int slub_debug;
448
#endif
C
Christoph Lameter 已提交
449 450

static char *slub_debug_slabs;
451
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
452

C
Christoph Lameter 已提交
453 454 455 456 457
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
458 459
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
476
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
477
{
A
Akinobu Mita 已提交
478
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
479 480

	if (addr) {
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
499 500
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
501
		p->pid = current->pid;
C
Christoph Lameter 已提交
502 503 504 505 506 507 508
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
509 510 511
	if (!(s->flags & SLAB_STORE_USER))
		return;

512 513
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
514 515 516 517 518 519 520
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

521
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 524 525 526 527 528 529 530 531 532
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
533 534 535 536 537 538 539 540 541 542 543 544 545
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
546 547
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
548 549 550 551 552 553 554 555 556 557 558 559 560

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
561
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 563
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
564 565

	add_taint(TAINT_BAD_PAGE);
C
Christoph Lameter 已提交
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
580 581
{
	unsigned int off;	/* Offset of last byte */
582
	u8 *addr = page_address(page);
583 584 585 586 587 588 589 590 591

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
592
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
593

594
	print_section("Object ", p, min_t(unsigned long, s->object_size,
595
				PAGE_SIZE));
C
Christoph Lameter 已提交
596
	if (s->flags & SLAB_RED_ZONE)
597 598
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
599 600 601 602 603 604

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

605
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
606 607 608 609
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
610
		print_section("Padding ", p + off, s->size - off);
611 612

	dump_stack();
C
Christoph Lameter 已提交
613 614 615 616 617
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
618
	slab_bug(s, "%s", reason);
619
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
620 621
}

622
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
C
Christoph Lameter 已提交
623 624 625 626
{
	va_list args;
	char buf[100];

627 628
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
629
	va_end(args);
630
	slab_bug(s, "%s", buf);
631
	print_page_info(page);
C
Christoph Lameter 已提交
632 633 634
	dump_stack();
}

635
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
636 637 638 639
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
640 641
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
642 643 644
	}

	if (s->flags & SLAB_RED_ZONE)
645
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
646 647
}

648 649 650 651 652 653 654 655 656
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
657
			u8 *start, unsigned int value, unsigned int bytes)
658 659 660 661
{
	u8 *fault;
	u8 *end;

662
	fault = memchr_inv(start, value, bytes);
663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
677 678 679 680 681 682 683 684 685
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
686
 *
C
Christoph Lameter 已提交
687 688 689
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
690
 * object + s->object_size
C
Christoph Lameter 已提交
691
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
692
 * 	Padding is extended by another word if Redzoning is enabled and
693
 * 	object_size == inuse.
C
Christoph Lameter 已提交
694
 *
C
Christoph Lameter 已提交
695 696 697 698
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
699 700
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
701 702
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
703
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
704
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
705 706 707
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
708 709
 *
 * object + s->size
C
Christoph Lameter 已提交
710
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
711
 *
712
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
713
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

732 733
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
734 735
}

736
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
737 738
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
739 740 741 742 743
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
744 745 746 747

	if (!(s->flags & SLAB_POISON))
		return 1;

748
	start = page_address(page);
749
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 751
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
752 753 754
	if (!remainder)
		return 1;

755
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 757 758 759 760 761
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762
	print_section("Padding ", end - remainder, remainder);
763

E
Eric Dumazet 已提交
764
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765
	return 0;
C
Christoph Lameter 已提交
766 767 768
}

static int check_object(struct kmem_cache *s, struct page *page,
769
					void *object, u8 val)
C
Christoph Lameter 已提交
770 771
{
	u8 *p = object;
772
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
773 774

	if (s->flags & SLAB_RED_ZONE) {
775
		if (!check_bytes_and_report(s, page, object, "Redzone",
776
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
777 778
			return 0;
	} else {
779
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
780
			check_bytes_and_report(s, page, p, "Alignment padding",
781
				endobject, POISON_INUSE, s->inuse - s->object_size);
I
Ingo Molnar 已提交
782
		}
C
Christoph Lameter 已提交
783 784 785
	}

	if (s->flags & SLAB_POISON) {
786
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787
			(!check_bytes_and_report(s, page, p, "Poison", p,
788
					POISON_FREE, s->object_size - 1) ||
789
			 !check_bytes_and_report(s, page, p, "Poison",
790
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
791 792 793 794 795 796 797
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

798
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
799 800 801 802 803 804 805 806 807 808
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
809
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
810
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
811
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
812
		 */
813
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
814 815 816 817 818 819 820
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
821 822
	int maxobj;

C
Christoph Lameter 已提交
823 824 825
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
826
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
827 828
		return 0;
	}
829

830
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 832 833 834 835 836
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
837
		slab_err(s, page, "inuse %u > max %u",
838
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
839 840 841 842 843 844 845 846
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
847 848
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
849 850 851 852
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
853
	void *fp;
C
Christoph Lameter 已提交
854
	void *object = NULL;
855
	unsigned long max_objects;
C
Christoph Lameter 已提交
856

857
	fp = page->freelist;
858
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
859 860 861 862 863 864
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
865
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
866 867
				break;
			} else {
868
				slab_err(s, page, "Freepointer corrupt");
869
				page->freelist = NULL;
870
				page->inuse = page->objects;
871
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
872 873 874 875 876 877 878 879 880
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

881
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 883
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
884 885 886 887 888 889 890

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
891
	if (page->inuse != page->objects - nr) {
892
		slab_err(s, page, "Wrong object count. Counter is %d but "
893 894
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
895
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
896 897 898 899
	}
	return search == NULL;
}

900 901
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
902 903 904 905 906 907 908 909 910
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
911
			print_section("Object ", (void *)object, s->object_size);
C
Christoph Lameter 已提交
912 913 914 915 916

		dump_stack();
	}
}

917 918 919 920 921 922
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
923
	flags &= gfp_allowed_mask;
924 925 926
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

927
	return should_failslab(s->object_size, flags, s->flags);
928 929 930 931
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
932
	flags &= gfp_allowed_mask;
933
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 936 937 938 939 940
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

941 942 943 944 945 946 947 948 949 950
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
951 952
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
953 954 955
		local_irq_restore(flags);
	}
#endif
956
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
957
		debug_check_no_obj_freed(x, s->object_size);
958 959
}

960
/*
C
Christoph Lameter 已提交
961
 * Tracking of fully allocated slabs for debugging purposes.
962 963
 *
 * list_lock must be held.
964
 */
965 966
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
967
{
968 969 970
	if (!(s->flags & SLAB_STORE_USER))
		return;

971 972 973
	list_add(&page->lru, &n->full);
}

974 975 976
/*
 * list_lock must be held.
 */
977 978 979 980 981 982 983 984
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

985 986 987 988 989 990 991 992
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

993 994 995 996 997
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

998
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 1000 1001 1002 1003 1004 1005 1006 1007
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1008
	if (n) {
1009
		atomic_long_inc(&n->nr_slabs);
1010 1011
		atomic_long_add(objects, &n->total_objects);
	}
1012
}
1013
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 1015 1016 1017
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1018
	atomic_long_sub(objects, &n->total_objects);
1019 1020 1021
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1022 1023 1024 1025 1026 1027
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1028
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1029 1030 1031
	init_tracking(s, object);
}

1032
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1034 1035 1036 1037 1038 1039
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1040
		goto bad;
C
Christoph Lameter 已提交
1041 1042
	}

1043
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1044 1045
		goto bad;

C
Christoph Lameter 已提交
1046 1047 1048 1049
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1050
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1051
	return 1;
C
Christoph Lameter 已提交
1052

C
Christoph Lameter 已提交
1053 1054 1055 1056 1057
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1058
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1059
		 */
1060
		slab_fix(s, "Marking all objects used");
1061
		page->inuse = page->objects;
1062
		page->freelist = NULL;
C
Christoph Lameter 已提交
1063 1064 1065 1066
	}
	return 0;
}

1067 1068 1069
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1070
{
1071
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072

1073
	spin_lock_irqsave(&n->list_lock, *flags);
1074 1075
	slab_lock(page);

C
Christoph Lameter 已提交
1076 1077 1078 1079
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1080
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1081 1082 1083 1084
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1085
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1086 1087 1088
		goto fail;
	}

1089
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090
		goto out;
C
Christoph Lameter 已提交
1091

1092
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1093
		if (!PageSlab(page)) {
1094 1095
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1096
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1097
			printk(KERN_ERR
1098
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1099
						object);
1100
			dump_stack();
P
Pekka Enberg 已提交
1101
		} else
1102 1103
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1104 1105
		goto fail;
	}
C
Christoph Lameter 已提交
1106 1107 1108 1109

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1110
	init_object(s, object, SLUB_RED_INACTIVE);
1111
out:
1112
	slab_unlock(page);
1113 1114 1115 1116 1117
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1118

C
Christoph Lameter 已提交
1119
fail:
1120 1121
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1122
	slab_fix(s, "Object at 0x%p not freed", object);
1123
	return NULL;
C
Christoph Lameter 已提交
1124 1125
}

C
Christoph Lameter 已提交
1126 1127
static int __init setup_slub_debug(char *str)
{
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1161
	for (; *str && *str != ','; str++) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1178 1179 1180
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1181 1182
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1183
				"unknown. skipped\n", *str);
1184
		}
C
Christoph Lameter 已提交
1185 1186
	}

1187
check_slabs:
C
Christoph Lameter 已提交
1188 1189
	if (*str == ',')
		slub_debug_slabs = str + 1;
1190
out:
C
Christoph Lameter 已提交
1191 1192 1193 1194 1195
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1196
static unsigned long kmem_cache_flags(unsigned long object_size,
1197
	unsigned long flags, const char *name,
1198
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1199 1200
{
	/*
1201
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1202
	 */
1203
	if (slub_debug && (!slub_debug_slabs ||
1204 1205
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1206 1207

	return flags;
C
Christoph Lameter 已提交
1208 1209
}
#else
C
Christoph Lameter 已提交
1210 1211
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1212

C
Christoph Lameter 已提交
1213
static inline int alloc_debug_processing(struct kmem_cache *s,
1214
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1215

1216 1217 1218
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1219 1220 1221 1222

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1223
			void *object, u8 val) { return 1; }
1224 1225
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1226
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228
	unsigned long flags, const char *name,
1229
	void (*ctor)(void *))
1230 1231 1232
{
	return flags;
}
C
Christoph Lameter 已提交
1233
#define slub_debug 0
1234

1235 1236
#define disable_higher_order_debug 0

1237 1238
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1239 1240
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1241 1242 1243 1244
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1245 1246 1247 1248 1249 1250 1251 1252 1253

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1254
#endif /* CONFIG_SLUB_DEBUG */
1255

C
Christoph Lameter 已提交
1256 1257 1258
/*
 * Slab allocation and freeing
 */
1259 1260 1261 1262 1263
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1264 1265
	flags |= __GFP_NOTRACK;

1266
	if (node == NUMA_NO_NODE)
1267 1268
		return alloc_pages(flags, order);
	else
1269
		return alloc_pages_exact_node(node, flags, order);
1270 1271
}

C
Christoph Lameter 已提交
1272 1273
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1274
	struct page *page;
1275
	struct kmem_cache_order_objects oo = s->oo;
1276
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1277

1278 1279 1280 1281 1282
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1283
	flags |= s->allocflags;
1284

1285 1286 1287 1288 1289 1290 1291
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1292 1293 1294 1295 1296 1297 1298
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1299

1300 1301
		if (page)
			stat(s, ORDER_FALLBACK);
1302
	}
V
Vegard Nossum 已提交
1303

1304
	if (kmemcheck_enabled && page
1305
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1318 1319
	}

1320 1321 1322 1323 1324
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1325
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1326 1327 1328
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1330 1331 1332 1333 1334 1335 1336

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1337
	setup_object_debug(s, page, object);
1338
	if (unlikely(s->ctor))
1339
		s->ctor(object);
C
Christoph Lameter 已提交
1340 1341 1342 1343 1344 1345 1346 1347
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1348
	int order;
C
Christoph Lameter 已提交
1349

C
Christoph Lameter 已提交
1350
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1351

C
Christoph Lameter 已提交
1352 1353
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1354 1355 1356
	if (!page)
		goto out;

G
Glauber Costa 已提交
1357
	order = compound_order(page);
1358
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1359
	memcg_bind_pages(s, order);
1360
	page->slab_cache = s;
1361
	__SetPageSlab(page);
1362 1363
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1364 1365 1366 1367

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1368
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1369 1370

	last = start;
1371
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1372 1373 1374 1375 1376
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1377
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1378 1379

	page->freelist = start;
1380
	page->inuse = page->objects;
1381
	page->frozen = 1;
C
Christoph Lameter 已提交
1382 1383 1384 1385 1386 1387
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1388 1389
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1390

1391
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1392 1393 1394
		void *p;

		slab_pad_check(s, page);
1395 1396
		for_each_object(p, s, page_address(page),
						page->objects)
1397
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1398 1399
	}

1400
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1401

C
Christoph Lameter 已提交
1402 1403 1404
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1405
		-pages);
C
Christoph Lameter 已提交
1406

1407
	__ClearPageSlabPfmemalloc(page);
1408
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1409 1410

	memcg_release_pages(s, order);
1411
	reset_page_mapcount(page);
N
Nick Piggin 已提交
1412 1413
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1414
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1415 1416
}

1417 1418 1419
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1420 1421 1422 1423
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1424 1425 1426 1427 1428
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1429
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1430 1431 1432 1433 1434
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1449 1450 1451 1452 1453 1454 1455 1456

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1457
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1458 1459 1460 1461
	free_slab(s, page);
}

/*
1462 1463 1464
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1465
 */
1466
static inline void add_partial(struct kmem_cache_node *n,
1467
				struct page *page, int tail)
C
Christoph Lameter 已提交
1468
{
C
Christoph Lameter 已提交
1469
	n->nr_partial++;
1470
	if (tail == DEACTIVATE_TO_TAIL)
1471 1472 1473
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1474 1475
}

1476 1477 1478 1479
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1480 1481 1482 1483 1484 1485
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1486
/*
1487 1488
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1489
 *
1490 1491
 * Returns a list of objects or NULL if it fails.
 *
1492
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1493
 */
1494
static inline void *acquire_slab(struct kmem_cache *s,
1495
		struct kmem_cache_node *n, struct page *page,
1496
		int mode)
C
Christoph Lameter 已提交
1497
{
1498 1499 1500 1501 1502 1503 1504 1505 1506
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1507 1508 1509
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1510
	if (mode) {
1511
		new.inuse = page->objects;
1512 1513 1514 1515
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1516

1517 1518
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1519

1520
	if (!__cmpxchg_double_slab(s, page,
1521
			freelist, counters,
1522
			new.freelist, new.counters,
1523 1524
			"acquire_slab"))
		return NULL;
1525 1526

	remove_partial(n, page);
1527
	WARN_ON(!freelist);
1528
	return freelist;
C
Christoph Lameter 已提交
1529 1530
}

1531
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1533

C
Christoph Lameter 已提交
1534
/*
C
Christoph Lameter 已提交
1535
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1536
 */
1537 1538
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1539
{
1540 1541
	struct page *page, *page2;
	void *object = NULL;
C
Christoph Lameter 已提交
1542 1543 1544 1545

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1546 1547
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1548 1549 1550 1551 1552
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1553
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554
		void *t;
1555 1556
		int available;

1557 1558 1559 1560
		if (!pfmemalloc_match(page, flags))
			continue;

		t = acquire_slab(s, n, page, object == NULL);
1561 1562 1563
		if (!t)
			break;

1564
		if (!object) {
1565 1566 1567 1568 1569 1570
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
			available =  page->objects - page->inuse;
		} else {
			available = put_cpu_partial(s, page, 0);
1571
			stat(s, CPU_PARTIAL_NODE);
1572 1573 1574 1575
		}
		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
			break;

1576
	}
C
Christoph Lameter 已提交
1577
	spin_unlock(&n->list_lock);
1578
	return object;
C
Christoph Lameter 已提交
1579 1580 1581
}

/*
C
Christoph Lameter 已提交
1582
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1583
 */
1584
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1585
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1586 1587 1588
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1589
	struct zoneref *z;
1590 1591
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1592
	void *object;
1593
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1594 1595

	/*
C
Christoph Lameter 已提交
1596 1597 1598 1599
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1600
	 *
C
Christoph Lameter 已提交
1601 1602 1603 1604
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1605
	 *
C
Christoph Lameter 已提交
1606
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1607 1608 1609 1610 1611
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1612
	 */
1613 1614
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1615 1616
		return NULL;

1617 1618
	do {
		cpuset_mems_cookie = get_mems_allowed();
1619
		zonelist = node_zonelist(slab_node(), flags);
1620 1621 1622 1623 1624 1625 1626
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1627
				object = get_partial_node(s, n, c, flags);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1640
			}
C
Christoph Lameter 已提交
1641
		}
1642
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1643 1644 1645 1646 1647 1648 1649
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1650
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1651
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1652
{
1653
	void *object;
1654
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1655

1656
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1657 1658
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1659

1660
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1719
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 1721
}

1722
static void init_kmem_cache_cpus(struct kmem_cache *s)
1723 1724 1725 1726 1727 1728
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1729

C
Christoph Lameter 已提交
1730 1731 1732
/*
 * Remove the cpu slab
 */
1733
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
C
Christoph Lameter 已提交
1734
{
1735 1736 1737 1738 1739
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1740
	int tail = DEACTIVATE_TO_HEAD;
1741 1742 1743 1744
	struct page new;
	struct page old;

	if (page->freelist) {
1745
		stat(s, DEACTIVATE_REMOTE_FREES);
1746
		tail = DEACTIVATE_TO_TAIL;
1747 1748
	}

1749
	/*
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1769
		} while (!__cmpxchg_double_slab(s, page,
1770 1771 1772 1773 1774 1775 1776
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1777
	/*
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1790
	 */
1791
redo:
1792

1793 1794 1795
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1808
	if (!new.inuse && n->nr_partial > s->min_partial)
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1841

1842 1843 1844 1845 1846
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1847
			stat(s, tail);
1848 1849

		} else if (m == M_FULL) {
1850

1851 1852 1853 1854 1855 1856 1857
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1858
	if (!__cmpxchg_double_slab(s, page,
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1871
	}
C
Christoph Lameter 已提交
1872 1873
}

1874 1875 1876
/*
 * Unfreeze all the cpu partial slabs.
 *
1877 1878 1879
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1880
 */
1881 1882
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1883
{
1884
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1885
	struct page *page, *discard_page = NULL;
1886 1887 1888 1889 1890 1891

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1892 1893 1894 1895 1896 1897 1898 1899 1900

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1913
		} while (!__cmpxchg_double_slab(s, page,
1914 1915 1916 1917
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1918
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1919 1920
			page->next = discard_page;
			discard_page = page;
1921 1922 1923
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1924 1925 1926 1927 1928
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1929 1930 1931 1932 1933 1934 1935 1936 1937

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1949
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
{
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
1970
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1971
				local_irq_restore(flags);
1972
				oldpage = NULL;
1973 1974
				pobjects = 0;
				pages = 0;
1975
				stat(s, CPU_PARTIAL_DRAIN);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

1986
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1987 1988 1989
	return pobjects;
}

1990
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1991
{
1992
	stat(s, CPUSLAB_FLUSH);
1993 1994 1995 1996 1997
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
1998 1999 2000 2001
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2002
 *
C
Christoph Lameter 已提交
2003 2004
 * Called from IPI handler with interrupts disabled.
 */
2005
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2006
{
2007
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2008

2009 2010 2011 2012
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2013
		unfreeze_partials(s, c);
2014
	}
C
Christoph Lameter 已提交
2015 2016 2017 2018 2019 2020
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2021
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2022 2023
}

2024 2025 2026 2027 2028
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2029
	return c->page || c->partial;
2030 2031
}

C
Christoph Lameter 已提交
2032 2033
static void flush_all(struct kmem_cache *s)
{
2034
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2035 2036
}

2037 2038 2039 2040
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2041
static inline int node_match(struct page *page, int node)
2042 2043
{
#ifdef CONFIG_NUMA
2044
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2045 2046 2047 2048 2049
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2069 2070 2071 2072 2073 2074 2075 2076 2077
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2087
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2088 2089
		s->size, oo_order(s->oo), oo_order(s->min));

2090
	if (oo_order(s->min) > get_order(s->object_size))
2091 2092 2093
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2103 2104 2105
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2106 2107 2108 2109 2110 2111 2112

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2113 2114 2115
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2116
	void *freelist;
2117 2118
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2119

2120
	freelist = get_partial(s, flags, node, c);
2121

2122 2123 2124 2125
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2135
		freelist = page->freelist;
2136 2137 2138 2139 2140 2141
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2142
		freelist = NULL;
2143

2144
	return freelist;
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2155 2156 2157 2158 2159 2160 2161
/*
 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
 * or deactivate the page.
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2162 2163
 *
 * This function must be called with interrupt disabled.
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2174

2175 2176 2177 2178 2179 2180
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2181
	} while (!__cmpxchg_double_slab(s, page,
2182 2183 2184 2185 2186 2187 2188
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2189
/*
2190 2191 2192 2193 2194 2195
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2196
 *
2197 2198 2199
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2200
 *
2201
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2202 2203
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2204
 */
2205 2206
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2207
{
2208
	void *freelist;
2209
	struct page *page;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2221

2222 2223
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2224
		goto new_slab;
2225
redo:
2226

2227
	if (unlikely(!node_match(page, node))) {
2228
		stat(s, ALLOC_NODE_MISMATCH);
2229
		deactivate_slab(s, page, c->freelist);
2230 2231
		c->page = NULL;
		c->freelist = NULL;
2232 2233
		goto new_slab;
	}
C
Christoph Lameter 已提交
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2247
	/* must check again c->freelist in case of cpu migration or IRQ */
2248 2249
	freelist = c->freelist;
	if (freelist)
2250
		goto load_freelist;
2251

2252
	stat(s, ALLOC_SLOWPATH);
2253

2254
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2255

2256
	if (!freelist) {
2257 2258
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2259
		goto new_slab;
2260
	}
C
Christoph Lameter 已提交
2261

2262
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2263

2264
load_freelist:
2265 2266 2267 2268 2269 2270
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2271
	c->freelist = get_freepointer(s, freelist);
2272 2273
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2274
	return freelist;
C
Christoph Lameter 已提交
2275 2276

new_slab:
2277

2278
	if (c->partial) {
2279 2280
		page = c->page = c->partial;
		c->partial = page->next;
2281 2282 2283
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2284 2285
	}

2286
	freelist = new_slab_objects(s, gfpflags, node, &c);
2287

2288 2289 2290
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2291

2292 2293
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2294
	}
2295

2296
	page = c->page;
2297
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2298
		goto load_freelist;
2299

2300
	/* Only entered in the debug case */
2301
	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2302
		goto new_slab;	/* Slab failed checks. Next slab needed */
2303

2304
	deactivate_slab(s, page, get_freepointer(s, freelist));
2305 2306
	c->page = NULL;
	c->freelist = NULL;
2307
	local_irq_restore(flags);
2308
	return freelist;
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2321
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2322
		gfp_t gfpflags, int node, unsigned long addr)
2323 2324
{
	void **object;
2325
	struct kmem_cache_cpu *c;
2326
	struct page *page;
2327
	unsigned long tid;
2328

2329
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2330
		return NULL;
2331

2332
	s = memcg_kmem_get_cache(s, gfpflags);
2333 2334 2335 2336 2337 2338 2339 2340
redo:

	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
	 */
2341
	c = __this_cpu_ptr(s->cpu_slab);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
	barrier();

2352
	object = c->freelist;
2353
	page = c->page;
2354
	if (unlikely(!object || !node_match(page, node)))
2355
		object = __slab_alloc(s, gfpflags, node, addr, c);
2356 2357

	else {
2358 2359
		void *next_object = get_freepointer_safe(s, object);

2360
		/*
L
Lucas De Marchi 已提交
2361
		 * The cmpxchg will only match if there was no additional
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
2372
		if (unlikely(!this_cpu_cmpxchg_double(
2373 2374
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2375
				next_object, next_tid(tid)))) {
2376 2377 2378 2379

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2380
		prefetch_freepointer(s, next_object);
2381
		stat(s, ALLOC_FASTPATH);
2382
	}
2383

2384
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2385
		memset(object, 0, s->object_size);
2386

2387
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2388

2389
	return object;
C
Christoph Lameter 已提交
2390 2391
}

2392 2393 2394 2395 2396 2397
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2398 2399
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2400
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2401

2402
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2403 2404

	return ret;
C
Christoph Lameter 已提交
2405 2406 2407
}
EXPORT_SYMBOL(kmem_cache_alloc);

2408
#ifdef CONFIG_TRACING
2409 2410
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2411
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2412 2413 2414 2415 2416 2417
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
E
Eduard - Gabriel Munteanu 已提交
2418
{
2419 2420 2421
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2422
}
2423
EXPORT_SYMBOL(kmalloc_order_trace);
E
Eduard - Gabriel Munteanu 已提交
2424 2425
#endif

C
Christoph Lameter 已提交
2426 2427 2428
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2429
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2430

2431
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2432
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2433 2434

	return ret;
C
Christoph Lameter 已提交
2435 2436 2437
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2438
#ifdef CONFIG_TRACING
2439
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2440
				    gfp_t gfpflags,
2441
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2442
{
2443
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2444 2445 2446 2447

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2448
}
2449
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2450
#endif
2451
#endif
E
Eduard - Gabriel Munteanu 已提交
2452

C
Christoph Lameter 已提交
2453
/*
2454 2455
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2456
 *
2457 2458 2459
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2460
 */
2461
static void __slab_free(struct kmem_cache *s, struct page *page,
2462
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2463 2464 2465
{
	void *prior;
	void **object = (void *)x;
2466 2467 2468 2469
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2470
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2471

2472
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2473

2474 2475
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2476
		return;
C
Christoph Lameter 已提交
2477

2478
	do {
2479 2480 2481 2482
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2483 2484 2485 2486 2487 2488
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2489
		if ((!new.inuse || !prior) && !was_frozen) {
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

			if (!kmem_cache_debug(s) && !prior)

				/*
				 * Slab was on no list before and will be partially empty
				 * We can defer the list move and instead freeze it.
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2513
		}
C
Christoph Lameter 已提交
2514

2515 2516 2517 2518
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2519

2520
	if (likely(!n)) {
2521 2522 2523 2524 2525

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2526
		if (new.frozen && !was_frozen) {
2527
			put_cpu_partial(s, page, 1);
2528 2529
			stat(s, CPU_PARTIAL_FREE);
		}
2530
		/*
2531 2532 2533 2534 2535
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2536
                return;
2537
        }
C
Christoph Lameter 已提交
2538

2539 2540 2541
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2542
	/*
2543 2544
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2545
	 */
2546 2547 2548 2549
	if (kmem_cache_debug(s) && unlikely(!prior)) {
		remove_full(s, page);
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2550
	}
2551
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2552 2553 2554
	return;

slab_empty:
2555
	if (prior) {
C
Christoph Lameter 已提交
2556
		/*
2557
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2558
		 */
2559
		remove_partial(n, page);
2560
		stat(s, FREE_REMOVE_PARTIAL);
2561 2562 2563
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2564

2565
	spin_unlock_irqrestore(&n->list_lock, flags);
2566
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2567 2568 2569
	discard_slab(s, page);
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2581
static __always_inline void slab_free(struct kmem_cache *s,
2582
			struct page *page, void *x, unsigned long addr)
2583 2584
{
	void **object = (void *)x;
2585
	struct kmem_cache_cpu *c;
2586
	unsigned long tid;
2587

2588 2589
	slab_free_hook(s, x);

2590 2591 2592 2593 2594 2595 2596
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2597
	c = __this_cpu_ptr(s->cpu_slab);
2598

2599 2600
	tid = c->tid;
	barrier();
2601

2602
	if (likely(page == c->page)) {
2603
		set_freepointer(s, object, c->freelist);
2604

2605
		if (unlikely(!this_cpu_cmpxchg_double(
2606 2607 2608 2609 2610 2611 2612
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2613
		stat(s, FREE_FASTPATH);
2614
	} else
2615
		__slab_free(s, page, x, addr);
2616 2617 2618

}

C
Christoph Lameter 已提交
2619 2620
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2621 2622
	s = cache_from_obj(s, x);
	if (!s)
2623
		return;
2624
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2625
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2626 2627 2628 2629
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2630 2631 2632 2633
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2634 2635 2636 2637
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2638
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2649
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2650
static int slub_min_objects;
C
Christoph Lameter 已提交
2651 2652 2653

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2654
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2655 2656 2657 2658 2659 2660
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2661 2662 2663 2664
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2665
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2666 2667 2668 2669 2670 2671
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2672
 *
C
Christoph Lameter 已提交
2673 2674 2675 2676
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2677
 *
C
Christoph Lameter 已提交
2678 2679 2680 2681
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2682
 */
2683
static inline int slab_order(int size, int min_objects,
2684
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2685 2686 2687
{
	int order;
	int rem;
2688
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2689

2690
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2691
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2692

2693
	for (order = max(min_order,
2694 2695
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2696

2697
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2698

2699
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2700 2701
			continue;

2702
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2703

2704
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2705 2706 2707
			break;

	}
C
Christoph Lameter 已提交
2708

C
Christoph Lameter 已提交
2709 2710 2711
	return order;
}

2712
static inline int calculate_order(int size, int reserved)
2713 2714 2715 2716
{
	int order;
	int min_objects;
	int fraction;
2717
	int max_objects;
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2728 2729
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2730
	max_objects = order_objects(slub_max_order, size, reserved);
2731 2732
	min_objects = min(min_objects, max_objects);

2733
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2734
		fraction = 16;
2735 2736
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2737
					slub_max_order, fraction, reserved);
2738 2739 2740 2741
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2742
		min_objects--;
2743 2744 2745 2746 2747 2748
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2749
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2750 2751 2752 2753 2754 2755
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2756
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2757
	if (order < MAX_ORDER)
2758 2759 2760 2761
		return order;
	return -ENOSYS;
}

2762
static void
2763
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2764 2765 2766 2767
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2768
#ifdef CONFIG_SLUB_DEBUG
2769
	atomic_long_set(&n->nr_slabs, 0);
2770
	atomic_long_set(&n->total_objects, 0);
2771
	INIT_LIST_HEAD(&n->full);
2772
#endif
C
Christoph Lameter 已提交
2773 2774
}

2775
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2776
{
2777
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2778
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2779

2780
	/*
2781 2782
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2783
	 */
2784 2785
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2786 2787 2788 2789 2790

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2791

2792
	return 1;
2793 2794
}

2795 2796
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2797 2798 2799 2800 2801 2802
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2803 2804
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2805
 */
2806
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2807 2808 2809 2810
{
	struct page *page;
	struct kmem_cache_node *n;

2811
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2812

2813
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2814 2815

	BUG_ON(!page);
2816 2817 2818 2819 2820 2821 2822
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2823 2824
	n = page->freelist;
	BUG_ON(!n);
2825
	page->freelist = get_freepointer(kmem_cache_node, n);
2826
	page->inuse = 1;
2827
	page->frozen = 0;
2828
	kmem_cache_node->node[node] = n;
2829
#ifdef CONFIG_SLUB_DEBUG
2830
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2831
	init_tracking(kmem_cache_node, n);
2832
#endif
2833
	init_kmem_cache_node(n);
2834
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2835

2836
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2837 2838 2839 2840 2841 2842
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2843
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2844
		struct kmem_cache_node *n = s->node[node];
2845

2846
		if (n)
2847 2848
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2849 2850 2851 2852
		s->node[node] = NULL;
	}
}

2853
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2854 2855 2856
{
	int node;

C
Christoph Lameter 已提交
2857
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2858 2859
		struct kmem_cache_node *n;

2860
		if (slab_state == DOWN) {
2861
			early_kmem_cache_node_alloc(node);
2862 2863
			continue;
		}
2864
		n = kmem_cache_alloc_node(kmem_cache_node,
2865
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2866

2867 2868 2869
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2870
		}
2871

C
Christoph Lameter 已提交
2872
		s->node[node] = n;
2873
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2874 2875 2876 2877
	}
	return 1;
}

2878
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2879 2880 2881 2882 2883 2884 2885 2886
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2887 2888 2889 2890
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2891
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2892 2893
{
	unsigned long flags = s->flags;
2894
	unsigned long size = s->object_size;
2895
	int order;
C
Christoph Lameter 已提交
2896

2897 2898 2899 2900 2901 2902 2903 2904
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2905 2906 2907 2908 2909 2910
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2911
			!s->ctor)
C
Christoph Lameter 已提交
2912 2913 2914 2915 2916 2917
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2918
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2919
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2920
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2921
	 */
2922
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2923
		size += sizeof(void *);
C
Christoph Lameter 已提交
2924
#endif
C
Christoph Lameter 已提交
2925 2926

	/*
C
Christoph Lameter 已提交
2927 2928
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2929 2930 2931 2932
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2933
		s->ctor)) {
C
Christoph Lameter 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2946
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2947 2948 2949 2950 2951 2952 2953
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2954
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2955 2956 2957 2958
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
2959
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
2960 2961 2962
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2963
#endif
C
Christoph Lameter 已提交
2964

C
Christoph Lameter 已提交
2965 2966 2967 2968 2969
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
2970
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
2971
	s->size = size;
2972 2973 2974
	if (forced_order >= 0)
		order = forced_order;
	else
2975
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
2976

2977
	if (order < 0)
C
Christoph Lameter 已提交
2978 2979
		return 0;

2980
	s->allocflags = 0;
2981
	if (order)
2982 2983 2984 2985 2986 2987 2988 2989
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2990 2991 2992
	/*
	 * Determine the number of objects per slab
	 */
2993 2994
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
2995 2996
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
2997

2998
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
2999 3000
}

3001
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3002
{
3003
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3004
	s->reserved = 0;
C
Christoph Lameter 已提交
3005

3006 3007
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3008

3009
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3010
		goto error;
3011 3012 3013 3014 3015
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3016
		if (get_order(s->size) > get_order(s->object_size)) {
3017 3018 3019 3020 3021 3022
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3023

3024 3025
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3026 3027 3028 3029 3030
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3031 3032 3033 3034
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3050
	 * B) The number of objects in cpu partial slabs to extract from the
3051 3052 3053
	 *    per node list when we run out of per cpu objects. We only fetch 50%
	 *    to keep some capacity around for frees.
	 */
3054 3055 3056
	if (kmem_cache_debug(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3057 3058 3059 3060 3061 3062 3063 3064
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3065
#ifdef CONFIG_NUMA
3066
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3067
#endif
3068
	if (!init_kmem_cache_nodes(s))
3069
		goto error;
C
Christoph Lameter 已提交
3070

3071
	if (alloc_kmem_cache_cpus(s))
3072
		return 0;
3073

3074
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3075 3076 3077 3078
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3079
			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
3080
			s->offset, flags);
3081
	return -EINVAL;
C
Christoph Lameter 已提交
3082 3083
}

3084 3085 3086 3087 3088 3089
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3090 3091
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3092 3093
	if (!map)
		return;
3094
	slab_err(s, page, text, s->name);
3095 3096
	slab_lock(page);

3097
	get_map(s, page, map);
3098 3099 3100 3101 3102 3103 3104 3105 3106
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3107
	kfree(map);
3108 3109 3110
#endif
}

C
Christoph Lameter 已提交
3111
/*
C
Christoph Lameter 已提交
3112
 * Attempt to free all partial slabs on a node.
3113 3114
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3115
 */
C
Christoph Lameter 已提交
3116
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3117 3118 3119
{
	struct page *page, *h;

3120
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3121
		if (!page->inuse) {
3122
			remove_partial(n, page);
C
Christoph Lameter 已提交
3123
			discard_slab(s, page);
3124 3125
		} else {
			list_slab_objects(s, page,
3126
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3127
		}
3128
	}
C
Christoph Lameter 已提交
3129 3130 3131
}

/*
C
Christoph Lameter 已提交
3132
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3133
 */
3134
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3135 3136 3137 3138 3139
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3140
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3141 3142
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3143 3144
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3145 3146
			return 1;
	}
3147
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3148 3149 3150 3151
	free_kmem_cache_nodes(s);
	return 0;
}

3152
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3153
{
3154
	int rc = kmem_cache_close(s);
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3166
		sysfs_slab_remove(s);
3167 3168
		mutex_lock(&slab_mutex);
	}
3169 3170

	return rc;
C
Christoph Lameter 已提交
3171 3172 3173 3174 3175 3176 3177 3178
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3179
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3180 3181 3182 3183 3184 3185 3186 3187

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3188
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3189
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3190 3191 3192 3193 3194 3195 3196 3197

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3198
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

3246 3247 3248 3249 3250
static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

C
Christoph Lameter 已提交
3251 3252
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
3253
	int index;
C
Christoph Lameter 已提交
3254

3255 3256 3257
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
3258

3259
		index = size_index[size_index_elem(size)];
3260
	} else
3261
		index = fls(size - 1);
C
Christoph Lameter 已提交
3262 3263

#ifdef CONFIG_ZONE_DMA
3264
	if (unlikely((flags & SLUB_DMA)))
3265
		return kmalloc_dma_caches[index];
3266

C
Christoph Lameter 已提交
3267
#endif
3268
	return kmalloc_caches[index];
C
Christoph Lameter 已提交
3269 3270 3271 3272
}

void *__kmalloc(size_t size, gfp_t flags)
{
3273
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3274
	void *ret;
C
Christoph Lameter 已提交
3275

3276
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3277
		return kmalloc_large(size, flags);
3278 3279 3280 3281

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3282 3283
		return s;

3284
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3285

3286
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3287 3288

	return ret;
C
Christoph Lameter 已提交
3289 3290 3291
}
EXPORT_SYMBOL(__kmalloc);

3292
#ifdef CONFIG_NUMA
3293 3294
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3295
	struct page *page;
3296
	void *ptr = NULL;
3297

3298
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3299
	page = alloc_pages_node(node, flags, get_order(size));
3300
	if (page)
3301 3302 3303 3304
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3305 3306
}

C
Christoph Lameter 已提交
3307 3308
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3309
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3310
	void *ret;
C
Christoph Lameter 已提交
3311

3312
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3313 3314
		ret = kmalloc_large_node(size, flags, node);

3315 3316 3317
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3318 3319 3320

		return ret;
	}
3321 3322 3323 3324

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3325 3326
		return s;

3327
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3328

3329
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3330 3331

	return ret;
C
Christoph Lameter 已提交
3332 3333 3334 3335 3336 3337
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3338
	struct page *page;
C
Christoph Lameter 已提交
3339

3340
	if (unlikely(object == ZERO_SIZE_PTR))
3341 3342
		return 0;

3343 3344
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3345 3346
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3347
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3348
	}
C
Christoph Lameter 已提交
3349

3350
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3351
}
K
Kirill A. Shutemov 已提交
3352
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
3375 3376
	if (on_freelist(page->slab_cache, page, object)) {
		object_err(page->slab_cache, page, object, "Object is on free-list");
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3390 3391 3392
void kfree(const void *x)
{
	struct page *page;
3393
	void *object = (void *)x;
C
Christoph Lameter 已提交
3394

3395 3396
	trace_kfree(_RET_IP_, x);

3397
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3398 3399
		return;

3400
	page = virt_to_head_page(x);
3401
	if (unlikely(!PageSlab(page))) {
3402
		BUG_ON(!PageCompound(page));
3403
		kmemleak_free(x);
3404
		__free_memcg_kmem_pages(page, compound_order(page));
3405 3406
		return;
	}
3407
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3408 3409 3410
}
EXPORT_SYMBOL(kfree);

3411
/*
C
Christoph Lameter 已提交
3412 3413 3414 3415 3416 3417 3418 3419
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3420 3421 3422 3423 3424 3425 3426 3427
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3428
	int objects = oo_objects(s->max);
3429
	struct list_head *slabs_by_inuse =
3430
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3431 3432 3433 3434 3435 3436
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3437
	for_each_node_state(node, N_NORMAL_MEMORY) {
3438 3439 3440 3441 3442
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3443
		for (i = 0; i < objects; i++)
3444 3445 3446 3447 3448
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3449
		 * Build lists indexed by the items in use in each slab.
3450
		 *
C
Christoph Lameter 已提交
3451 3452
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3453 3454
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3455 3456 3457
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3458 3459 3460
		}

		/*
C
Christoph Lameter 已提交
3461 3462
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3463
		 */
3464
		for (i = objects - 1; i > 0; i--)
3465 3466 3467
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3468 3469 3470 3471

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3472 3473 3474 3475 3476 3477 3478
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

P
Pekka Enberg 已提交
3479
#if defined(CONFIG_MEMORY_HOTPLUG)
3480 3481 3482 3483
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3484
	mutex_lock(&slab_mutex);
3485 3486
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3487
	mutex_unlock(&slab_mutex);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3499
	offline_node = marg->status_change_nid_normal;
3500 3501 3502 3503 3504 3505 3506 3507

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3508
	mutex_lock(&slab_mutex);
3509 3510 3511 3512 3513 3514
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3515
			 * and offline_pages() function shouldn't call this
3516 3517
			 * callback. So, we must fail.
			 */
3518
			BUG_ON(slabs_node(s, offline_node));
3519 3520

			s->node[offline_node] = NULL;
3521
			kmem_cache_free(kmem_cache_node, n);
3522 3523
		}
	}
3524
	mutex_unlock(&slab_mutex);
3525 3526 3527 3528 3529 3530 3531
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3532
	int nid = marg->status_change_nid_normal;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3543
	 * We are bringing a node online. No memory is available yet. We must
3544 3545 3546
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3547
	mutex_lock(&slab_mutex);
3548 3549 3550 3551 3552 3553
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3554
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3555 3556 3557 3558
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3559
		init_kmem_cache_node(n);
3560 3561 3562
		s->node[nid] = n;
	}
out:
3563
	mutex_unlock(&slab_mutex);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3587 3588 3589 3590
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3591 3592 3593 3594 3595
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
3596 3597 3598 3599
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3600 3601
/*
 * Used for early kmem_cache structures that were allocated using
3602 3603
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3604 3605
 */

3606
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3607 3608
{
	int node;
3609
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3610

3611
	memcpy(s, static_cache, kmem_cache->object_size);
3612 3613 3614 3615 3616 3617 3618

	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3619
				p->slab_cache = s;
3620

L
Li Zefan 已提交
3621
#ifdef CONFIG_SLUB_DEBUG
3622
			list_for_each_entry(p, &n->full, lru)
3623
				p->slab_cache = s;
3624 3625 3626
#endif
		}
	}
3627 3628
	list_add(&s->list, &slab_caches);
	return s;
3629 3630
}

C
Christoph Lameter 已提交
3631 3632
void __init kmem_cache_init(void)
{
3633 3634
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
C
Christoph Lameter 已提交
3635
	int i;
3636

3637 3638 3639
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3640 3641
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3642

3643 3644
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3645

3646
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
C
Christoph Lameter 已提交
3647 3648 3649 3650

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3651 3652 3653 3654
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3655

3656
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3657

3658 3659 3660 3661 3662
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3663
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3664 3665

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3666 3667 3668 3669

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
3670
	 * MIPS it seems. The standard arches will not generate any code here.
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3681 3682 3683 3684 3685 3686
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);
		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}
3687

3688 3689 3690 3691 3692 3693 3694 3695
	if (KMALLOC_MIN_SIZE == 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;
	} else if (KMALLOC_MIN_SIZE == 128) {
3696 3697 3698 3699 3700 3701
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
3702
			size_index[size_index_elem(i)] = 8;
3703 3704
	}

3705
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3706 3707 3708

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3709
#endif
C
Christoph Lameter 已提交
3710

I
Ingo Molnar 已提交
3711
	printk(KERN_INFO
3712
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3713
		" CPUs=%d, Nodes=%d\n",
3714
		cache_line_size(),
C
Christoph Lameter 已提交
3715 3716 3717 3718
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3719 3720 3721 3722
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3723 3724 3725 3726 3727 3728 3729 3730
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3731
	if (s->ctor)
C
Christoph Lameter 已提交
3732 3733
		return 1;

3734 3735 3736 3737 3738 3739
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3740 3741 3742
	return 0;
}

3743
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3744
		size_t align, unsigned long flags, const char *name,
3745
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3746
{
3747
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3748 3749 3750 3751

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3752
	if (ctor)
C
Christoph Lameter 已提交
3753 3754 3755 3756 3757
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3758
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3759

3760
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3761 3762 3763 3764 3765 3766
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3767
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3768 3769 3770 3771 3772
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3773
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3774 3775 3776 3777 3778
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3779 3780 3781
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3782 3783 3784 3785 3786
		return s;
	}
	return NULL;
}

3787 3788 3789
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3790 3791 3792
{
	struct kmem_cache *s;

3793
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3794 3795 3796 3797 3798 3799
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3800
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3801
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3802

3803 3804
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3805
			s = NULL;
3806
		}
3807
	}
C
Christoph Lameter 已提交
3808

3809 3810
	return s;
}
P
Pekka Enberg 已提交
3811

3812
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3813
{
3814 3815 3816 3817 3818
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3819

3820 3821 3822 3823
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3824
	memcg_propagate_slab_attrs(s);
3825 3826 3827
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3828

3829 3830
	if (err)
		kmem_cache_close(s);
3831

3832
	return err;
C
Christoph Lameter 已提交
3833 3834 3835 3836
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3837 3838
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3839 3840 3841 3842 3843
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3844 3845
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3846 3847 3848

	switch (action) {
	case CPU_UP_CANCELED:
3849
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3850
	case CPU_DEAD:
3851
	case CPU_DEAD_FROZEN:
3852
		mutex_lock(&slab_mutex);
3853 3854 3855 3856 3857
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3858
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3859 3860 3861 3862 3863 3864 3865
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3866
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3867
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3868
};
C
Christoph Lameter 已提交
3869 3870 3871

#endif

3872
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3873
{
3874
	struct kmem_cache *s;
3875
	void *ret;
3876

3877
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3878 3879
		return kmalloc_large(size, gfpflags);

3880
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3881

3882
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3883
		return s;
C
Christoph Lameter 已提交
3884

3885
	ret = slab_alloc(s, gfpflags, caller);
3886

L
Lucas De Marchi 已提交
3887
	/* Honor the call site pointer we received. */
3888
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3889 3890

	return ret;
C
Christoph Lameter 已提交
3891 3892
}

3893
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3894
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3895
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3896
{
3897
	struct kmem_cache *s;
3898
	void *ret;
3899

3900
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3901 3902 3903 3904 3905 3906 3907 3908
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3909

3910
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3911

3912
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3913
		return s;
C
Christoph Lameter 已提交
3914

3915
	ret = slab_alloc_node(s, gfpflags, node, caller);
3916

L
Lucas De Marchi 已提交
3917
	/* Honor the call site pointer we received. */
3918
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3919 3920

	return ret;
C
Christoph Lameter 已提交
3921
}
3922
#endif
C
Christoph Lameter 已提交
3923

3924
#ifdef CONFIG_SYSFS
3925 3926 3927 3928 3929 3930 3931 3932 3933
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3934
#endif
3935

3936
#ifdef CONFIG_SLUB_DEBUG
3937 3938
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3939 3940
{
	void *p;
3941
	void *addr = page_address(page);
3942 3943 3944 3945 3946 3947

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3948
	bitmap_zero(map, page->objects);
3949

3950 3951 3952 3953 3954
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3955 3956
	}

3957
	for_each_object(p, s, addr, page->objects)
3958
		if (!test_bit(slab_index(p, s, addr), map))
3959
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3960 3961 3962 3963
				return 0;
	return 1;
}

3964 3965
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3966
{
3967 3968 3969
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3970 3971
}

3972 3973
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3974 3975 3976 3977 3978 3979 3980 3981
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3982
		validate_slab_slab(s, page, map);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3993
		validate_slab_slab(s, page, map);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4006
static long validate_slab_cache(struct kmem_cache *s)
4007 4008 4009
{
	int node;
	unsigned long count = 0;
4010
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4011 4012 4013 4014
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
4015 4016

	flush_all(s);
C
Christoph Lameter 已提交
4017
	for_each_node_state(node, N_NORMAL_MEMORY) {
4018 4019
		struct kmem_cache_node *n = get_node(s, node);

4020
		count += validate_slab_node(s, n, map);
4021
	}
4022
	kfree(map);
4023 4024
	return count;
}
4025
/*
C
Christoph Lameter 已提交
4026
 * Generate lists of code addresses where slabcache objects are allocated
4027 4028 4029 4030 4031
 * and freed.
 */

struct location {
	unsigned long count;
4032
	unsigned long addr;
4033 4034 4035 4036 4037
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4038
	DECLARE_BITMAP(cpus, NR_CPUS);
4039
	nodemask_t nodes;
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4055
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4056 4057 4058 4059 4060 4061
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4062
	l = (void *)__get_free_pages(flags, order);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4076
				const struct track *track)
4077 4078 4079
{
	long start, end, pos;
	struct location *l;
4080
	unsigned long caddr;
4081
	unsigned long age = jiffies - track->when;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4113 4114
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4115 4116
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4117 4118 4119
			return 1;
		}

4120
		if (track->addr < caddr)
4121 4122 4123 4124 4125 4126
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4127
	 * Not found. Insert new tracking element.
4128
	 */
4129
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4130 4131 4132 4133 4134 4135 4136 4137
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4138 4139 4140 4141 4142 4143
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4144 4145
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4146 4147
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4148 4149 4150 4151
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4152
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4153
		unsigned long *map)
4154
{
4155
	void *addr = page_address(page);
4156 4157
	void *p;

4158
	bitmap_zero(map, page->objects);
4159
	get_map(s, page, map);
4160

4161
	for_each_object(p, s, addr, page->objects)
4162 4163
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4164 4165 4166 4167 4168
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4169
	int len = 0;
4170
	unsigned long i;
4171
	struct loc_track t = { 0, 0, NULL };
4172
	int node;
E
Eric Dumazet 已提交
4173 4174
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4175

E
Eric Dumazet 已提交
4176 4177 4178
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4179
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4180
	}
4181 4182 4183
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4184
	for_each_node_state(node, N_NORMAL_MEMORY) {
4185 4186 4187 4188
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4189
		if (!atomic_long_read(&n->nr_slabs))
4190 4191 4192 4193
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4194
			process_slab(&t, s, page, alloc, map);
4195
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4196
			process_slab(&t, s, page, alloc, map);
4197 4198 4199 4200
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4201
		struct location *l = &t.loc[i];
4202

H
Hugh Dickins 已提交
4203
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4204
			break;
4205
		len += sprintf(buf + len, "%7ld ", l->count);
4206 4207

		if (l->addr)
J
Joe Perches 已提交
4208
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4209
		else
4210
			len += sprintf(buf + len, "<not-available>");
4211 4212

		if (l->sum_time != l->min_time) {
4213
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4214 4215 4216
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4217
		} else
4218
			len += sprintf(buf + len, " age=%ld",
4219 4220 4221
				l->min_time);

		if (l->min_pid != l->max_pid)
4222
			len += sprintf(buf + len, " pid=%ld-%ld",
4223 4224
				l->min_pid, l->max_pid);
		else
4225
			len += sprintf(buf + len, " pid=%ld",
4226 4227
				l->min_pid);

R
Rusty Russell 已提交
4228 4229
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4230 4231 4232
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4233
						 to_cpumask(l->cpus));
4234 4235
		}

4236
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4237 4238 4239
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4240 4241 4242
					l->nodes);
		}

4243
		len += sprintf(buf + len, "\n");
4244 4245 4246
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4247
	kfree(map);
4248
	if (!t.count)
4249 4250
		len += sprintf(buf, "No data\n");
	return len;
4251
}
4252
#endif
4253

4254 4255 4256 4257 4258
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4259
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4316
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4317
enum slab_stat_type {
4318 4319 4320 4321 4322
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4323 4324
};

4325
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4326 4327 4328
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4329
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4330

4331 4332
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4333 4334 4335 4336 4337 4338 4339 4340
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4341 4342
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4343 4344
	per_cpu = nodes + nr_node_ids;

4345 4346
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4347

4348
		for_each_possible_cpu(cpu) {
4349
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4350
			int node;
4351
			struct page *page;
4352

4353
			page = ACCESS_ONCE(c->page);
4354 4355
			if (!page)
				continue;
4356

4357 4358 4359 4360 4361 4362 4363
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4364

4365 4366 4367 4368
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4369 4370
			if (page) {
				x = page->pobjects;
4371 4372
				total += x;
				nodes[node] += x;
4373
			}
4374

4375
			per_cpu[node]++;
C
Christoph Lameter 已提交
4376 4377 4378
		}
	}

4379
	lock_memory_hotplug();
4380
#ifdef CONFIG_SLUB_DEBUG
4381 4382 4383 4384 4385 4386 4387 4388 4389
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
4390 4391

			else
4392
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4393 4394 4395 4396
			total += x;
			nodes[node] += x;
		}

4397 4398 4399
	} else
#endif
	if (flags & SO_PARTIAL) {
4400 4401
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4402

4403 4404 4405 4406
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4407
			else
4408
				x = n->nr_partial;
C
Christoph Lameter 已提交
4409 4410 4411 4412 4413 4414
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4415
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4416 4417 4418 4419
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4420
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4421 4422 4423 4424
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4425
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4426 4427 4428 4429
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4430
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4431 4432
		struct kmem_cache_node *n = get_node(s, node);

4433 4434 4435
		if (!n)
			continue;

4436
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4437 4438 4439 4440
			return 1;
	}
	return 0;
}
4441
#endif
C
Christoph Lameter 已提交
4442 4443

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4444
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4445 4446 4447 4448 4449 4450 4451 4452

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4453 4454
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4455 4456 4457

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4458
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4474
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4475 4476 4477 4478 4479
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4480
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4481 4482 4483
}
SLAB_ATTR_RO(objs_per_slab);

4484 4485 4486
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4487 4488 4489 4490 4491 4492
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4493 4494 4495 4496 4497 4498 4499 4500

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4501 4502
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4503
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4504
}
4505
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4506

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4522
	set_min_partial(s, min);
4523 4524 4525 4526
	return length;
}
SLAB_ATTR(min_partial);

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4541 4542
	if (objects && kmem_cache_debug(s))
		return -EINVAL;
4543 4544 4545 4546 4547 4548 4549

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4550 4551
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4552 4553 4554
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4566
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4567 4568 4569 4570 4571
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4572
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4573 4574 4575 4576 4577
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4578
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4579 4580 4581
}
SLAB_ATTR_RO(objects);

4582 4583 4584 4585 4586 4587
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4654 4655 4656 4657 4658 4659
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4660
#ifdef CONFIG_SLUB_DEBUG
4661 4662 4663 4664 4665 4666
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4667 4668 4669 4670 4671 4672
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4682 4683
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4684
		s->flags |= SLAB_DEBUG_FREE;
4685
	}
C
Christoph Lameter 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4699 4700
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4701
		s->flags |= SLAB_TRACE;
4702
	}
C
Christoph Lameter 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4719 4720
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4721
		s->flags |= SLAB_RED_ZONE;
4722
	}
4723
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4740 4741
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4742
		s->flags |= SLAB_POISON;
4743
	}
4744
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4761 4762
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4763
		s->flags |= SLAB_STORE_USER;
4764
	}
4765
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4766 4767 4768 4769
	return length;
}
SLAB_ATTR(store_user);

4770 4771 4772 4773 4774 4775 4776 4777
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4778 4779 4780 4781 4782 4783 4784 4785
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4786 4787
}
SLAB_ATTR(validate);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4821
#endif
4822

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4842
#ifdef CONFIG_NUMA
4843
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4844
{
4845
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4846 4847
}

4848
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4849 4850
				const char *buf, size_t length)
{
4851 4852 4853 4854 4855 4856 4857
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4858
	if (ratio <= 100)
4859
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4860 4861 4862

	return length;
}
4863
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4864 4865
#endif

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4878
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4879 4880 4881 4882 4883 4884 4885

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4886
#ifdef CONFIG_SMP
4887 4888
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4889
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4890
	}
4891
#endif
4892 4893 4894 4895
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4896 4897 4898 4899 4900
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4901
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4902 4903
}

4904 4905 4906 4907 4908
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4929
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4930 4931 4932 4933 4934 4935 4936
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4937
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4938
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4939 4940
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4941 4942
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4943 4944
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4945 4946
#endif

P
Pekka Enberg 已提交
4947
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4948 4949 4950 4951
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4952
	&min_partial_attr.attr,
4953
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4954
	&objects_attr.attr,
4955
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4956 4957 4958 4959 4960 4961 4962 4963
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4964
	&shrink_attr.attr,
4965
	&reserved_attr.attr,
4966
	&slabs_cpu_partial_attr.attr,
4967
#ifdef CONFIG_SLUB_DEBUG
4968 4969 4970 4971
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4972 4973 4974
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4975
	&validate_attr.attr,
4976 4977
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4978
#endif
C
Christoph Lameter 已提交
4979 4980 4981 4982
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4983
	&remote_node_defrag_ratio_attr.attr,
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4996
	&alloc_node_mismatch_attr.attr,
4997 4998 4999 5000 5001 5002 5003
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5004
	&deactivate_bypass_attr.attr,
5005
	&order_fallback_attr.attr,
5006 5007
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5008 5009
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5010 5011
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5012
#endif
5013 5014 5015 5016
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5058 5059 5060
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5061

5062 5063 5064 5065
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5083 5084 5085 5086 5087 5088 5089 5090
		for_each_memcg_cache_index(i) {
			struct kmem_cache *c = cache_from_memcg(s, i);
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5091 5092 5093
	return err;
}

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5147
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5165
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5166 5167 5168
	.filter = uevent_filter,
};

5169
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5170 5171 5172 5173

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5174 5175
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5198 5199
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5200 5201 5202
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5203 5204 5205 5206 5207 5208

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
#endif

C
Christoph Lameter 已提交
5209 5210 5211 5212 5213 5214 5215 5216
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5217
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5218 5219 5220 5221 5222 5223 5224

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5225
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5235
	s->kobj.kset = slab_kset;
5236 5237 5238
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5239
		return err;
5240
	}
C
Christoph Lameter 已提交
5241 5242

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5243 5244 5245
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5246
		return err;
5247
	}
C
Christoph Lameter 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5259
	if (slab_state < FULL)
5260 5261 5262 5263 5264 5265
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5266 5267
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5268
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5269 5270 5271 5272
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5273
 * available lest we lose that information.
C
Christoph Lameter 已提交
5274 5275 5276 5277 5278 5279 5280
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5281
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5282 5283 5284 5285 5286

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5287
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5288 5289 5290
		/*
		 * If we have a leftover link then remove it.
		 */
5291 5292
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5308
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5309 5310
	int err;

5311
	mutex_lock(&slab_mutex);
5312

5313
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5314
	if (!slab_kset) {
5315
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5316 5317 5318 5319
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5320
	slab_state = FULL;
5321

5322
	list_for_each_entry(s, &slab_caches, list) {
5323
		err = sysfs_slab_add(s);
5324 5325 5326
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5327
	}
C
Christoph Lameter 已提交
5328 5329 5330 5331 5332 5333

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5334 5335
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5336
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5337 5338 5339
		kfree(al);
	}

5340
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5341 5342 5343 5344 5345
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5346
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5347 5348 5349 5350

/*
 * The /proc/slabinfo ABI
 */
5351
#ifdef CONFIG_SLABINFO
5352
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5353 5354 5355
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
5356 5357
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
5368 5369
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5370 5371
	}

5372 5373 5374 5375 5376 5377
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5378 5379
}

5380
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5381 5382 5383
{
}

5384 5385
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5386
{
5387
	return -EIO;
5388
}
5389
#endif /* CONFIG_SLABINFO */