slub.c 131.7 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

292
static inline struct kmem_cache_order_objects oo_make(int order,
293
		unsigned long size, int reserved)
294 295
{
	struct kmem_cache_order_objects x = {
296
		(order << OO_SHIFT) + order_objects(order, size, reserved)
297 298 299 300 301 302 303
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
304
	return x.x >> OO_SHIFT;
305 306 307 308
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
309
	return x.x & OO_MASK;
310 311
}

312 313 314 315 316
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
317
	VM_BUG_ON_PAGE(PageTail(page), page);
318 319 320 321 322
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
323
	VM_BUG_ON_PAGE(PageTail(page), page);
324 325 326
	__bit_spin_unlock(PG_locked, &page->flags);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

342 343 344 345 346 347 348
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
349 350
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
351
	if (s->flags & __CMPXCHG_DOUBLE) {
352
		if (cmpxchg_double(&page->freelist, &page->counters,
353 354
				   freelist_old, counters_old,
				   freelist_new, counters_new))
355
			return true;
356 357 358 359
	} else
#endif
	{
		slab_lock(page);
360 361
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
362
			page->freelist = freelist_new;
363
			set_page_slub_counters(page, counters_new);
364
			slab_unlock(page);
365
			return true;
366 367 368 369 370 371 372 373
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
374
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
375 376
#endif

377
	return false;
378 379
}

380 381 382 383 384
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
385 386
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
387
	if (s->flags & __CMPXCHG_DOUBLE) {
388
		if (cmpxchg_double(&page->freelist, &page->counters,
389 390
				   freelist_old, counters_old,
				   freelist_new, counters_new))
391
			return true;
392 393 394
	} else
#endif
	{
395 396 397
		unsigned long flags;

		local_irq_save(flags);
398
		slab_lock(page);
399 400
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
401
			page->freelist = freelist_new;
402
			set_page_slub_counters(page, counters_new);
403
			slab_unlock(page);
404
			local_irq_restore(flags);
405
			return true;
406
		}
407
		slab_unlock(page);
408
		local_irq_restore(flags);
409 410 411 412 413 414
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
415
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
416 417
#endif

418
	return false;
419 420
}

C
Christoph Lameter 已提交
421
#ifdef CONFIG_SLUB_DEBUG
422 423 424
/*
 * Determine a map of object in use on a page.
 *
425
 * Node listlock must be held to guarantee that the page does
426 427 428 429 430 431 432 433 434 435 436
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
437 438 439
/*
 * Debug settings:
 */
440
#if defined(CONFIG_SLUB_DEBUG_ON)
441
static int slub_debug = DEBUG_DEFAULT_FLAGS;
442 443
#elif defined(CONFIG_KASAN)
static int slub_debug = SLAB_STORE_USER;
444
#else
C
Christoph Lameter 已提交
445
static int slub_debug;
446
#endif
C
Christoph Lameter 已提交
447 448

static char *slub_debug_slabs;
449
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
467 468 469 470 471
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
472
	metadata_access_enable();
473 474
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
475
	metadata_access_disable();
C
Christoph Lameter 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
492
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
493
{
A
Akinobu Mita 已提交
494
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
495 496

	if (addr) {
497 498 499 500 501 502 503 504
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
505
		metadata_access_enable();
506
		save_stack_trace(&trace);
507
		metadata_access_disable();
508 509 510 511 512 513 514 515 516

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
517 518
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
519
		p->pid = current->pid;
C
Christoph Lameter 已提交
520 521 522 523 524 525 526
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
527 528 529
	if (!(s->flags & SLAB_STORE_USER))
		return;

530 531
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
532 533 534 535 536 537 538
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

539 540
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
541 542 543 544 545
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
546
				pr_err("\t%pS\n", (void *)t->addrs[i]);
547 548 549 550
			else
				break;
	}
#endif
551 552 553 554 555 556 557 558 559 560 561 562 563
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
564
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
565
	       page, page->objects, page->inuse, page->freelist, page->flags);
566 567 568 569 570

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
571
	struct va_format vaf;
572 573 574
	va_list args;

	va_start(args, fmt);
575 576
	vaf.fmt = fmt;
	vaf.va = &args;
577
	pr_err("=============================================================================\n");
578
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
579
	pr_err("-----------------------------------------------------------------------------\n\n");
580

581
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582
	va_end(args);
C
Christoph Lameter 已提交
583 584
}

585 586
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
587
	struct va_format vaf;
588 589 590
	va_list args;

	va_start(args, fmt);
591 592 593
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
594 595 596 597
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
598 599
{
	unsigned int off;	/* Offset of last byte */
600
	u8 *addr = page_address(page);
601 602 603 604 605

	print_tracking(s, p);

	print_page_info(page);

606 607
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
608 609

	if (p > addr + 16)
610
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
611

612
	print_section("Object ", p, min_t(unsigned long, s->object_size,
613
				PAGE_SIZE));
C
Christoph Lameter 已提交
614
	if (s->flags & SLAB_RED_ZONE)
615 616
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
617 618 619 620 621 622

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

623
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
624 625 626 627
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
628
		print_section("Padding ", p + off, s->size - off);
629 630

	dump_stack();
C
Christoph Lameter 已提交
631 632
}

633
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
634 635
			u8 *object, char *reason)
{
636
	slab_bug(s, "%s", reason);
637
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
638 639
}

640 641
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
642 643 644 645
{
	va_list args;
	char buf[100];

646 647
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
648
	va_end(args);
649
	slab_bug(s, "%s", buf);
650
	print_page_info(page);
C
Christoph Lameter 已提交
651 652 653
	dump_stack();
}

654
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
655 656 657 658
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
659 660
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
661 662 663
	}

	if (s->flags & SLAB_RED_ZONE)
664
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
665 666
}

667 668 669 670 671 672 673 674 675
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
676
			u8 *start, unsigned int value, unsigned int bytes)
677 678 679 680
{
	u8 *fault;
	u8 *end;

681
	metadata_access_enable();
682
	fault = memchr_inv(start, value, bytes);
683
	metadata_access_disable();
684 685 686 687 688 689 690 691
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
692
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
693 694 695 696 697
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
698 699 700 701 702 703 704 705 706
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
707
 *
C
Christoph Lameter 已提交
708 709 710
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
711
 * object + s->object_size
C
Christoph Lameter 已提交
712
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
713
 * 	Padding is extended by another word if Redzoning is enabled and
714
 * 	object_size == inuse.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718 719
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
720 721
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
722 723
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
724
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
725
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
726 727 728
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
729 730
 *
 * object + s->size
C
Christoph Lameter 已提交
731
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
732
 *
733
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
734
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

753 754
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
755 756
}

757
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
758 759
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
760 761 762 763 764
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
765 766 767 768

	if (!(s->flags & SLAB_POISON))
		return 1;

769
	start = page_address(page);
770
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
771 772
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
773 774 775
	if (!remainder)
		return 1;

776
	metadata_access_enable();
777
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
778
	metadata_access_disable();
779 780 781 782 783 784
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
785
	print_section("Padding ", end - remainder, remainder);
786

E
Eric Dumazet 已提交
787
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
788
	return 0;
C
Christoph Lameter 已提交
789 790 791
}

static int check_object(struct kmem_cache *s, struct page *page,
792
					void *object, u8 val)
C
Christoph Lameter 已提交
793 794
{
	u8 *p = object;
795
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
796 797

	if (s->flags & SLAB_RED_ZONE) {
798
		if (!check_bytes_and_report(s, page, object, "Redzone",
799
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
800 801
			return 0;
	} else {
802
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
803
			check_bytes_and_report(s, page, p, "Alignment padding",
804 805
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
806
		}
C
Christoph Lameter 已提交
807 808 809
	}

	if (s->flags & SLAB_POISON) {
810
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
811
			(!check_bytes_and_report(s, page, p, "Poison", p,
812
					POISON_FREE, s->object_size - 1) ||
813
			 !check_bytes_and_report(s, page, p, "Poison",
814
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
815 816 817 818 819 820 821
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

822
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
823 824 825 826 827 828 829 830 831 832
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
833
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
834
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
835
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
836
		 */
837
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
838 839 840 841 842 843 844
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
845 846
	int maxobj;

C
Christoph Lameter 已提交
847 848 849
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
850
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
851 852
		return 0;
	}
853

854
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
855 856
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
857
			page->objects, maxobj);
858 859 860
		return 0;
	}
	if (page->inuse > page->objects) {
861
		slab_err(s, page, "inuse %u > max %u",
862
			page->inuse, page->objects);
C
Christoph Lameter 已提交
863 864 865 866 867 868 869 870
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
871 872
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
873 874 875 876
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
877
	void *fp;
C
Christoph Lameter 已提交
878
	void *object = NULL;
879
	int max_objects;
C
Christoph Lameter 已提交
880

881
	fp = page->freelist;
882
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
883 884 885 886 887 888
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
889
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
890
			} else {
891
				slab_err(s, page, "Freepointer corrupt");
892
				page->freelist = NULL;
893
				page->inuse = page->objects;
894
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
895 896 897 898 899 900 901 902 903
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

904
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
905 906
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
907 908 909 910 911 912 913

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
914
	if (page->inuse != page->objects - nr) {
915
		slab_err(s, page, "Wrong object count. Counter is %d but "
916 917
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
918
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
919 920 921 922
	}
	return search == NULL;
}

923 924
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
925 926
{
	if (s->flags & SLAB_TRACE) {
927
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
928 929 930 931 932 933
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
934 935
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
936 937 938 939 940

		dump_stack();
	}
}

941
/*
C
Christoph Lameter 已提交
942
 * Tracking of fully allocated slabs for debugging purposes.
943
 */
944 945
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
946
{
947 948 949
	if (!(s->flags & SLAB_STORE_USER))
		return;

950
	lockdep_assert_held(&n->list_lock);
951 952 953
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
954
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
955 956 957 958
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

959
	lockdep_assert_held(&n->list_lock);
960 961 962
	list_del(&page->lru);
}

963 964 965 966 967 968 969 970
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

971 972 973 974 975
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

976
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
977 978 979 980 981 982 983 984 985
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
986
	if (likely(n)) {
987
		atomic_long_inc(&n->nr_slabs);
988 989
		atomic_long_add(objects, &n->total_objects);
	}
990
}
991
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
992 993 994 995
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
996
	atomic_long_sub(objects, &n->total_objects);
997 998 999
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1000 1001 1002 1003 1004 1005
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1006
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1007 1008 1009
	init_tracking(s, object);
}

1010 1011
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1012
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1013 1014 1015 1016 1017 1018
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1019
		goto bad;
C
Christoph Lameter 已提交
1020 1021
	}

1022
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1023 1024
		goto bad;

C
Christoph Lameter 已提交
1025 1026 1027 1028
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1029
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1030
	return 1;
C
Christoph Lameter 已提交
1031

C
Christoph Lameter 已提交
1032 1033 1034 1035 1036
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1037
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1038
		 */
1039
		slab_fix(s, "Marking all objects used");
1040
		page->inuse = page->objects;
1041
		page->freelist = NULL;
C
Christoph Lameter 已提交
1042 1043 1044 1045
	}
	return 0;
}

1046
/* Supports checking bulk free of a constructed freelist */
1047
static noinline struct kmem_cache_node *free_debug_processing(
1048 1049
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1050
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1051
{
1052
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1053 1054
	void *object = head;
	int cnt = 0;
1055

1056
	spin_lock_irqsave(&n->list_lock, *flags);
1057 1058
	slab_lock(page);

C
Christoph Lameter 已提交
1059 1060 1061
	if (!check_slab(s, page))
		goto fail;

1062 1063 1064
next_object:
	cnt++;

C
Christoph Lameter 已提交
1065
	if (!check_valid_pointer(s, page, object)) {
1066
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1067 1068 1069 1070
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1071
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1072 1073 1074
		goto fail;
	}

1075
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1076
		goto out;
C
Christoph Lameter 已提交
1077

1078
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1079
		if (!PageSlab(page)) {
1080 1081
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1082
		} else if (!page->slab_cache) {
1083 1084
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1085
			dump_stack();
P
Pekka Enberg 已提交
1086
		} else
1087 1088
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1089 1090
		goto fail;
	}
C
Christoph Lameter 已提交
1091 1092 1093 1094

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1095
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1096
	init_object(s, object, SLUB_RED_INACTIVE);
1097 1098 1099 1100 1101 1102

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1103
out:
1104 1105 1106 1107
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1108
	slab_unlock(page);
1109 1110 1111 1112 1113
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1114

C
Christoph Lameter 已提交
1115
fail:
1116 1117
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1118
	slab_fix(s, "Object at 0x%p not freed", object);
1119
	return NULL;
C
Christoph Lameter 已提交
1120 1121
}

C
Christoph Lameter 已提交
1122 1123
static int __init setup_slub_debug(char *str)
{
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1148
	for (; *str && *str != ','; str++) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1165 1166 1167
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1168 1169 1170 1171 1172 1173 1174
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1175
		default:
1176 1177
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1178
		}
C
Christoph Lameter 已提交
1179 1180
	}

1181
check_slabs:
C
Christoph Lameter 已提交
1182 1183
	if (*str == ',')
		slub_debug_slabs = str + 1;
1184
out:
C
Christoph Lameter 已提交
1185 1186 1187 1188 1189
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1190
unsigned long kmem_cache_flags(unsigned long object_size,
1191
	unsigned long flags, const char *name,
1192
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1193 1194
{
	/*
1195
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1196
	 */
1197 1198
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1199
		flags |= slub_debug;
1200 1201

	return flags;
C
Christoph Lameter 已提交
1202
}
1203
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1204 1205
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1206

C
Christoph Lameter 已提交
1207
static inline int alloc_debug_processing(struct kmem_cache *s,
1208
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1209

1210
static inline struct kmem_cache_node *free_debug_processing(
1211 1212
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1213
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1214 1215 1216 1217

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1218
			void *object, u8 val) { return 1; }
1219 1220
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1221 1222
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1223
unsigned long kmem_cache_flags(unsigned long object_size,
1224
	unsigned long flags, const char *name,
1225
	void (*ctor)(void *))
1226 1227 1228
{
	return flags;
}
C
Christoph Lameter 已提交
1229
#define slub_debug 0
1230

1231 1232
#define disable_higher_order_debug 0

1233 1234
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1235 1236
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1237 1238 1239 1240
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1241

1242 1243 1244 1245 1246 1247
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1248 1249 1250
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1251
	kasan_kmalloc_large(ptr, size);
1252 1253 1254 1255 1256
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1257
	kasan_kfree_large(x);
1258 1259 1260 1261 1262
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1281 1282

	kasan_slab_free(s, x);
1283
}
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;

	do {
		slab_free_hook(s, object);
	} while ((object != tail_obj) &&
		 (object = get_freepointer(s, object)));
#endif
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1319 1320 1321
/*
 * Slab allocation and freeing
 */
1322 1323
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1324
{
1325
	struct page *page;
1326 1327
	int order = oo_order(oo);

1328 1329
	flags |= __GFP_NOTRACK;

1330
	if (node == NUMA_NO_NODE)
1331
		page = alloc_pages(flags, order);
1332
	else
1333
		page = __alloc_pages_node(node, flags, order);
1334

1335 1336 1337 1338
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1339 1340

	return page;
1341 1342
}

C
Christoph Lameter 已提交
1343 1344
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1345
	struct page *page;
1346
	struct kmem_cache_order_objects oo = s->oo;
1347
	gfp_t alloc_gfp;
1348 1349
	void *start, *p;
	int idx, order;
C
Christoph Lameter 已提交
1350

1351 1352
	flags &= gfp_allowed_mask;

1353
	if (gfpflags_allow_blocking(flags))
1354 1355
		local_irq_enable();

1356
	flags |= s->allocflags;
1357

1358 1359 1360 1361 1362
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1363 1364
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1365

1366
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1367 1368
	if (unlikely(!page)) {
		oo = s->min;
1369
		alloc_gfp = flags;
1370 1371 1372 1373
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1374
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1375 1376 1377
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1378
	}
V
Vegard Nossum 已提交
1379

1380 1381
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1382 1383
		int pages = 1 << oo_order(oo);

1384
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1385 1386 1387 1388 1389 1390 1391 1392 1393

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1394 1395
	}

1396
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1397

G
Glauber Costa 已提交
1398
	order = compound_order(page);
1399
	page->slab_cache = s;
1400
	__SetPageSlab(page);
1401
	if (page_is_pfmemalloc(page))
1402
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1403 1404 1405 1406

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1407
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1408

1409 1410
	kasan_poison_slab(page);

1411 1412 1413 1414 1415 1416
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1417 1418 1419
	}

	page->freelist = start;
1420
	page->inuse = page->objects;
1421
	page->frozen = 1;
1422

C
Christoph Lameter 已提交
1423
out:
1424
	if (gfpflags_allow_blocking(flags))
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1436 1437 1438
	return page;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1450 1451
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1452 1453
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1454

1455
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1456 1457 1458
		void *p;

		slab_pad_check(s, page);
1459 1460
		for_each_object(p, s, page_address(page),
						page->objects)
1461
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1462 1463
	}

1464
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1465

C
Christoph Lameter 已提交
1466 1467 1468
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1469
		-pages);
C
Christoph Lameter 已提交
1470

1471
	__ClearPageSlabPfmemalloc(page);
1472
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1473

1474
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1475 1476
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1477
	__free_kmem_pages(page, order);
C
Christoph Lameter 已提交
1478 1479
}

1480 1481 1482
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1483 1484 1485 1486
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1487 1488 1489 1490 1491
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1492
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1493 1494 1495 1496 1497
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1498 1499 1500 1501 1502 1503 1504 1505 1506
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1507
			head = &page->rcu_head;
1508
		}
C
Christoph Lameter 已提交
1509 1510 1511 1512 1513 1514 1515 1516

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1517
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1518 1519 1520 1521
	free_slab(s, page);
}

/*
1522
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1523
 */
1524 1525
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1526
{
C
Christoph Lameter 已提交
1527
	n->nr_partial++;
1528
	if (tail == DEACTIVATE_TO_TAIL)
1529 1530 1531
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1532 1533
}

1534 1535
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1536
{
P
Peter Zijlstra 已提交
1537
	lockdep_assert_held(&n->list_lock);
1538 1539
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1540

1541 1542 1543 1544
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1545 1546
	list_del(&page->lru);
	n->nr_partial--;
1547 1548
}

C
Christoph Lameter 已提交
1549
/*
1550 1551
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1552
 *
1553
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1554
 */
1555
static inline void *acquire_slab(struct kmem_cache *s,
1556
		struct kmem_cache_node *n, struct page *page,
1557
		int mode, int *objects)
C
Christoph Lameter 已提交
1558
{
1559 1560 1561 1562
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1563 1564
	lockdep_assert_held(&n->list_lock);

1565 1566 1567 1568 1569
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1570 1571 1572
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1573
	*objects = new.objects - new.inuse;
1574
	if (mode) {
1575
		new.inuse = page->objects;
1576 1577 1578 1579
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1580

1581
	VM_BUG_ON(new.frozen);
1582
	new.frozen = 1;
1583

1584
	if (!__cmpxchg_double_slab(s, page,
1585
			freelist, counters,
1586
			new.freelist, new.counters,
1587 1588
			"acquire_slab"))
		return NULL;
1589 1590

	remove_partial(n, page);
1591
	WARN_ON(!freelist);
1592
	return freelist;
C
Christoph Lameter 已提交
1593 1594
}

1595
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1596
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1597

C
Christoph Lameter 已提交
1598
/*
C
Christoph Lameter 已提交
1599
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1600
 */
1601 1602
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1603
{
1604 1605
	struct page *page, *page2;
	void *object = NULL;
1606 1607
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1608 1609 1610 1611

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1612 1613
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1614 1615 1616 1617 1618
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1619
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1620
		void *t;
1621

1622 1623 1624
		if (!pfmemalloc_match(page, flags))
			continue;

1625
		t = acquire_slab(s, n, page, object == NULL, &objects);
1626 1627 1628
		if (!t)
			break;

1629
		available += objects;
1630
		if (!object) {
1631 1632 1633 1634
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1635
			put_cpu_partial(s, page, 0);
1636
			stat(s, CPU_PARTIAL_NODE);
1637
		}
1638 1639
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1640 1641
			break;

1642
	}
C
Christoph Lameter 已提交
1643
	spin_unlock(&n->list_lock);
1644
	return object;
C
Christoph Lameter 已提交
1645 1646 1647
}

/*
C
Christoph Lameter 已提交
1648
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1649
 */
1650
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1651
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1652 1653 1654
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1655
	struct zoneref *z;
1656 1657
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1658
	void *object;
1659
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1660 1661

	/*
C
Christoph Lameter 已提交
1662 1663 1664 1665
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1666
	 *
C
Christoph Lameter 已提交
1667 1668 1669 1670
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1671
	 *
C
Christoph Lameter 已提交
1672
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1673 1674 1675 1676 1677
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1678
	 */
1679 1680
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1681 1682
		return NULL;

1683
	do {
1684
		cpuset_mems_cookie = read_mems_allowed_begin();
1685
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1686 1687 1688 1689 1690
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1691
			if (n && cpuset_zone_allowed(zone, flags) &&
1692
					n->nr_partial > s->min_partial) {
1693
				object = get_partial_node(s, n, c, flags);
1694 1695
				if (object) {
					/*
1696 1697 1698 1699 1700
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1701 1702 1703
					 */
					return object;
				}
1704
			}
C
Christoph Lameter 已提交
1705
		}
1706
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1707 1708 1709 1710 1711 1712 1713
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1714
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1715
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1716
{
1717
	void *object;
1718 1719 1720 1721 1722 1723
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1724

1725
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 1727
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1728

1729
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1773
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1774 1775 1776

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777
		pr_warn("due to cpu change %d -> %d\n",
1778 1779 1780 1781
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1782
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1783 1784
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1785
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 1787
			actual_tid, tid, next_tid(tid));
#endif
1788
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 1790
}

1791
static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 1793 1794 1795 1796 1797
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1798

C
Christoph Lameter 已提交
1799 1800 1801
/*
 * Remove the cpu slab
 */
1802 1803
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1804
{
1805 1806 1807 1808 1809
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1810
	int tail = DEACTIVATE_TO_HEAD;
1811 1812 1813 1814
	struct page new;
	struct page old;

	if (page->freelist) {
1815
		stat(s, DEACTIVATE_REMOTE_FREES);
1816
		tail = DEACTIVATE_TO_TAIL;
1817 1818
	}

1819
	/*
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1837
			VM_BUG_ON(!new.frozen);
1838

1839
		} while (!__cmpxchg_double_slab(s, page,
1840 1841 1842 1843 1844 1845 1846
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1847
	/*
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1860
	 */
1861
redo:
1862

1863 1864
	old.freelist = page->freelist;
	old.counters = page->counters;
1865
	VM_BUG_ON(!old.frozen);
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1878
	if (!new.inuse && n->nr_partial >= s->min_partial)
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1911

P
Peter Zijlstra 已提交
1912
			remove_full(s, n, page);
1913 1914 1915 1916

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1917
			stat(s, tail);
1918 1919

		} else if (m == M_FULL) {
1920

1921 1922 1923 1924 1925 1926 1927
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1928
	if (!__cmpxchg_double_slab(s, page,
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1941
	}
C
Christoph Lameter 已提交
1942 1943
}

1944 1945 1946
/*
 * Unfreeze all the cpu partial slabs.
 *
1947 1948 1949
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1950
 */
1951 1952
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1953
{
1954
#ifdef CONFIG_SLUB_CPU_PARTIAL
1955
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956
	struct page *page, *discard_page = NULL;
1957 1958 1959 1960 1961 1962

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1963 1964 1965 1966 1967 1968 1969 1970 1971

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1972 1973 1974 1975 1976

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1977
			VM_BUG_ON(!old.frozen);
1978 1979 1980 1981 1982 1983

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1984
		} while (!__cmpxchg_double_slab(s, page,
1985 1986 1987 1988
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1989
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1990 1991
			page->next = discard_page;
			discard_page = page;
1992 1993 1994
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1995 1996 1997 1998 1999
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2000 2001 2002 2003 2004 2005 2006 2007 2008

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2009
#endif
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2021
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022
{
2023
#ifdef CONFIG_SLUB_CPU_PARTIAL
2024 2025 2026 2027
	struct page *oldpage;
	int pages;
	int pobjects;

2028
	preempt_disable();
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2044
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2045
				local_irq_restore(flags);
2046
				oldpage = NULL;
2047 2048
				pobjects = 0;
				pages = 0;
2049
				stat(s, CPU_PARTIAL_DRAIN);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2060 2061
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2062 2063 2064 2065 2066 2067 2068 2069
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2070
#endif
2071 2072
}

2073
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2074
{
2075
	stat(s, CPUSLAB_FLUSH);
2076 2077 2078 2079 2080
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2081 2082 2083 2084
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2085
 *
C
Christoph Lameter 已提交
2086 2087
 * Called from IPI handler with interrupts disabled.
 */
2088
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2089
{
2090
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2091

2092 2093 2094 2095
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2096
		unfreeze_partials(s, c);
2097
	}
C
Christoph Lameter 已提交
2098 2099 2100 2101 2102 2103
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2104
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2105 2106
}

2107 2108 2109 2110 2111
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2112
	return c->page || c->partial;
2113 2114
}

C
Christoph Lameter 已提交
2115 2116
static void flush_all(struct kmem_cache *s)
{
2117
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2118 2119
}

2120 2121 2122 2123
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2124
static inline int node_match(struct page *page, int node)
2125 2126
{
#ifdef CONFIG_NUMA
2127
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2128 2129 2130 2131 2132
		return 0;
#endif
	return 1;
}

2133
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2134 2135 2136 2137 2138
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2139 2140 2141 2142 2143 2144 2145
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2159
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2160

P
Pekka Enberg 已提交
2161 2162 2163
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2164 2165 2166
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2167
	int node;
C
Christoph Lameter 已提交
2168
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2169

2170 2171 2172
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2173
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2174
		nid, gfpflags);
2175 2176 2177
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2178

2179
	if (oo_order(s->min) > get_order(s->object_size))
2180 2181
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2182

C
Christoph Lameter 已提交
2183
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2184 2185 2186 2187
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2188 2189 2190
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2191

2192
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2193 2194
			node, nr_slabs, nr_objs, nr_free);
	}
2195
#endif
P
Pekka Enberg 已提交
2196 2197
}

2198 2199 2200
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2201
	void *freelist;
2202 2203
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2204

2205
	freelist = get_partial(s, flags, node, c);
2206

2207 2208 2209 2210
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2211
	if (page) {
2212
		c = raw_cpu_ptr(s->cpu_slab);
2213 2214 2215 2216 2217 2218 2219
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2220
		freelist = page->freelist;
2221 2222 2223 2224 2225 2226
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2227
		freelist = NULL;
2228

2229
	return freelist;
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2240
/*
2241 2242
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2243 2244 2245 2246
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2247 2248
 *
 * This function must be called with interrupt disabled.
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2259

2260
		new.counters = counters;
2261
		VM_BUG_ON(!new.frozen);
2262 2263 2264 2265

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2266
	} while (!__cmpxchg_double_slab(s, page,
2267 2268 2269 2270 2271 2272 2273
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2274
/*
2275 2276 2277 2278 2279 2280
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2281
 *
2282 2283 2284
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2285
 *
2286
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2287 2288
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2289 2290 2291
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2292
 */
2293
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2294
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2295
{
2296
	void *freelist;
2297
	struct page *page;
C
Christoph Lameter 已提交
2298

2299 2300
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2301
		goto new_slab;
2302
redo:
2303

2304
	if (unlikely(!node_match(page, node))) {
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2317
	}
C
Christoph Lameter 已提交
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2331
	/* must check again c->freelist in case of cpu migration or IRQ */
2332 2333
	freelist = c->freelist;
	if (freelist)
2334
		goto load_freelist;
2335

2336
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2337

2338
	if (!freelist) {
2339 2340
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2341
		goto new_slab;
2342
	}
C
Christoph Lameter 已提交
2343

2344
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2345

2346
load_freelist:
2347 2348 2349 2350 2351
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2352
	VM_BUG_ON(!c->page->frozen);
2353
	c->freelist = get_freepointer(s, freelist);
2354
	c->tid = next_tid(c->tid);
2355
	return freelist;
C
Christoph Lameter 已提交
2356 2357

new_slab:
2358

2359
	if (c->partial) {
2360 2361
		page = c->page = c->partial;
		c->partial = page->next;
2362 2363 2364
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2365 2366
	}

2367
	freelist = new_slab_objects(s, gfpflags, node, &c);
2368

2369
	if (unlikely(!freelist)) {
2370
		slab_out_of_memory(s, gfpflags, node);
2371
		return NULL;
C
Christoph Lameter 已提交
2372
	}
2373

2374
	page = c->page;
2375
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2376
		goto load_freelist;
2377

2378
	/* Only entered in the debug case */
2379 2380
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2381
		goto new_slab;	/* Slab failed checks. Next slab needed */
2382

2383
	deactivate_slab(s, page, get_freepointer(s, freelist));
2384 2385
	c->page = NULL;
	c->freelist = NULL;
2386
	return freelist;
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2424
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2425
		gfp_t gfpflags, int node, unsigned long addr)
2426
{
2427
	void *object;
2428
	struct kmem_cache_cpu *c;
2429
	struct page *page;
2430
	unsigned long tid;
2431

2432 2433
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2434
		return NULL;
2435 2436 2437 2438 2439 2440
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2441
	 *
2442 2443 2444
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2445
	 */
2446 2447 2448
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2449 2450
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2461 2462 2463 2464 2465 2466 2467 2468

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2469
	object = c->freelist;
2470
	page = c->page;
D
Dave Hansen 已提交
2471
	if (unlikely(!object || !node_match(page, node))) {
2472
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2473 2474
		stat(s, ALLOC_SLOWPATH);
	} else {
2475 2476
		void *next_object = get_freepointer_safe(s, object);

2477
		/*
L
Lucas De Marchi 已提交
2478
		 * The cmpxchg will only match if there was no additional
2479 2480
		 * operation and if we are on the right processor.
		 *
2481 2482
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2483 2484 2485 2486
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2487 2488 2489
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2490
		 */
2491
		if (unlikely(!this_cpu_cmpxchg_double(
2492 2493
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2494
				next_object, next_tid(tid)))) {
2495 2496 2497 2498

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2499
		prefetch_freepointer(s, next_object);
2500
		stat(s, ALLOC_FASTPATH);
2501
	}
2502

2503
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2504
		memset(object, 0, s->object_size);
2505

2506
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2507

2508
	return object;
C
Christoph Lameter 已提交
2509 2510
}

2511 2512 2513 2514 2515 2516
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2517 2518
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2519
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2520

2521 2522
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2523 2524

	return ret;
C
Christoph Lameter 已提交
2525 2526 2527
}
EXPORT_SYMBOL(kmem_cache_alloc);

2528
#ifdef CONFIG_TRACING
2529 2530
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2531
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2532
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2533
	kasan_kmalloc(s, ret, size);
2534 2535 2536
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2537 2538
#endif

C
Christoph Lameter 已提交
2539 2540 2541
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2542
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2543

2544
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2545
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2546 2547

	return ret;
C
Christoph Lameter 已提交
2548 2549 2550
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2551
#ifdef CONFIG_TRACING
2552
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2553
				    gfp_t gfpflags,
2554
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2555
{
2556
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2557 2558 2559

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2560 2561

	kasan_kmalloc(s, ret, size);
2562
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2563
}
2564
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2565
#endif
2566
#endif
E
Eduard - Gabriel Munteanu 已提交
2567

C
Christoph Lameter 已提交
2568
/*
K
Kim Phillips 已提交
2569
 * Slow path handling. This may still be called frequently since objects
2570
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2571
 *
2572 2573 2574
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2575
 */
2576
static void __slab_free(struct kmem_cache *s, struct page *page,
2577 2578 2579
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2580 2581
{
	void *prior;
2582 2583 2584 2585
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2586
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2587

2588
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2589

2590
	if (kmem_cache_debug(s) &&
2591 2592
	    !(n = free_debug_processing(s, page, head, tail, cnt,
					addr, &flags)))
2593
		return;
C
Christoph Lameter 已提交
2594

2595
	do {
2596 2597 2598 2599
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2600 2601
		prior = page->freelist;
		counters = page->counters;
2602
		set_freepointer(s, tail, prior);
2603 2604
		new.counters = counters;
		was_frozen = new.frozen;
2605
		new.inuse -= cnt;
2606
		if ((!new.inuse || !prior) && !was_frozen) {
2607

P
Peter Zijlstra 已提交
2608
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2609 2610

				/*
2611 2612 2613 2614
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2615 2616 2617
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2618
			} else { /* Needs to be taken off a list */
2619

2620
				n = get_node(s, page_to_nid(page));
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2632
		}
C
Christoph Lameter 已提交
2633

2634 2635
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2636
		head, new.counters,
2637
		"__slab_free"));
C
Christoph Lameter 已提交
2638

2639
	if (likely(!n)) {
2640 2641 2642 2643 2644

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2645
		if (new.frozen && !was_frozen) {
2646
			put_cpu_partial(s, page, 1);
2647 2648
			stat(s, CPU_PARTIAL_FREE);
		}
2649
		/*
2650 2651 2652
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2653 2654 2655 2656
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2657

2658
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2659 2660
		goto slab_empty;

C
Christoph Lameter 已提交
2661
	/*
2662 2663
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2664
	 */
2665 2666
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2667
			remove_full(s, n, page);
2668 2669
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2670
	}
2671
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2672 2673 2674
	return;

slab_empty:
2675
	if (prior) {
C
Christoph Lameter 已提交
2676
		/*
2677
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2678
		 */
2679
		remove_partial(n, page);
2680
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2681
	} else {
2682
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2683 2684
		remove_full(s, n, page);
	}
2685

2686
	spin_unlock_irqrestore(&n->list_lock, flags);
2687
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2688 2689 2690
	discard_slab(s, page);
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2701 2702 2703 2704
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2705
 */
2706 2707 2708
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
2709
{
2710
	void *tail_obj = tail ? : head;
2711
	struct kmem_cache_cpu *c;
2712
	unsigned long tid;
2713

2714
	slab_free_freelist_hook(s, head, tail);
2715

2716 2717 2718 2719 2720
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2721
	 * during the cmpxchg then the free will succeed.
2722
	 */
2723 2724 2725
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2726 2727
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2728

2729 2730
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2731

2732
	if (likely(page == c->page)) {
2733
		set_freepointer(s, tail_obj, c->freelist);
2734

2735
		if (unlikely(!this_cpu_cmpxchg_double(
2736 2737
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2738
				head, next_tid(tid)))) {
2739 2740 2741 2742

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2743
		stat(s, FREE_FASTPATH);
2744
	} else
2745
		__slab_free(s, page, head, tail_obj, cnt, addr);
2746 2747 2748

}

C
Christoph Lameter 已提交
2749 2750
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2751 2752
	s = cache_from_obj(s, x);
	if (!s)
2753
		return;
2754
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2755
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2756 2757 2758
}
EXPORT_SYMBOL(kmem_cache_free);

2759
struct detached_freelist {
2760
	struct page *page;
2761 2762 2763
	void *tail;
	void *freelist;
	int cnt;
2764
	struct kmem_cache *s;
2765
};
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
2779 2780 2781
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
2782 2783 2784 2785
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
2786

2787 2788
	/* Always re-init detached_freelist */
	df->page = NULL;
2789

2790 2791 2792
	do {
		object = p[--size];
	} while (!object && size);
2793

2794 2795
	if (!object)
		return 0;
2796

2797 2798 2799
	/* Support for memcg, compiler can optimize this out */
	df->s = cache_from_obj(s, object);

2800
	/* Start new detached freelist */
2801
	set_freepointer(df->s, object, NULL);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	df->page = virt_to_head_page(object);
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
2816
			set_freepointer(df->s, object, df->freelist);
2817 2818 2819 2820 2821
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
2822
		}
2823 2824 2825 2826 2827 2828 2829

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
2830
	}
2831 2832 2833 2834 2835

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
2836
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
		if (unlikely(!df.page))
			continue;

2848
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2849
	} while (likely(size));
2850 2851 2852
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2853
/* Note that interrupts must be enabled when calling this function. */
2854 2855
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
2856
{
2857 2858 2859
	struct kmem_cache_cpu *c;
	int i;

2860 2861 2862 2863
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2875 2876 2877 2878 2879
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
2880
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2881
					    _RET_IP_, c);
2882 2883 2884
			if (unlikely(!p[i]))
				goto error;

2885 2886 2887
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

2902 2903
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
2904
	return i;
2905 2906
error:
	local_irq_enable();
2907 2908
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
2909
	return 0;
2910 2911 2912 2913
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2914
/*
C
Christoph Lameter 已提交
2915 2916 2917 2918
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2919 2920 2921 2922
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2923
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2934
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2935
static int slub_min_objects;
C
Christoph Lameter 已提交
2936 2937 2938 2939

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2940 2941 2942 2943
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2944
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2945 2946 2947 2948 2949 2950
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2951
 *
C
Christoph Lameter 已提交
2952 2953 2954 2955
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2956
 *
C
Christoph Lameter 已提交
2957 2958 2959 2960
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2961
 */
2962
static inline int slab_order(int size, int min_objects,
2963
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2964 2965 2966
{
	int order;
	int rem;
2967
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2968

2969
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2970
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2971

2972
	for (order = max(min_order, get_order(min_objects * size + reserved));
2973
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2974

2975
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2976

2977
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2978

2979
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2980 2981
			break;
	}
C
Christoph Lameter 已提交
2982

C
Christoph Lameter 已提交
2983 2984 2985
	return order;
}

2986
static inline int calculate_order(int size, int reserved)
2987 2988 2989 2990
{
	int order;
	int min_objects;
	int fraction;
2991
	int max_objects;
2992 2993 2994 2995 2996 2997

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
2998
	 * First we increase the acceptable waste in a slab. Then
2999 3000 3001
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3002 3003
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3004
	max_objects = order_objects(slub_max_order, size, reserved);
3005 3006
	min_objects = min(min_objects, max_objects);

3007
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3008
		fraction = 16;
3009 3010
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3011
					slub_max_order, fraction, reserved);
3012 3013 3014 3015
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3016
		min_objects--;
3017 3018 3019 3020 3021 3022
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3023
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3024 3025 3026 3027 3028 3029
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3030
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3031
	if (order < MAX_ORDER)
3032 3033 3034 3035
		return order;
	return -ENOSYS;
}

3036
static void
3037
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3038 3039 3040 3041
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3042
#ifdef CONFIG_SLUB_DEBUG
3043
	atomic_long_set(&n->nr_slabs, 0);
3044
	atomic_long_set(&n->total_objects, 0);
3045
	INIT_LIST_HEAD(&n->full);
3046
#endif
C
Christoph Lameter 已提交
3047 3048
}

3049
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3050
{
3051
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3052
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3053

3054
	/*
3055 3056
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3057
	 */
3058 3059
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3060 3061 3062 3063 3064

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3065

3066
	return 1;
3067 3068
}

3069 3070
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3071 3072 3073 3074 3075
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3076 3077
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3078
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3079
 */
3080
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3081 3082 3083 3084
{
	struct page *page;
	struct kmem_cache_node *n;

3085
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3086

3087
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3088 3089

	BUG_ON(!page);
3090
	if (page_to_nid(page) != node) {
3091 3092
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3093 3094
	}

C
Christoph Lameter 已提交
3095 3096
	n = page->freelist;
	BUG_ON(!n);
3097
	page->freelist = get_freepointer(kmem_cache_node, n);
3098
	page->inuse = 1;
3099
	page->frozen = 0;
3100
	kmem_cache_node->node[node] = n;
3101
#ifdef CONFIG_SLUB_DEBUG
3102
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3103
	init_tracking(kmem_cache_node, n);
3104
#endif
3105
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3106
	init_kmem_cache_node(n);
3107
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3108

3109
	/*
3110 3111
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3112
	 */
3113
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3114 3115 3116 3117 3118
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3119
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3120

C
Christoph Lameter 已提交
3121 3122
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3123 3124 3125 3126
		s->node[node] = NULL;
	}
}

3127 3128 3129 3130 3131 3132
void __kmem_cache_release(struct kmem_cache *s)
{
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3133
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3134 3135 3136
{
	int node;

C
Christoph Lameter 已提交
3137
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3138 3139
		struct kmem_cache_node *n;

3140
		if (slab_state == DOWN) {
3141
			early_kmem_cache_node_alloc(node);
3142 3143
			continue;
		}
3144
		n = kmem_cache_alloc_node(kmem_cache_node,
3145
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3146

3147 3148 3149
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3150
		}
3151

C
Christoph Lameter 已提交
3152
		s->node[node] = n;
3153
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3154 3155 3156 3157
	}
	return 1;
}

3158
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3159 3160 3161 3162 3163 3164 3165 3166
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3167 3168 3169 3170
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3171
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3172 3173
{
	unsigned long flags = s->flags;
3174
	unsigned long size = s->object_size;
3175
	int order;
C
Christoph Lameter 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3185 3186 3187 3188 3189 3190
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3191
			!s->ctor)
C
Christoph Lameter 已提交
3192 3193 3194 3195 3196 3197
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3198
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3199
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3200
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3201
	 */
3202
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3203
		size += sizeof(void *);
C
Christoph Lameter 已提交
3204
#endif
C
Christoph Lameter 已提交
3205 3206

	/*
C
Christoph Lameter 已提交
3207 3208
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3209 3210 3211 3212
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3213
		s->ctor)) {
C
Christoph Lameter 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3226
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3227 3228 3229 3230 3231 3232 3233
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3234
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3235 3236 3237 3238
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3239
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3240 3241 3242
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3243
#endif
C
Christoph Lameter 已提交
3244

C
Christoph Lameter 已提交
3245 3246 3247 3248 3249
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3250
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3251
	s->size = size;
3252 3253 3254
	if (forced_order >= 0)
		order = forced_order;
	else
3255
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3256

3257
	if (order < 0)
C
Christoph Lameter 已提交
3258 3259
		return 0;

3260
	s->allocflags = 0;
3261
	if (order)
3262 3263 3264
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3265
		s->allocflags |= GFP_DMA;
3266 3267 3268 3269

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3270 3271 3272
	/*
	 * Determine the number of objects per slab
	 */
3273 3274
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3275 3276
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3277

3278
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3279 3280
}

3281
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3282
{
3283
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3284
	s->reserved = 0;
C
Christoph Lameter 已提交
3285

3286 3287
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3288

3289
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3290
		goto error;
3291 3292 3293 3294 3295
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3296
		if (get_order(s->size) > get_order(s->object_size)) {
3297 3298 3299 3300 3301 3302
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3303

3304 3305
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3306 3307 3308 3309 3310
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3311 3312 3313 3314
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3330
	 * B) The number of objects in cpu partial slabs to extract from the
3331 3332
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3333
	 */
3334
	if (!kmem_cache_has_cpu_partial(s))
3335 3336
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3337 3338 3339 3340 3341 3342 3343 3344
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3345
#ifdef CONFIG_NUMA
3346
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3347
#endif
3348
	if (!init_kmem_cache_nodes(s))
3349
		goto error;
C
Christoph Lameter 已提交
3350

3351
	if (alloc_kmem_cache_cpus(s))
3352
		return 0;
3353

3354
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3355 3356 3357 3358
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3359 3360
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3361
	return -EINVAL;
C
Christoph Lameter 已提交
3362 3363
}

3364 3365 3366 3367 3368 3369
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3370 3371
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3372 3373
	if (!map)
		return;
3374
	slab_err(s, page, text, s->name);
3375 3376
	slab_lock(page);

3377
	get_map(s, page, map);
3378 3379 3380
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3381
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3382 3383 3384 3385
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3386
	kfree(map);
3387 3388 3389
#endif
}

C
Christoph Lameter 已提交
3390
/*
C
Christoph Lameter 已提交
3391
 * Attempt to free all partial slabs on a node.
3392 3393
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3394
 */
C
Christoph Lameter 已提交
3395
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3396 3397 3398
{
	struct page *page, *h;

3399 3400
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3401
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3402
		if (!page->inuse) {
3403
			remove_partial(n, page);
C
Christoph Lameter 已提交
3404
			discard_slab(s, page);
3405 3406
		} else {
			list_slab_objects(s, page,
3407
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3408
		}
3409
	}
3410
	spin_unlock_irq(&n->list_lock);
C
Christoph Lameter 已提交
3411 3412 3413
}

/*
C
Christoph Lameter 已提交
3414
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3415
 */
3416
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3417 3418
{
	int node;
C
Christoph Lameter 已提交
3419
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3420 3421 3422

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3423
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3424 3425
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
			return 1;
	}
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3437
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3438 3439 3440 3441 3442 3443 3444 3445

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3446
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3447
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3448 3449 3450 3451 3452 3453 3454 3455

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3456
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3457 3458 3459 3460 3461 3462 3463 3464

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3465
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3466
	void *ret;
C
Christoph Lameter 已提交
3467

3468
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3469
		return kmalloc_large(size, flags);
3470

3471
	s = kmalloc_slab(size, flags);
3472 3473

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3474 3475
		return s;

3476
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3477

3478
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3479

3480 3481
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3482
	return ret;
C
Christoph Lameter 已提交
3483 3484 3485
}
EXPORT_SYMBOL(__kmalloc);

3486
#ifdef CONFIG_NUMA
3487 3488
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3489
	struct page *page;
3490
	void *ptr = NULL;
3491

V
Vladimir Davydov 已提交
3492 3493
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3494
	if (page)
3495 3496
		ptr = page_address(page);

3497
	kmalloc_large_node_hook(ptr, size, flags);
3498
	return ptr;
3499 3500
}

C
Christoph Lameter 已提交
3501 3502
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3503
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3504
	void *ret;
C
Christoph Lameter 已提交
3505

3506
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3507 3508
		ret = kmalloc_large_node(size, flags, node);

3509 3510 3511
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3512 3513 3514

		return ret;
	}
3515

3516
	s = kmalloc_slab(size, flags);
3517 3518

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3519 3520
		return s;

3521
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3522

3523
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3524

3525 3526
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3527
	return ret;
C
Christoph Lameter 已提交
3528 3529 3530 3531
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3532
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3533
{
3534
	struct page *page;
C
Christoph Lameter 已提交
3535

3536
	if (unlikely(object == ZERO_SIZE_PTR))
3537 3538
		return 0;

3539 3540
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3541 3542
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3543
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3544
	}
C
Christoph Lameter 已提交
3545

3546
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3547
}
3548 3549 3550 3551 3552 3553 3554 3555 3556

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3557
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3558 3559 3560 3561

void kfree(const void *x)
{
	struct page *page;
3562
	void *object = (void *)x;
C
Christoph Lameter 已提交
3563

3564 3565
	trace_kfree(_RET_IP_, x);

3566
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3567 3568
		return;

3569
	page = virt_to_head_page(x);
3570
	if (unlikely(!PageSlab(page))) {
3571
		BUG_ON(!PageCompound(page));
3572
		kfree_hook(x);
V
Vladimir Davydov 已提交
3573
		__free_kmem_pages(page, compound_order(page));
3574 3575
		return;
	}
3576
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3577 3578 3579
}
EXPORT_SYMBOL(kfree);

3580 3581
#define SHRINK_PROMOTE_MAX 32

3582
/*
3583 3584 3585
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3586 3587 3588 3589
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3590
 */
3591
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3592 3593 3594 3595 3596 3597
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3598 3599
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3600
	unsigned long flags;
3601
	int ret = 0;
3602

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3618
	flush_all(s);
C
Christoph Lameter 已提交
3619
	for_each_kmem_cache_node(s, node, n) {
3620 3621 3622
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3623 3624 3625 3626

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3627
		 * Build lists of slabs to discard or promote.
3628
		 *
C
Christoph Lameter 已提交
3629 3630
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3631 3632
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3643
				n->nr_partial--;
3644 3645
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3646 3647 3648
		}

		/*
3649 3650
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3651
		 */
3652 3653
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3654 3655

		spin_unlock_irqrestore(&n->list_lock, flags);
3656 3657

		/* Release empty slabs */
3658
		list_for_each_entry_safe(page, t, &discard, lru)
3659
			discard_slab(s, page);
3660 3661 3662

		if (slabs_node(s, node))
			ret = 1;
3663 3664
	}

3665
	return ret;
3666 3667
}

3668 3669 3670 3671
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3672
	mutex_lock(&slab_mutex);
3673
	list_for_each_entry(s, &slab_caches, list)
3674
		__kmem_cache_shrink(s, false);
3675
	mutex_unlock(&slab_mutex);
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3687
	offline_node = marg->status_change_nid_normal;
3688 3689 3690 3691 3692 3693 3694 3695

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3696
	mutex_lock(&slab_mutex);
3697 3698 3699 3700 3701 3702
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3703
			 * and offline_pages() function shouldn't call this
3704 3705
			 * callback. So, we must fail.
			 */
3706
			BUG_ON(slabs_node(s, offline_node));
3707 3708

			s->node[offline_node] = NULL;
3709
			kmem_cache_free(kmem_cache_node, n);
3710 3711
		}
	}
3712
	mutex_unlock(&slab_mutex);
3713 3714 3715 3716 3717 3718 3719
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3720
	int nid = marg->status_change_nid_normal;
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3731
	 * We are bringing a node online. No memory is available yet. We must
3732 3733 3734
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3735
	mutex_lock(&slab_mutex);
3736 3737 3738 3739 3740 3741
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3742
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3743 3744 3745 3746
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3747
		init_kmem_cache_node(n);
3748 3749 3750
		s->node[nid] = n;
	}
out:
3751
	mutex_unlock(&slab_mutex);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3775 3776 3777 3778
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3779 3780 3781
	return ret;
}

3782 3783 3784 3785
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3786

C
Christoph Lameter 已提交
3787 3788 3789 3790
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3791 3792
/*
 * Used for early kmem_cache structures that were allocated using
3793 3794
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3795 3796
 */

3797
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3798 3799
{
	int node;
3800
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3801
	struct kmem_cache_node *n;
3802

3803
	memcpy(s, static_cache, kmem_cache->object_size);
3804

3805 3806 3807 3808 3809 3810
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3811
	for_each_kmem_cache_node(s, node, n) {
3812 3813
		struct page *p;

C
Christoph Lameter 已提交
3814 3815
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3816

L
Li Zefan 已提交
3817
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3818 3819
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3820 3821
#endif
	}
3822
	slab_init_memcg_params(s);
3823 3824
	list_add(&s->list, &slab_caches);
	return s;
3825 3826
}

C
Christoph Lameter 已提交
3827 3828
void __init kmem_cache_init(void)
{
3829 3830
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3831

3832 3833 3834
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3835 3836
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3837

3838 3839
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3840

3841
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3842 3843 3844 3845

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3846 3847 3848 3849
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3850

3851
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3852

3853 3854 3855 3856 3857
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3858
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3859 3860

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3861
	setup_kmalloc_cache_index_table();
3862
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3863 3864 3865

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3866
#endif
C
Christoph Lameter 已提交
3867

3868
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3869
		cache_line_size(),
C
Christoph Lameter 已提交
3870 3871 3872 3873
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3874 3875 3876 3877
void __init kmem_cache_init_late(void)
{
}

3878
struct kmem_cache *
3879 3880
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3881
{
3882
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3883

3884
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3885 3886
	if (s) {
		s->refcount++;
3887

C
Christoph Lameter 已提交
3888 3889 3890 3891
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3892
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3893
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3894

3895
		for_each_memcg_cache(c, s) {
3896 3897 3898 3899 3900
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3901 3902
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3903
			s = NULL;
3904
		}
3905
	}
C
Christoph Lameter 已提交
3906

3907 3908
	return s;
}
P
Pekka Enberg 已提交
3909

3910
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3911
{
3912 3913 3914 3915 3916
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3917

3918 3919 3920 3921
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3922
	memcg_propagate_slab_attrs(s);
3923 3924
	err = sysfs_slab_add(s);
	if (err)
3925
		__kmem_cache_release(s);
3926

3927
	return err;
C
Christoph Lameter 已提交
3928 3929 3930 3931
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3932 3933
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3934
 */
3935
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3936 3937 3938
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3939 3940
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3941 3942 3943

	switch (action) {
	case CPU_UP_CANCELED:
3944
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3945
	case CPU_DEAD:
3946
	case CPU_DEAD_FROZEN:
3947
		mutex_lock(&slab_mutex);
3948 3949 3950 3951 3952
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3953
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3954 3955 3956 3957 3958 3959 3960
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3961
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3962
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3963
};
C
Christoph Lameter 已提交
3964 3965 3966

#endif

3967
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3968
{
3969
	struct kmem_cache *s;
3970
	void *ret;
3971

3972
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3973 3974
		return kmalloc_large(size, gfpflags);

3975
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3976

3977
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3978
		return s;
C
Christoph Lameter 已提交
3979

3980
	ret = slab_alloc(s, gfpflags, caller);
3981

L
Lucas De Marchi 已提交
3982
	/* Honor the call site pointer we received. */
3983
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3984 3985

	return ret;
C
Christoph Lameter 已提交
3986 3987
}

3988
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3989
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3990
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3991
{
3992
	struct kmem_cache *s;
3993
	void *ret;
3994

3995
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3996 3997 3998 3999 4000 4001 4002 4003
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4004

4005
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4006

4007
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4008
		return s;
C
Christoph Lameter 已提交
4009

4010
	ret = slab_alloc_node(s, gfpflags, node, caller);
4011

L
Lucas De Marchi 已提交
4012
	/* Honor the call site pointer we received. */
4013
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4014 4015

	return ret;
C
Christoph Lameter 已提交
4016
}
4017
#endif
C
Christoph Lameter 已提交
4018

4019
#ifdef CONFIG_SYSFS
4020 4021 4022 4023 4024 4025 4026 4027 4028
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4029
#endif
4030

4031
#ifdef CONFIG_SLUB_DEBUG
4032 4033
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4034 4035
{
	void *p;
4036
	void *addr = page_address(page);
4037 4038 4039 4040 4041 4042

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4043
	bitmap_zero(map, page->objects);
4044

4045 4046 4047 4048 4049
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4050 4051
	}

4052
	for_each_object(p, s, addr, page->objects)
4053
		if (!test_bit(slab_index(p, s, addr), map))
4054
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4055 4056 4057 4058
				return 0;
	return 1;
}

4059 4060
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4061
{
4062 4063 4064
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4065 4066
}

4067 4068
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4069 4070 4071 4072 4073 4074 4075 4076
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4077
		validate_slab_slab(s, page, map);
4078 4079 4080
		count++;
	}
	if (count != n->nr_partial)
4081 4082
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4083 4084 4085 4086 4087

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4088
		validate_slab_slab(s, page, map);
4089 4090 4091
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4092 4093
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4094 4095 4096 4097 4098 4099

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4100
static long validate_slab_cache(struct kmem_cache *s)
4101 4102 4103
{
	int node;
	unsigned long count = 0;
4104
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4105
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4106
	struct kmem_cache_node *n;
4107 4108 4109

	if (!map)
		return -ENOMEM;
4110 4111

	flush_all(s);
C
Christoph Lameter 已提交
4112
	for_each_kmem_cache_node(s, node, n)
4113 4114
		count += validate_slab_node(s, n, map);
	kfree(map);
4115 4116
	return count;
}
4117
/*
C
Christoph Lameter 已提交
4118
 * Generate lists of code addresses where slabcache objects are allocated
4119 4120 4121 4122 4123
 * and freed.
 */

struct location {
	unsigned long count;
4124
	unsigned long addr;
4125 4126 4127 4128 4129
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4130
	DECLARE_BITMAP(cpus, NR_CPUS);
4131
	nodemask_t nodes;
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4147
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4148 4149 4150 4151 4152 4153
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4154
	l = (void *)__get_free_pages(flags, order);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4168
				const struct track *track)
4169 4170 4171
{
	long start, end, pos;
	struct location *l;
4172
	unsigned long caddr;
4173
	unsigned long age = jiffies - track->when;
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4205 4206
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4207 4208
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4209 4210 4211
			return 1;
		}

4212
		if (track->addr < caddr)
4213 4214 4215 4216 4217 4218
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4219
	 * Not found. Insert new tracking element.
4220
	 */
4221
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4222 4223 4224 4225 4226 4227 4228 4229
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4230 4231 4232 4233 4234 4235
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4236 4237
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4238 4239
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4240 4241 4242 4243
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4244
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4245
		unsigned long *map)
4246
{
4247
	void *addr = page_address(page);
4248 4249
	void *p;

4250
	bitmap_zero(map, page->objects);
4251
	get_map(s, page, map);
4252

4253
	for_each_object(p, s, addr, page->objects)
4254 4255
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4256 4257 4258 4259 4260
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4261
	int len = 0;
4262
	unsigned long i;
4263
	struct loc_track t = { 0, 0, NULL };
4264
	int node;
E
Eric Dumazet 已提交
4265 4266
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4267
	struct kmem_cache_node *n;
4268

E
Eric Dumazet 已提交
4269 4270 4271
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4272
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4273
	}
4274 4275 4276
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4277
	for_each_kmem_cache_node(s, node, n) {
4278 4279 4280
		unsigned long flags;
		struct page *page;

4281
		if (!atomic_long_read(&n->nr_slabs))
4282 4283 4284 4285
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4286
			process_slab(&t, s, page, alloc, map);
4287
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4288
			process_slab(&t, s, page, alloc, map);
4289 4290 4291 4292
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4293
		struct location *l = &t.loc[i];
4294

H
Hugh Dickins 已提交
4295
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4296
			break;
4297
		len += sprintf(buf + len, "%7ld ", l->count);
4298 4299

		if (l->addr)
J
Joe Perches 已提交
4300
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4301
		else
4302
			len += sprintf(buf + len, "<not-available>");
4303 4304

		if (l->sum_time != l->min_time) {
4305
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4306 4307 4308
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4309
		} else
4310
			len += sprintf(buf + len, " age=%ld",
4311 4312 4313
				l->min_time);

		if (l->min_pid != l->max_pid)
4314
			len += sprintf(buf + len, " pid=%ld-%ld",
4315 4316
				l->min_pid, l->max_pid);
		else
4317
			len += sprintf(buf + len, " pid=%ld",
4318 4319
				l->min_pid);

R
Rusty Russell 已提交
4320 4321
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4322 4323 4324 4325
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4326

4327
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4328 4329 4330 4331
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4332

4333
		len += sprintf(buf + len, "\n");
4334 4335 4336
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4337
	kfree(map);
4338
	if (!t.count)
4339 4340
		len += sprintf(buf, "No data\n");
	return len;
4341
}
4342
#endif
4343

4344
#ifdef SLUB_RESILIENCY_TEST
4345
static void __init resiliency_test(void)
4346 4347 4348
{
	u8 *p;

4349
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4350

4351 4352 4353
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4354 4355 4356

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4357 4358
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4359 4360 4361 4362 4363 4364

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4365 4366 4367
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4368 4369 4370 4371 4372

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4373 4374 4375
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4376 4377
	validate_slab_cache(kmalloc_caches[6]);

4378
	pr_err("\nB. Corruption after free\n");
4379 4380 4381
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4382
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4383 4384 4385 4386 4387
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4388
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4389 4390 4391 4392 4393
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4394
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4395 4396 4397 4398 4399 4400 4401 4402
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4403
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4404
enum slab_stat_type {
4405 4406 4407 4408 4409
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4410 4411
};

4412
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4413 4414 4415
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4416
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4417

4418 4419
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4420 4421 4422 4423 4424 4425
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4426
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4427 4428
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4429

4430 4431
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4432

4433
		for_each_possible_cpu(cpu) {
4434 4435
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4436
			int node;
4437
			struct page *page;
4438

4439
			page = READ_ONCE(c->page);
4440 4441
			if (!page)
				continue;
4442

4443 4444 4445 4446 4447 4448 4449
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4450

4451 4452 4453
			total += x;
			nodes[node] += x;

4454
			page = READ_ONCE(c->partial);
4455
			if (page) {
L
Li Zefan 已提交
4456 4457 4458 4459 4460 4461 4462
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4463 4464
				total += x;
				nodes[node] += x;
4465
			}
C
Christoph Lameter 已提交
4466 4467 4468
		}
	}

4469
	get_online_mems();
4470
#ifdef CONFIG_SLUB_DEBUG
4471
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4472 4473 4474
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4475

4476 4477 4478 4479 4480
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4481
			else
4482
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4483 4484 4485 4486
			total += x;
			nodes[node] += x;
		}

4487 4488 4489
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4490
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4491

C
Christoph Lameter 已提交
4492
		for_each_kmem_cache_node(s, node, n) {
4493 4494 4495 4496
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4497
			else
4498
				x = n->nr_partial;
C
Christoph Lameter 已提交
4499 4500 4501 4502 4503 4504
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4505
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4506 4507 4508 4509
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4510
	put_online_mems();
C
Christoph Lameter 已提交
4511 4512 4513 4514
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4515
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4516 4517 4518
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4519
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4520

C
Christoph Lameter 已提交
4521
	for_each_kmem_cache_node(s, node, n)
4522
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4523
			return 1;
C
Christoph Lameter 已提交
4524

C
Christoph Lameter 已提交
4525 4526
	return 0;
}
4527
#endif
C
Christoph Lameter 已提交
4528 4529

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4530
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4531 4532 4533 4534 4535 4536 4537 4538

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4539 4540
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4541 4542 4543

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4544
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4560
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4561 4562 4563 4564 4565
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4566
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4567 4568 4569
}
SLAB_ATTR_RO(objs_per_slab);

4570 4571 4572
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4573 4574 4575
	unsigned long order;
	int err;

4576
	err = kstrtoul(buf, 10, &order);
4577 4578
	if (err)
		return err;
4579 4580 4581 4582 4583 4584 4585 4586

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4587 4588
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4589
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4590
}
4591
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4592

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4604
	err = kstrtoul(buf, 10, &min);
4605 4606 4607
	if (err)
		return err;

4608
	set_min_partial(s, min);
4609 4610 4611 4612
	return length;
}
SLAB_ATTR(min_partial);

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4624
	err = kstrtoul(buf, 10, &objects);
4625 4626
	if (err)
		return err;
4627
	if (objects && !kmem_cache_has_cpu_partial(s))
4628
		return -EINVAL;
4629 4630 4631 4632 4633 4634 4635

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4636 4637
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4638 4639 4640
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4641 4642 4643 4644 4645
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4646
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4647 4648 4649 4650 4651
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4652
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4653 4654 4655 4656 4657
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4658
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4659 4660 4661 4662 4663
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4664
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4665 4666 4667
}
SLAB_ATTR_RO(objects);

4668 4669 4670 4671 4672 4673
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4740 4741 4742 4743 4744 4745
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4746
#ifdef CONFIG_SLUB_DEBUG
4747 4748 4749 4750 4751 4752
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4753 4754 4755 4756 4757 4758
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4768 4769
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4770
		s->flags |= SLAB_DEBUG_FREE;
4771
	}
C
Christoph Lameter 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4784 4785 4786 4787 4788 4789 4790 4791
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4792
	s->flags &= ~SLAB_TRACE;
4793 4794
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4795
		s->flags |= SLAB_TRACE;
4796
	}
C
Christoph Lameter 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4813 4814
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4815
		s->flags |= SLAB_RED_ZONE;
4816
	}
4817
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4834 4835
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4836
		s->flags |= SLAB_POISON;
4837
	}
4838
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4855 4856
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4857
		s->flags |= SLAB_STORE_USER;
4858
	}
4859
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4860 4861 4862 4863
	return length;
}
SLAB_ATTR(store_user);

4864 4865 4866 4867 4868 4869 4870 4871
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4872 4873 4874 4875 4876 4877 4878 4879
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4880 4881
}
SLAB_ATTR(validate);
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4909 4910 4911
	if (s->refcount > 1)
		return -EINVAL;

4912 4913 4914 4915 4916 4917
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4918
#endif
4919

4920 4921 4922 4923 4924 4925 4926 4927
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4928 4929 4930
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4931 4932 4933 4934 4935
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4936
#ifdef CONFIG_NUMA
4937
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4938
{
4939
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4940 4941
}

4942
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4943 4944
				const char *buf, size_t length)
{
4945 4946 4947
	unsigned long ratio;
	int err;

4948
	err = kstrtoul(buf, 10, &ratio);
4949 4950 4951
	if (err)
		return err;

4952
	if (ratio <= 100)
4953
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4954 4955 4956

	return length;
}
4957
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4958 4959
#endif

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4972
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4973 4974 4975 4976 4977 4978 4979

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4980
#ifdef CONFIG_SMP
4981 4982
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4983
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4984
	}
4985
#endif
4986 4987 4988 4989
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4990 4991 4992 4993 4994
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4995
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4996 4997
}

4998 4999 5000 5001 5002
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5023
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5024 5025 5026 5027 5028 5029 5030
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5031
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5032
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5033 5034
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5035 5036
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5037 5038
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5039 5040
#endif

P
Pekka Enberg 已提交
5041
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5042 5043 5044 5045
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5046
	&min_partial_attr.attr,
5047
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5048
	&objects_attr.attr,
5049
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5050 5051 5052 5053 5054 5055 5056 5057
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5058
	&shrink_attr.attr,
5059
	&reserved_attr.attr,
5060
	&slabs_cpu_partial_attr.attr,
5061
#ifdef CONFIG_SLUB_DEBUG
5062 5063 5064 5065
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5066 5067 5068
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5069
	&validate_attr.attr,
5070 5071
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5072
#endif
C
Christoph Lameter 已提交
5073 5074 5075 5076
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5077
	&remote_node_defrag_ratio_attr.attr,
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5090
	&alloc_node_mismatch_attr.attr,
5091 5092 5093 5094 5095 5096 5097
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5098
	&deactivate_bypass_attr.attr,
5099
	&order_fallback_attr.attr,
5100 5101
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5102 5103
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5104 5105
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5106
#endif
5107 5108 5109 5110
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5152
#ifdef CONFIG_MEMCG
5153
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5154
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5155

5156 5157 5158 5159
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5177 5178
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5179 5180 5181
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5182 5183 5184
	return err;
}

5185 5186
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5187
#ifdef CONFIG_MEMCG
5188 5189
	int i;
	char *buffer = NULL;
5190
	struct kmem_cache *root_cache;
5191

5192
	if (is_root_cache(s))
5193 5194
		return;

5195
	root_cache = s->memcg_params.root_cache;
5196

5197 5198 5199 5200
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5201
	if (!root_cache->max_attr_size)
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5223
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5224 5225 5226 5227 5228 5229 5230 5231
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5232
		attr->show(root_cache, buf);
5233 5234 5235 5236 5237 5238 5239 5240
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5241 5242 5243 5244 5245
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5246
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5247 5248 5249 5250 5251 5252
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5253
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5265
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5266 5267 5268
	.filter = uevent_filter,
};

5269
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5270

5271 5272
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5273
#ifdef CONFIG_MEMCG
5274
	if (!is_root_cache(s))
5275
		return s->memcg_params.root_cache->memcg_kset;
5276 5277 5278 5279
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5280 5281 5282
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5283 5284
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5307 5308
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5309 5310
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5311 5312 5313
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5314

C
Christoph Lameter 已提交
5315 5316 5317 5318 5319 5320 5321 5322
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5323
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5324 5325 5326 5327 5328 5329 5330

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5331
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5332 5333 5334 5335 5336 5337 5338 5339 5340
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5341
	s->kobj.kset = cache_kset(s);
5342
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5343
	if (err)
5344
		goto out;
C
Christoph Lameter 已提交
5345 5346

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5347 5348
	if (err)
		goto out_del_kobj;
5349

5350
#ifdef CONFIG_MEMCG
5351 5352 5353
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5354 5355
			err = -ENOMEM;
			goto out_del_kobj;
5356 5357 5358 5359
		}
	}
#endif

C
Christoph Lameter 已提交
5360 5361 5362 5363 5364
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5365 5366 5367 5368 5369 5370 5371
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5372 5373
}

5374
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5375
{
5376
	if (slab_state < FULL)
5377 5378 5379 5380 5381 5382
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5383
#ifdef CONFIG_MEMCG
5384 5385
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5386 5387
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5388
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5389 5390 5391 5392
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5393
 * available lest we lose that information.
C
Christoph Lameter 已提交
5394 5395 5396 5397 5398 5399 5400
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5401
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5402 5403 5404 5405 5406

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5407
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5408 5409 5410
		/*
		 * If we have a leftover link then remove it.
		 */
5411 5412
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5428
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5429 5430
	int err;

5431
	mutex_lock(&slab_mutex);
5432

5433
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5434
	if (!slab_kset) {
5435
		mutex_unlock(&slab_mutex);
5436
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5437 5438 5439
		return -ENOSYS;
	}

5440
	slab_state = FULL;
5441

5442
	list_for_each_entry(s, &slab_caches, list) {
5443
		err = sysfs_slab_add(s);
5444
		if (err)
5445 5446
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5447
	}
C
Christoph Lameter 已提交
5448 5449 5450 5451 5452 5453

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5454
		if (err)
5455 5456
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5457 5458 5459
		kfree(al);
	}

5460
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5461 5462 5463 5464 5465
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5466
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5467 5468 5469 5470

/*
 * The /proc/slabinfo ABI
 */
5471
#ifdef CONFIG_SLABINFO
5472
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5473 5474
{
	unsigned long nr_slabs = 0;
5475 5476
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5477
	int node;
C
Christoph Lameter 已提交
5478
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5479

C
Christoph Lameter 已提交
5480
	for_each_kmem_cache_node(s, node, n) {
5481 5482
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5483
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5484 5485
	}

5486 5487 5488 5489 5490 5491
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5492 5493
}

5494
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5495 5496 5497
{
}

5498 5499
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5500
{
5501
	return -EIO;
5502
}
5503
#endif /* CONFIG_SLABINFO */