slub.c 129.6 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
371 372
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373
	if (s->flags & __CMPXCHG_DOUBLE) {
374
		if (cmpxchg_double(&page->freelist, &page->counters,
375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
377
			return true;
378 379 380 381
	} else
#endif
	{
		slab_lock(page);
382 383
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
384
			page->freelist = freelist_new;
385
			set_page_slub_counters(page, counters_new);
386
			slab_unlock(page);
387
			return true;
388 389 390 391 392 393 394 395
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
396
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 398
#endif

399
	return false;
400 401
}

402 403 404 405 406
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
407 408
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409
	if (s->flags & __CMPXCHG_DOUBLE) {
410
		if (cmpxchg_double(&page->freelist, &page->counters,
411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
413
			return true;
414 415 416
	} else
#endif
	{
417 418 419
		unsigned long flags;

		local_irq_save(flags);
420
		slab_lock(page);
421 422
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
423
			page->freelist = freelist_new;
424
			set_page_slub_counters(page, counters_new);
425
			slab_unlock(page);
426
			local_irq_restore(flags);
427
			return true;
428
		}
429
		slab_unlock(page);
430
		local_irq_restore(flags);
431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
437
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 439
#endif

440
	return false;
441 442
}

C
Christoph Lameter 已提交
443
#ifdef CONFIG_SLUB_DEBUG
444 445 446
/*
 * Determine a map of object in use on a page.
 *
447
 * Node listlock must be held to guarantee that the page does
448 449 450 451 452 453 454 455 456 457 458
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
459 460 461
/*
 * Debug settings:
 */
462 463 464
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
465
static int slub_debug;
466
#endif
C
Christoph Lameter 已提交
467 468

static char *slub_debug_slabs;
469
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
487 488 489 490 491
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
492
	metadata_access_enable();
493 494
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
495
	metadata_access_disable();
C
Christoph Lameter 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
512
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
513
{
A
Akinobu Mita 已提交
514
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
515 516

	if (addr) {
517 518 519 520 521 522 523 524
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
525
		metadata_access_enable();
526
		save_stack_trace(&trace);
527
		metadata_access_disable();
528 529 530 531 532 533 534 535 536

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
537 538
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
539
		p->pid = current->pid;
C
Christoph Lameter 已提交
540 541 542 543 544 545 546
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
547 548 549
	if (!(s->flags & SLAB_STORE_USER))
		return;

550 551
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
552 553 554 555 556 557 558
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

559 560
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 562 563 564 565
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
566
				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 568 569 570
			else
				break;
	}
#endif
571 572 573 574 575 576 577 578 579 580 581 582 583
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
584
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585
	       page, page->objects, page->inuse, page->freelist, page->flags);
586 587 588 589 590

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
591
	struct va_format vaf;
592 593 594
	va_list args;

	va_start(args, fmt);
595 596
	vaf.fmt = fmt;
	vaf.va = &args;
597
	pr_err("=============================================================================\n");
598
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599
	pr_err("-----------------------------------------------------------------------------\n\n");
600

601
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602
	va_end(args);
C
Christoph Lameter 已提交
603 604
}

605 606
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
607
	struct va_format vaf;
608 609 610
	va_list args;

	va_start(args, fmt);
611 612 613
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 615 616 617
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
618 619
{
	unsigned int off;	/* Offset of last byte */
620
	u8 *addr = page_address(page);
621 622 623 624 625

	print_tracking(s, p);

	print_page_info(page);

626 627
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
628 629

	if (p > addr + 16)
630
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
631

632
	print_section("Object ", p, min_t(unsigned long, s->object_size,
633
				PAGE_SIZE));
C
Christoph Lameter 已提交
634
	if (s->flags & SLAB_RED_ZONE)
635 636
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
637 638 639 640 641 642

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

643
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
644 645 646 647
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
648
		print_section("Padding ", p + off, s->size - off);
649 650

	dump_stack();
C
Christoph Lameter 已提交
651 652
}

653
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
654 655
			u8 *object, char *reason)
{
656
	slab_bug(s, "%s", reason);
657
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
658 659
}

660 661
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
662 663 664 665
{
	va_list args;
	char buf[100];

666 667
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
668
	va_end(args);
669
	slab_bug(s, "%s", buf);
670
	print_page_info(page);
C
Christoph Lameter 已提交
671 672 673
	dump_stack();
}

674
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
675 676 677 678
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
679 680
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
681 682 683
	}

	if (s->flags & SLAB_RED_ZONE)
684
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
685 686
}

687 688 689 690 691 692 693 694 695
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
696
			u8 *start, unsigned int value, unsigned int bytes)
697 698 699 700
{
	u8 *fault;
	u8 *end;

701
	metadata_access_enable();
702
	fault = memchr_inv(start, value, bytes);
703
	metadata_access_disable();
704 705 706 707 708 709 710 711
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
712
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 714 715 716 717
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
718 719 720 721 722 723 724 725 726
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
727
 *
C
Christoph Lameter 已提交
728 729 730
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
731
 * object + s->object_size
C
Christoph Lameter 已提交
732
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
733
 * 	Padding is extended by another word if Redzoning is enabled and
734
 * 	object_size == inuse.
C
Christoph Lameter 已提交
735
 *
C
Christoph Lameter 已提交
736 737 738 739
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
740 741
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
742 743
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
744
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
745
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
746 747 748
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
749 750
 *
 * object + s->size
C
Christoph Lameter 已提交
751
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
752
 *
753
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
754
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

773 774
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
775 776
}

777
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
778 779
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
780 781 782 783 784
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
785 786 787 788

	if (!(s->flags & SLAB_POISON))
		return 1;

789
	start = page_address(page);
790
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 792
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
793 794 795
	if (!remainder)
		return 1;

796
	metadata_access_enable();
797
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798
	metadata_access_disable();
799 800 801 802 803 804
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805
	print_section("Padding ", end - remainder, remainder);
806

E
Eric Dumazet 已提交
807
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808
	return 0;
C
Christoph Lameter 已提交
809 810 811
}

static int check_object(struct kmem_cache *s, struct page *page,
812
					void *object, u8 val)
C
Christoph Lameter 已提交
813 814
{
	u8 *p = object;
815
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
816 817

	if (s->flags & SLAB_RED_ZONE) {
818
		if (!check_bytes_and_report(s, page, object, "Redzone",
819
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
820 821
			return 0;
	} else {
822
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
823
			check_bytes_and_report(s, page, p, "Alignment padding",
824 825
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
826
		}
C
Christoph Lameter 已提交
827 828 829
	}

	if (s->flags & SLAB_POISON) {
830
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831
			(!check_bytes_and_report(s, page, p, "Poison", p,
832
					POISON_FREE, s->object_size - 1) ||
833
			 !check_bytes_and_report(s, page, p, "Poison",
834
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
835 836 837 838 839 840 841
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

842
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
843 844 845 846 847 848 849 850 851 852
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
853
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
854
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
855
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
856
		 */
857
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
865 866
	int maxobj;

C
Christoph Lameter 已提交
867 868 869
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
870
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
871 872
		return 0;
	}
873

874
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 876
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
877
			page->objects, maxobj);
878 879 880
		return 0;
	}
	if (page->inuse > page->objects) {
881
		slab_err(s, page, "inuse %u > max %u",
882
			page->inuse, page->objects);
C
Christoph Lameter 已提交
883 884 885 886 887 888 889 890
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
891 892
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
893 894 895 896
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
897
	void *fp;
C
Christoph Lameter 已提交
898
	void *object = NULL;
899
	int max_objects;
C
Christoph Lameter 已提交
900

901
	fp = page->freelist;
902
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
903 904 905 906 907 908
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
909
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
910
			} else {
911
				slab_err(s, page, "Freepointer corrupt");
912
				page->freelist = NULL;
913
				page->inuse = page->objects;
914
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
915 916 917 918 919 920 921 922 923
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

924
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 926
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
927 928 929 930 931 932 933

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
934
	if (page->inuse != page->objects - nr) {
935
		slab_err(s, page, "Wrong object count. Counter is %d but "
936 937
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
938
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
939 940 941 942
	}
	return search == NULL;
}

943 944
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
945 946
{
	if (s->flags & SLAB_TRACE) {
947
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
948 949 950 951 952 953
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
954 955
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
956 957 958 959 960

		dump_stack();
	}
}

961
/*
C
Christoph Lameter 已提交
962
 * Tracking of fully allocated slabs for debugging purposes.
963
 */
964 965
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
966
{
967 968 969
	if (!(s->flags & SLAB_STORE_USER))
		return;

970
	lockdep_assert_held(&n->list_lock);
971 972 973
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
974
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 976 977 978
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

979
	lockdep_assert_held(&n->list_lock);
980 981 982
	list_del(&page->lru);
}

983 984 985 986 987 988 989 990
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

991 992 993 994 995
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

996
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 998 999 1000 1001 1002 1003 1004 1005
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1006
	if (likely(n)) {
1007
		atomic_long_inc(&n->nr_slabs);
1008 1009
		atomic_long_add(objects, &n->total_objects);
	}
1010
}
1011
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 1013 1014 1015
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1016
	atomic_long_sub(objects, &n->total_objects);
1017 1018 1019
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1020 1021 1022 1023 1024 1025
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1026
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1027 1028 1029
	init_tracking(s, object);
}

1030 1031
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1032
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1033 1034 1035 1036 1037 1038
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1039
		goto bad;
C
Christoph Lameter 已提交
1040 1041
	}

1042
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1043 1044
		goto bad;

C
Christoph Lameter 已提交
1045 1046 1047 1048
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1049
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1050
	return 1;
C
Christoph Lameter 已提交
1051

C
Christoph Lameter 已提交
1052 1053 1054 1055 1056
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1057
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1058
		 */
1059
		slab_fix(s, "Marking all objects used");
1060
		page->inuse = page->objects;
1061
		page->freelist = NULL;
C
Christoph Lameter 已提交
1062 1063 1064 1065
	}
	return 0;
}

1066 1067 1068
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1069
{
1070
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071

1072
	spin_lock_irqsave(&n->list_lock, *flags);
1073 1074
	slab_lock(page);

C
Christoph Lameter 已提交
1075 1076 1077 1078
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1079
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1080 1081 1082 1083
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1084
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1085 1086 1087
		goto fail;
	}

1088
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089
		goto out;
C
Christoph Lameter 已提交
1090

1091
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1092
		if (!PageSlab(page)) {
1093 1094
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1095
		} else if (!page->slab_cache) {
1096 1097
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1098
			dump_stack();
P
Pekka Enberg 已提交
1099
		} else
1100 1101
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1102 1103
		goto fail;
	}
C
Christoph Lameter 已提交
1104 1105 1106 1107

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1108
	init_object(s, object, SLUB_RED_INACTIVE);
1109
out:
1110
	slab_unlock(page);
1111 1112 1113 1114 1115
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1116

C
Christoph Lameter 已提交
1117
fail:
1118 1119
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1120
	slab_fix(s, "Object at 0x%p not freed", object);
1121
	return NULL;
C
Christoph Lameter 已提交
1122 1123
}

C
Christoph Lameter 已提交
1124 1125
static int __init setup_slub_debug(char *str)
{
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1150
	for (; *str && *str != ','; str++) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1167 1168 1169
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1170 1171 1172 1173 1174 1175 1176
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1177
		default:
1178 1179
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1180
		}
C
Christoph Lameter 已提交
1181 1182
	}

1183
check_slabs:
C
Christoph Lameter 已提交
1184 1185
	if (*str == ',')
		slub_debug_slabs = str + 1;
1186
out:
C
Christoph Lameter 已提交
1187 1188 1189 1190 1191
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1192
unsigned long kmem_cache_flags(unsigned long object_size,
1193
	unsigned long flags, const char *name,
1194
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1195 1196
{
	/*
1197
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1198
	 */
1199 1200
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201
		flags |= slub_debug;
1202 1203

	return flags;
C
Christoph Lameter 已提交
1204 1205
}
#else
C
Christoph Lameter 已提交
1206 1207
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1208

C
Christoph Lameter 已提交
1209
static inline int alloc_debug_processing(struct kmem_cache *s,
1210
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1211

1212 1213 1214
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1215 1216 1217 1218

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1219
			void *object, u8 val) { return 1; }
1220 1221
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1222 1223
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1224
unsigned long kmem_cache_flags(unsigned long object_size,
1225
	unsigned long flags, const char *name,
1226
	void (*ctor)(void *))
1227 1228 1229
{
	return flags;
}
C
Christoph Lameter 已提交
1230
#define slub_debug 0
1231

1232 1233
#define disable_higher_order_debug 0

1234 1235
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1236 1237
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1238 1239 1240 1241
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1242

1243 1244 1245 1246 1247 1248
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1249 1250 1251
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1252
	kasan_kmalloc_large(ptr, size);
1253 1254 1255 1256 1257
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1258
	kasan_kfree_large(x);
1259 1260
}

1261 1262
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1263 1264 1265 1266
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1267

1268 1269 1270 1271
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1272 1273 1274 1275
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1276
{
1277 1278 1279
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280
	memcg_kmem_put_cache(s);
1281
	kasan_slab_alloc(s, object);
1282
}
1283

1284 1285 1286
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1305 1306

	kasan_slab_free(s, x);
1307
}
1308

C
Christoph Lameter 已提交
1309 1310 1311
/*
 * Slab allocation and freeing
 */
1312 1313
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1314
{
1315
	struct page *page;
1316 1317
	int order = oo_order(oo);

1318 1319
	flags |= __GFP_NOTRACK;

1320 1321 1322
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1323
	if (node == NUMA_NO_NODE)
1324
		page = alloc_pages(flags, order);
1325
	else
1326 1327 1328 1329 1330 1331
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1332 1333
}

C
Christoph Lameter 已提交
1334 1335
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1336
	struct page *page;
1337
	struct kmem_cache_order_objects oo = s->oo;
1338
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1339

1340 1341 1342 1343 1344
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1345
	flags |= s->allocflags;
1346

1347 1348 1349 1350 1351 1352
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1353
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1354 1355
	if (unlikely(!page)) {
		oo = s->min;
1356
		alloc_gfp = flags;
1357 1358 1359 1360
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1361
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1362

1363 1364
		if (page)
			stat(s, ORDER_FALLBACK);
1365
	}
V
Vegard Nossum 已提交
1366

1367
	if (kmemcheck_enabled && page
1368
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1369 1370
		int pages = 1 << oo_order(oo);

1371
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1372 1373 1374 1375 1376 1377 1378 1379 1380

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1381 1382
	}

1383 1384 1385 1386 1387
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1388
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1389 1390 1391
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1392
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1393 1394 1395 1396 1397 1398 1399

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1400
	setup_object_debug(s, page, object);
1401 1402
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
1403
		s->ctor(object);
1404 1405
		kasan_poison_object_data(s, object);
	}
C
Christoph Lameter 已提交
1406 1407 1408 1409 1410 1411 1412
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1413
	int order;
1414
	int idx;
C
Christoph Lameter 已提交
1415

1416 1417 1418 1419
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
1420

C
Christoph Lameter 已提交
1421 1422
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1423 1424 1425
	if (!page)
		goto out;

G
Glauber Costa 已提交
1426
	order = compound_order(page);
1427
	inc_slabs_node(s, page_to_nid(page), page->objects);
1428
	page->slab_cache = s;
1429
	__SetPageSlab(page);
1430
	if (page_is_pfmemalloc(page))
1431
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1432 1433 1434 1435

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1436
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1437

1438 1439
	kasan_poison_slab(page);

1440 1441 1442 1443 1444 1445
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1446 1447 1448
	}

	page->freelist = start;
1449
	page->inuse = page->objects;
1450
	page->frozen = 1;
C
Christoph Lameter 已提交
1451 1452 1453 1454 1455 1456
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1457 1458
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1459

1460
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1461 1462 1463
		void *p;

		slab_pad_check(s, page);
1464 1465
		for_each_object(p, s, page_address(page),
						page->objects)
1466
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1467 1468
	}

1469
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1470

C
Christoph Lameter 已提交
1471 1472 1473
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1474
		-pages);
C
Christoph Lameter 已提交
1475

1476
	__ClearPageSlabPfmemalloc(page);
1477
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1478

1479
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1480 1481
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1482 1483
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1484 1485
}

1486 1487 1488
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1489 1490 1491 1492
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1493 1494 1495 1496 1497
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1498
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1499 1500 1501 1502 1503
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1518 1519 1520 1521 1522 1523 1524 1525

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1526
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1527 1528 1529 1530
	free_slab(s, page);
}

/*
1531
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1532
 */
1533 1534
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1535
{
C
Christoph Lameter 已提交
1536
	n->nr_partial++;
1537
	if (tail == DEACTIVATE_TO_TAIL)
1538 1539 1540
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1541 1542
}

1543 1544
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1545
{
P
Peter Zijlstra 已提交
1546
	lockdep_assert_held(&n->list_lock);
1547 1548
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1549

1550 1551 1552
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1553 1554 1555 1556
	list_del(&page->lru);
	n->nr_partial--;
}

1557 1558 1559 1560 1561 1562 1563
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1564
/*
1565 1566
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1567
 *
1568
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1569
 */
1570
static inline void *acquire_slab(struct kmem_cache *s,
1571
		struct kmem_cache_node *n, struct page *page,
1572
		int mode, int *objects)
C
Christoph Lameter 已提交
1573
{
1574 1575 1576 1577
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1578 1579
	lockdep_assert_held(&n->list_lock);

1580 1581 1582 1583 1584
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1585 1586 1587
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1588
	*objects = new.objects - new.inuse;
1589
	if (mode) {
1590
		new.inuse = page->objects;
1591 1592 1593 1594
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1595

1596
	VM_BUG_ON(new.frozen);
1597
	new.frozen = 1;
1598

1599
	if (!__cmpxchg_double_slab(s, page,
1600
			freelist, counters,
1601
			new.freelist, new.counters,
1602 1603
			"acquire_slab"))
		return NULL;
1604 1605

	remove_partial(n, page);
1606
	WARN_ON(!freelist);
1607
	return freelist;
C
Christoph Lameter 已提交
1608 1609
}

1610
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1611
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1612

C
Christoph Lameter 已提交
1613
/*
C
Christoph Lameter 已提交
1614
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1615
 */
1616 1617
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1618
{
1619 1620
	struct page *page, *page2;
	void *object = NULL;
1621 1622
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1623 1624 1625 1626

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1627 1628
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1629 1630 1631 1632 1633
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1634
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1635
		void *t;
1636

1637 1638 1639
		if (!pfmemalloc_match(page, flags))
			continue;

1640
		t = acquire_slab(s, n, page, object == NULL, &objects);
1641 1642 1643
		if (!t)
			break;

1644
		available += objects;
1645
		if (!object) {
1646 1647 1648 1649
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1650
			put_cpu_partial(s, page, 0);
1651
			stat(s, CPU_PARTIAL_NODE);
1652
		}
1653 1654
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1655 1656
			break;

1657
	}
C
Christoph Lameter 已提交
1658
	spin_unlock(&n->list_lock);
1659
	return object;
C
Christoph Lameter 已提交
1660 1661 1662
}

/*
C
Christoph Lameter 已提交
1663
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1664
 */
1665
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1666
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1667 1668 1669
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1670
	struct zoneref *z;
1671 1672
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1673
	void *object;
1674
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1675 1676

	/*
C
Christoph Lameter 已提交
1677 1678 1679 1680
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1681
	 *
C
Christoph Lameter 已提交
1682 1683 1684 1685
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1686
	 *
C
Christoph Lameter 已提交
1687
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1688 1689 1690 1691 1692
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1693
	 */
1694 1695
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1696 1697
		return NULL;

1698
	do {
1699
		cpuset_mems_cookie = read_mems_allowed_begin();
1700
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1701 1702 1703 1704 1705
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1706
			if (n && cpuset_zone_allowed(zone, flags) &&
1707
					n->nr_partial > s->min_partial) {
1708
				object = get_partial_node(s, n, c, flags);
1709 1710
				if (object) {
					/*
1711 1712 1713 1714 1715
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1716 1717 1718
					 */
					return object;
				}
1719
			}
C
Christoph Lameter 已提交
1720
		}
1721
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1722 1723 1724 1725 1726 1727 1728
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1729
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1730
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1731
{
1732
	void *object;
1733 1734 1735 1736 1737 1738
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1739

1740
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1741 1742
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1743

1744
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1788
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1789 1790 1791

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1792
		pr_warn("due to cpu change %d -> %d\n",
1793 1794 1795 1796
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1797
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1798 1799
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1800
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1801 1802
			actual_tid, tid, next_tid(tid));
#endif
1803
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1804 1805
}

1806
static void init_kmem_cache_cpus(struct kmem_cache *s)
1807 1808 1809 1810 1811 1812
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1813

C
Christoph Lameter 已提交
1814 1815 1816
/*
 * Remove the cpu slab
 */
1817 1818
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1819
{
1820 1821 1822 1823 1824
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1825
	int tail = DEACTIVATE_TO_HEAD;
1826 1827 1828 1829
	struct page new;
	struct page old;

	if (page->freelist) {
1830
		stat(s, DEACTIVATE_REMOTE_FREES);
1831
		tail = DEACTIVATE_TO_TAIL;
1832 1833
	}

1834
	/*
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1852
			VM_BUG_ON(!new.frozen);
1853

1854
		} while (!__cmpxchg_double_slab(s, page,
1855 1856 1857 1858 1859 1860 1861
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1862
	/*
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1875
	 */
1876
redo:
1877

1878 1879
	old.freelist = page->freelist;
	old.counters = page->counters;
1880
	VM_BUG_ON(!old.frozen);
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1893
	if (!new.inuse && n->nr_partial >= s->min_partial)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1926

P
Peter Zijlstra 已提交
1927
			remove_full(s, n, page);
1928 1929 1930 1931

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1932
			stat(s, tail);
1933 1934

		} else if (m == M_FULL) {
1935

1936 1937 1938 1939 1940 1941 1942
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1943
	if (!__cmpxchg_double_slab(s, page,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1956
	}
C
Christoph Lameter 已提交
1957 1958
}

1959 1960 1961
/*
 * Unfreeze all the cpu partial slabs.
 *
1962 1963 1964
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1965
 */
1966 1967
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1968
{
1969
#ifdef CONFIG_SLUB_CPU_PARTIAL
1970
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1971
	struct page *page, *discard_page = NULL;
1972 1973 1974 1975 1976 1977

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1978 1979 1980 1981 1982 1983 1984 1985 1986

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1987 1988 1989 1990 1991

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1992
			VM_BUG_ON(!old.frozen);
1993 1994 1995 1996 1997 1998

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1999
		} while (!__cmpxchg_double_slab(s, page,
2000 2001 2002 2003
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2004
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2005 2006
			page->next = discard_page;
			discard_page = page;
2007 2008 2009
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2010 2011 2012 2013 2014
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2015 2016 2017 2018 2019 2020 2021 2022 2023

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2024
#endif
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2036
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2037
{
2038
#ifdef CONFIG_SLUB_CPU_PARTIAL
2039 2040 2041 2042
	struct page *oldpage;
	int pages;
	int pobjects;

2043
	preempt_disable();
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2059
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2060
				local_irq_restore(flags);
2061
				oldpage = NULL;
2062 2063
				pobjects = 0;
				pages = 0;
2064
				stat(s, CPU_PARTIAL_DRAIN);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2075 2076
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2077 2078 2079 2080 2081 2082 2083 2084
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2085
#endif
2086 2087
}

2088
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2089
{
2090
	stat(s, CPUSLAB_FLUSH);
2091 2092 2093 2094 2095
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2096 2097 2098 2099
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2100
 *
C
Christoph Lameter 已提交
2101 2102
 * Called from IPI handler with interrupts disabled.
 */
2103
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2104
{
2105
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2106

2107 2108 2109 2110
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2111
		unfreeze_partials(s, c);
2112
	}
C
Christoph Lameter 已提交
2113 2114 2115 2116 2117 2118
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2119
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2120 2121
}

2122 2123 2124 2125 2126
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2127
	return c->page || c->partial;
2128 2129
}

C
Christoph Lameter 已提交
2130 2131
static void flush_all(struct kmem_cache *s)
{
2132
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2133 2134
}

2135 2136 2137 2138
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2139
static inline int node_match(struct page *page, int node)
2140 2141
{
#ifdef CONFIG_NUMA
2142
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2143 2144 2145 2146 2147
		return 0;
#endif
	return 1;
}

2148
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2149 2150 2151 2152 2153
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2154 2155 2156 2157 2158 2159 2160
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2174
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2175

P
Pekka Enberg 已提交
2176 2177 2178
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2179 2180 2181
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2182
	int node;
C
Christoph Lameter 已提交
2183
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2184

2185 2186 2187
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2188
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2189
		nid, gfpflags);
2190 2191 2192
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2193

2194
	if (oo_order(s->min) > get_order(s->object_size))
2195 2196
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2197

C
Christoph Lameter 已提交
2198
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2199 2200 2201 2202
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2203 2204 2205
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2206

2207
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2208 2209
			node, nr_slabs, nr_objs, nr_free);
	}
2210
#endif
P
Pekka Enberg 已提交
2211 2212
}

2213 2214 2215
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2216
	void *freelist;
2217 2218
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2219

2220
	freelist = get_partial(s, flags, node, c);
2221

2222 2223 2224 2225
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2226
	if (page) {
2227
		c = raw_cpu_ptr(s->cpu_slab);
2228 2229 2230 2231 2232 2233 2234
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2235
		freelist = page->freelist;
2236 2237 2238 2239 2240 2241
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2242
		freelist = NULL;
2243

2244
	return freelist;
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2255
/*
2256 2257
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2258 2259 2260 2261
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2262 2263
 *
 * This function must be called with interrupt disabled.
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2274

2275
		new.counters = counters;
2276
		VM_BUG_ON(!new.frozen);
2277 2278 2279 2280

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2281
	} while (!__cmpxchg_double_slab(s, page,
2282 2283 2284 2285 2286 2287 2288
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2289
/*
2290 2291 2292 2293 2294 2295
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2296
 *
2297 2298 2299
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2300
 *
2301
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2302 2303
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2304
 */
2305 2306
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2307
{
2308
	void *freelist;
2309
	struct page *page;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2321

2322 2323
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2324
		goto new_slab;
2325
redo:
2326

2327
	if (unlikely(!node_match(page, node))) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2340
	}
C
Christoph Lameter 已提交
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2354
	/* must check again c->freelist in case of cpu migration or IRQ */
2355 2356
	freelist = c->freelist;
	if (freelist)
2357
		goto load_freelist;
2358

2359
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2360

2361
	if (!freelist) {
2362 2363
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2364
		goto new_slab;
2365
	}
C
Christoph Lameter 已提交
2366

2367
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2368

2369
load_freelist:
2370 2371 2372 2373 2374
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2375
	VM_BUG_ON(!c->page->frozen);
2376
	c->freelist = get_freepointer(s, freelist);
2377 2378
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2379
	return freelist;
C
Christoph Lameter 已提交
2380 2381

new_slab:
2382

2383
	if (c->partial) {
2384 2385
		page = c->page = c->partial;
		c->partial = page->next;
2386 2387 2388
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2389 2390
	}

2391
	freelist = new_slab_objects(s, gfpflags, node, &c);
2392

2393
	if (unlikely(!freelist)) {
2394
		slab_out_of_memory(s, gfpflags, node);
2395 2396
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2397
	}
2398

2399
	page = c->page;
2400
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2401
		goto load_freelist;
2402

2403
	/* Only entered in the debug case */
2404 2405
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2406
		goto new_slab;	/* Slab failed checks. Next slab needed */
2407

2408
	deactivate_slab(s, page, get_freepointer(s, freelist));
2409 2410
	c->page = NULL;
	c->freelist = NULL;
2411
	local_irq_restore(flags);
2412
	return freelist;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2425
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2426
		gfp_t gfpflags, int node, unsigned long addr)
2427 2428
{
	void **object;
2429
	struct kmem_cache_cpu *c;
2430
	struct page *page;
2431
	unsigned long tid;
2432

2433 2434
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2435
		return NULL;
2436 2437 2438 2439 2440 2441
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2442
	 *
2443 2444 2445
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2446
	 */
2447 2448 2449
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2450 2451
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2462 2463 2464 2465 2466 2467 2468 2469

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2470
	object = c->freelist;
2471
	page = c->page;
D
Dave Hansen 已提交
2472
	if (unlikely(!object || !node_match(page, node))) {
2473
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2474 2475
		stat(s, ALLOC_SLOWPATH);
	} else {
2476 2477
		void *next_object = get_freepointer_safe(s, object);

2478
		/*
L
Lucas De Marchi 已提交
2479
		 * The cmpxchg will only match if there was no additional
2480 2481
		 * operation and if we are on the right processor.
		 *
2482 2483
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2484 2485 2486 2487
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2488 2489 2490
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2491
		 */
2492
		if (unlikely(!this_cpu_cmpxchg_double(
2493 2494
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2495
				next_object, next_tid(tid)))) {
2496 2497 2498 2499

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2500
		prefetch_freepointer(s, next_object);
2501
		stat(s, ALLOC_FASTPATH);
2502
	}
2503

2504
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2505
		memset(object, 0, s->object_size);
2506

2507
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2508

2509
	return object;
C
Christoph Lameter 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2518 2519
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2520
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2521

2522 2523
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2524 2525

	return ret;
C
Christoph Lameter 已提交
2526 2527 2528
}
EXPORT_SYMBOL(kmem_cache_alloc);

2529
#ifdef CONFIG_TRACING
2530 2531
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2532
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2533
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2534
	kasan_kmalloc(s, ret, size);
2535 2536 2537
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2538 2539
#endif

C
Christoph Lameter 已提交
2540 2541 2542
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2543
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2544

2545
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2546
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2547 2548

	return ret;
C
Christoph Lameter 已提交
2549 2550 2551
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2552
#ifdef CONFIG_TRACING
2553
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2554
				    gfp_t gfpflags,
2555
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2556
{
2557
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2558 2559 2560

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2561 2562

	kasan_kmalloc(s, ret, size);
2563
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2564
}
2565
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2566
#endif
2567
#endif
E
Eduard - Gabriel Munteanu 已提交
2568

C
Christoph Lameter 已提交
2569
/*
K
Kim Phillips 已提交
2570
 * Slow path handling. This may still be called frequently since objects
2571
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2572
 *
2573 2574 2575
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2576
 */
2577
static void __slab_free(struct kmem_cache *s, struct page *page,
2578
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2579 2580 2581
{
	void *prior;
	void **object = (void *)x;
2582 2583 2584 2585
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2586
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2587

2588
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2589

2590 2591
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2592
		return;
C
Christoph Lameter 已提交
2593

2594
	do {
2595 2596 2597 2598
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2599 2600 2601 2602 2603 2604
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2605
		if ((!new.inuse || !prior) && !was_frozen) {
2606

P
Peter Zijlstra 已提交
2607
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2608 2609

				/*
2610 2611 2612 2613
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2614 2615 2616
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2617
			} else { /* Needs to be taken off a list */
2618

2619
				n = get_node(s, page_to_nid(page));
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2631
		}
C
Christoph Lameter 已提交
2632

2633 2634 2635 2636
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2637

2638
	if (likely(!n)) {
2639 2640 2641 2642 2643

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2644
		if (new.frozen && !was_frozen) {
2645
			put_cpu_partial(s, page, 1);
2646 2647
			stat(s, CPU_PARTIAL_FREE);
		}
2648
		/*
2649 2650 2651
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2652 2653 2654 2655
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2656

2657
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2658 2659
		goto slab_empty;

C
Christoph Lameter 已提交
2660
	/*
2661 2662
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2663
	 */
2664 2665
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2666
			remove_full(s, n, page);
2667 2668
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2669
	}
2670
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2671 2672 2673
	return;

slab_empty:
2674
	if (prior) {
C
Christoph Lameter 已提交
2675
		/*
2676
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2677
		 */
2678
		remove_partial(n, page);
2679
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2680
	} else {
2681
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2682 2683
		remove_full(s, n, page);
	}
2684

2685
	spin_unlock_irqrestore(&n->list_lock, flags);
2686
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2687 2688 2689
	discard_slab(s, page);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2701
static __always_inline void slab_free(struct kmem_cache *s,
2702
			struct page *page, void *x, unsigned long addr)
2703 2704
{
	void **object = (void *)x;
2705
	struct kmem_cache_cpu *c;
2706
	unsigned long tid;
2707

2708 2709
	slab_free_hook(s, x);

2710 2711 2712 2713 2714
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2715
	 * during the cmpxchg then the free will succeed.
2716
	 */
2717 2718 2719
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2720 2721
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2722

2723 2724
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2725

2726
	if (likely(page == c->page)) {
2727
		set_freepointer(s, object, c->freelist);
2728

2729
		if (unlikely(!this_cpu_cmpxchg_double(
2730 2731 2732 2733 2734 2735 2736
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2737
		stat(s, FREE_FASTPATH);
2738
	} else
2739
		__slab_free(s, page, x, addr);
2740 2741 2742

}

C
Christoph Lameter 已提交
2743 2744
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2745 2746
	s = cache_from_obj(s, x);
	if (!s)
2747
		return;
2748
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2750 2751 2752
}
EXPORT_SYMBOL(kmem_cache_free);

2753
/* Note that interrupts must be enabled when calling this function. */
2754 2755
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	struct kmem_cache_cpu *c;
	struct page *page;
	int i;

	/* Debugging fallback to generic bulk */
	if (kmem_cache_debug(s))
		return __kmem_cache_free_bulk(s, size, p);

	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = p[i];

		BUG_ON(!object);
		page = virt_to_head_page(object);
		BUG_ON(s != page->slab_cache); /* Check if valid slab page */

		if (c->page == page) {
			/* Fastpath: local CPU free */
			set_freepointer(s, object, c->freelist);
			c->freelist = object;
		} else {
			c->tid = next_tid(c->tid);
			local_irq_enable();
			/* Slowpath: overhead locked cmpxchg_double_slab */
			__slab_free(s, page, object, _RET_IP_);
			local_irq_disable();
			c = this_cpu_ptr(s->cpu_slab);
		}
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();
2789 2790 2791
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2792
/* Note that interrupts must be enabled when calling this function. */
2793
bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2794
			   void **p)
2795
{
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	struct kmem_cache_cpu *c;
	int i;

	/* Debugging fallback to generic bulk */
	if (kmem_cache_debug(s))
		return __kmem_cache_alloc_bulk(s, flags, size, p);

	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		if (unlikely(!object)) {
			local_irq_enable();
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
			p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
					    _RET_IP_, c);
			if (unlikely(!p[i])) {
				__kmem_cache_free_bulk(s, i, p);
				return false;
			}
			local_irq_disable();
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

	return true;
2846 2847 2848 2849
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2850
/*
C
Christoph Lameter 已提交
2851 2852 2853 2854
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2855 2856 2857 2858
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2859
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2870
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2871
static int slub_min_objects;
C
Christoph Lameter 已提交
2872 2873 2874 2875

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2876 2877 2878 2879
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2880
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2881 2882 2883 2884 2885 2886
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2887
 *
C
Christoph Lameter 已提交
2888 2889 2890 2891
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2892
 *
C
Christoph Lameter 已提交
2893 2894 2895 2896
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2897
 */
2898
static inline int slab_order(int size, int min_objects,
2899
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2900 2901 2902
{
	int order;
	int rem;
2903
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2904

2905
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2906
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2907

2908
	for (order = max(min_order,
2909 2910
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2911

2912
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2913

2914
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2915 2916
			continue;

2917
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2918

2919
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2920 2921 2922
			break;

	}
C
Christoph Lameter 已提交
2923

C
Christoph Lameter 已提交
2924 2925 2926
	return order;
}

2927
static inline int calculate_order(int size, int reserved)
2928 2929 2930 2931
{
	int order;
	int min_objects;
	int fraction;
2932
	int max_objects;
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2943 2944
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2945
	max_objects = order_objects(slub_max_order, size, reserved);
2946 2947
	min_objects = min(min_objects, max_objects);

2948
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2949
		fraction = 16;
2950 2951
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2952
					slub_max_order, fraction, reserved);
2953 2954 2955 2956
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2957
		min_objects--;
2958 2959 2960 2961 2962 2963
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2964
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2965 2966 2967 2968 2969 2970
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2971
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2972
	if (order < MAX_ORDER)
2973 2974 2975 2976
		return order;
	return -ENOSYS;
}

2977
static void
2978
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2979 2980 2981 2982
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2983
#ifdef CONFIG_SLUB_DEBUG
2984
	atomic_long_set(&n->nr_slabs, 0);
2985
	atomic_long_set(&n->total_objects, 0);
2986
	INIT_LIST_HEAD(&n->full);
2987
#endif
C
Christoph Lameter 已提交
2988 2989
}

2990
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2991
{
2992
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2993
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2994

2995
	/*
2996 2997
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2998
	 */
2999 3000
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3001 3002 3003 3004 3005

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3006

3007
	return 1;
3008 3009
}

3010 3011
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3012 3013 3014 3015 3016
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3017 3018
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3019
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3020
 */
3021
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3022 3023 3024 3025
{
	struct page *page;
	struct kmem_cache_node *n;

3026
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3027

3028
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3029 3030

	BUG_ON(!page);
3031
	if (page_to_nid(page) != node) {
3032 3033
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3034 3035
	}

C
Christoph Lameter 已提交
3036 3037
	n = page->freelist;
	BUG_ON(!n);
3038
	page->freelist = get_freepointer(kmem_cache_node, n);
3039
	page->inuse = 1;
3040
	page->frozen = 0;
3041
	kmem_cache_node->node[node] = n;
3042
#ifdef CONFIG_SLUB_DEBUG
3043
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3044
	init_tracking(kmem_cache_node, n);
3045
#endif
3046
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3047
	init_kmem_cache_node(n);
3048
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3049

3050
	/*
3051 3052
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3053
	 */
3054
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3055 3056 3057 3058 3059
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3060
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3061

C
Christoph Lameter 已提交
3062 3063
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3064 3065 3066 3067
		s->node[node] = NULL;
	}
}

3068
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3069 3070 3071
{
	int node;

C
Christoph Lameter 已提交
3072
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3073 3074
		struct kmem_cache_node *n;

3075
		if (slab_state == DOWN) {
3076
			early_kmem_cache_node_alloc(node);
3077 3078
			continue;
		}
3079
		n = kmem_cache_alloc_node(kmem_cache_node,
3080
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3081

3082 3083 3084
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3085
		}
3086

C
Christoph Lameter 已提交
3087
		s->node[node] = n;
3088
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3089 3090 3091 3092
	}
	return 1;
}

3093
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3094 3095 3096 3097 3098 3099 3100 3101
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3102 3103 3104 3105
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3106
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3107 3108
{
	unsigned long flags = s->flags;
3109
	unsigned long size = s->object_size;
3110
	int order;
C
Christoph Lameter 已提交
3111

3112 3113 3114 3115 3116 3117 3118 3119
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3120 3121 3122 3123 3124 3125
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3126
			!s->ctor)
C
Christoph Lameter 已提交
3127 3128 3129 3130 3131 3132
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3133
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3134
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3135
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3136
	 */
3137
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3138
		size += sizeof(void *);
C
Christoph Lameter 已提交
3139
#endif
C
Christoph Lameter 已提交
3140 3141

	/*
C
Christoph Lameter 已提交
3142 3143
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3144 3145 3146 3147
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3148
		s->ctor)) {
C
Christoph Lameter 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3161
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3162 3163 3164 3165 3166 3167 3168
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3169
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3170 3171 3172 3173
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3174
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3175 3176 3177
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3178
#endif
C
Christoph Lameter 已提交
3179

C
Christoph Lameter 已提交
3180 3181 3182 3183 3184
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3185
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3186
	s->size = size;
3187 3188 3189
	if (forced_order >= 0)
		order = forced_order;
	else
3190
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3191

3192
	if (order < 0)
C
Christoph Lameter 已提交
3193 3194
		return 0;

3195
	s->allocflags = 0;
3196
	if (order)
3197 3198 3199
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3200
		s->allocflags |= GFP_DMA;
3201 3202 3203 3204

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3205 3206 3207
	/*
	 * Determine the number of objects per slab
	 */
3208 3209
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3210 3211
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3212

3213
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3214 3215
}

3216
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3217
{
3218
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3219
	s->reserved = 0;
C
Christoph Lameter 已提交
3220

3221 3222
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3223

3224
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3225
		goto error;
3226 3227 3228 3229 3230
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3231
		if (get_order(s->size) > get_order(s->object_size)) {
3232 3233 3234 3235 3236 3237
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3238

3239 3240
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3241 3242 3243 3244 3245
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3246 3247 3248 3249
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3265
	 * B) The number of objects in cpu partial slabs to extract from the
3266 3267
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3268
	 */
3269
	if (!kmem_cache_has_cpu_partial(s))
3270 3271
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3272 3273 3274 3275 3276 3277 3278 3279
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3280
#ifdef CONFIG_NUMA
3281
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3282
#endif
3283
	if (!init_kmem_cache_nodes(s))
3284
		goto error;
C
Christoph Lameter 已提交
3285

3286
	if (alloc_kmem_cache_cpus(s))
3287
		return 0;
3288

3289
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3290 3291 3292 3293
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3294 3295
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3296
	return -EINVAL;
C
Christoph Lameter 已提交
3297 3298
}

3299 3300 3301 3302 3303 3304
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3305 3306
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3307 3308
	if (!map)
		return;
3309
	slab_err(s, page, text, s->name);
3310 3311
	slab_lock(page);

3312
	get_map(s, page, map);
3313 3314 3315
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3316
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3317 3318 3319 3320
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3321
	kfree(map);
3322 3323 3324
#endif
}

C
Christoph Lameter 已提交
3325
/*
C
Christoph Lameter 已提交
3326
 * Attempt to free all partial slabs on a node.
3327 3328
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3329
 */
C
Christoph Lameter 已提交
3330
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3331 3332 3333
{
	struct page *page, *h;

3334
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3335
		if (!page->inuse) {
3336
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3337
			discard_slab(s, page);
3338 3339
		} else {
			list_slab_objects(s, page,
3340
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3341
		}
3342
	}
C
Christoph Lameter 已提交
3343 3344 3345
}

/*
C
Christoph Lameter 已提交
3346
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3347
 */
3348
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3349 3350
{
	int node;
C
Christoph Lameter 已提交
3351
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3352 3353 3354

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3355
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3356 3357
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3358 3359
			return 1;
	}
3360
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3361 3362 3363 3364
	free_kmem_cache_nodes(s);
	return 0;
}

3365
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3366
{
3367
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3368 3369 3370 3371 3372 3373 3374 3375
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3376
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3377 3378 3379 3380 3381 3382 3383 3384

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3385
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3386
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3387 3388 3389 3390 3391 3392 3393 3394

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3395
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3396 3397 3398 3399 3400 3401 3402 3403

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3404
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3405
	void *ret;
C
Christoph Lameter 已提交
3406

3407
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3408
		return kmalloc_large(size, flags);
3409

3410
	s = kmalloc_slab(size, flags);
3411 3412

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3413 3414
		return s;

3415
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3416

3417
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3418

3419 3420
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3421
	return ret;
C
Christoph Lameter 已提交
3422 3423 3424
}
EXPORT_SYMBOL(__kmalloc);

3425
#ifdef CONFIG_NUMA
3426 3427
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3428
	struct page *page;
3429
	void *ptr = NULL;
3430

V
Vladimir Davydov 已提交
3431 3432
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3433
	if (page)
3434 3435
		ptr = page_address(page);

3436
	kmalloc_large_node_hook(ptr, size, flags);
3437
	return ptr;
3438 3439
}

C
Christoph Lameter 已提交
3440 3441
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3442
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3443
	void *ret;
C
Christoph Lameter 已提交
3444

3445
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3446 3447
		ret = kmalloc_large_node(size, flags, node);

3448 3449 3450
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3451 3452 3453

		return ret;
	}
3454

3455
	s = kmalloc_slab(size, flags);
3456 3457

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3458 3459
		return s;

3460
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3461

3462
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3463

3464 3465
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3466
	return ret;
C
Christoph Lameter 已提交
3467 3468 3469 3470
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3471
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3472
{
3473
	struct page *page;
C
Christoph Lameter 已提交
3474

3475
	if (unlikely(object == ZERO_SIZE_PTR))
3476 3477
		return 0;

3478 3479
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3480 3481
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3482
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3483
	}
C
Christoph Lameter 已提交
3484

3485
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3486
}
3487 3488 3489 3490 3491 3492 3493 3494 3495

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3496
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3497 3498 3499 3500

void kfree(const void *x)
{
	struct page *page;
3501
	void *object = (void *)x;
C
Christoph Lameter 已提交
3502

3503 3504
	trace_kfree(_RET_IP_, x);

3505
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3506 3507
		return;

3508
	page = virt_to_head_page(x);
3509
	if (unlikely(!PageSlab(page))) {
3510
		BUG_ON(!PageCompound(page));
3511
		kfree_hook(x);
V
Vladimir Davydov 已提交
3512
		__free_kmem_pages(page, compound_order(page));
3513 3514
		return;
	}
3515
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3516 3517 3518
}
EXPORT_SYMBOL(kfree);

3519 3520
#define SHRINK_PROMOTE_MAX 32

3521
/*
3522 3523 3524
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3525 3526 3527 3528
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3529
 */
3530
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3531 3532 3533 3534 3535 3536
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3537 3538
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3539
	unsigned long flags;
3540
	int ret = 0;
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3557
	flush_all(s);
C
Christoph Lameter 已提交
3558
	for_each_kmem_cache_node(s, node, n) {
3559 3560 3561
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3562 3563 3564 3565

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3566
		 * Build lists of slabs to discard or promote.
3567
		 *
C
Christoph Lameter 已提交
3568 3569
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3570 3571
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3582
				n->nr_partial--;
3583 3584
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3585 3586 3587
		}

		/*
3588 3589
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3590
		 */
3591 3592
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3593 3594

		spin_unlock_irqrestore(&n->list_lock, flags);
3595 3596

		/* Release empty slabs */
3597
		list_for_each_entry_safe(page, t, &discard, lru)
3598
			discard_slab(s, page);
3599 3600 3601

		if (slabs_node(s, node))
			ret = 1;
3602 3603
	}

3604
	return ret;
3605 3606
}

3607 3608 3609 3610
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3611
	mutex_lock(&slab_mutex);
3612
	list_for_each_entry(s, &slab_caches, list)
3613
		__kmem_cache_shrink(s, false);
3614
	mutex_unlock(&slab_mutex);
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3626
	offline_node = marg->status_change_nid_normal;
3627 3628 3629 3630 3631 3632 3633 3634

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3635
	mutex_lock(&slab_mutex);
3636 3637 3638 3639 3640 3641
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3642
			 * and offline_pages() function shouldn't call this
3643 3644
			 * callback. So, we must fail.
			 */
3645
			BUG_ON(slabs_node(s, offline_node));
3646 3647

			s->node[offline_node] = NULL;
3648
			kmem_cache_free(kmem_cache_node, n);
3649 3650
		}
	}
3651
	mutex_unlock(&slab_mutex);
3652 3653 3654 3655 3656 3657 3658
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3659
	int nid = marg->status_change_nid_normal;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3670
	 * We are bringing a node online. No memory is available yet. We must
3671 3672 3673
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3674
	mutex_lock(&slab_mutex);
3675 3676 3677 3678 3679 3680
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3681
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3682 3683 3684 3685
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3686
		init_kmem_cache_node(n);
3687 3688 3689
		s->node[nid] = n;
	}
out:
3690
	mutex_unlock(&slab_mutex);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3714 3715 3716 3717
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3718 3719 3720
	return ret;
}

3721 3722 3723 3724
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3725

C
Christoph Lameter 已提交
3726 3727 3728 3729
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3730 3731
/*
 * Used for early kmem_cache structures that were allocated using
3732 3733
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3734 3735
 */

3736
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3737 3738
{
	int node;
3739
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3740
	struct kmem_cache_node *n;
3741

3742
	memcpy(s, static_cache, kmem_cache->object_size);
3743

3744 3745 3746 3747 3748 3749
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3750
	for_each_kmem_cache_node(s, node, n) {
3751 3752
		struct page *p;

C
Christoph Lameter 已提交
3753 3754
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3755

L
Li Zefan 已提交
3756
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3757 3758
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3759 3760
#endif
	}
3761
	slab_init_memcg_params(s);
3762 3763
	list_add(&s->list, &slab_caches);
	return s;
3764 3765
}

C
Christoph Lameter 已提交
3766 3767
void __init kmem_cache_init(void)
{
3768 3769
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3770

3771 3772 3773
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3774 3775
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3776

3777 3778
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3779

3780
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3781 3782 3783 3784

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3785 3786 3787 3788
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3789

3790
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3791

3792 3793 3794 3795 3796
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3797
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3798 3799

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3800
	setup_kmalloc_cache_index_table();
3801
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3802 3803 3804

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3805
#endif
C
Christoph Lameter 已提交
3806

3807
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3808
		cache_line_size(),
C
Christoph Lameter 已提交
3809 3810 3811 3812
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3813 3814 3815 3816
void __init kmem_cache_init_late(void)
{
}

3817
struct kmem_cache *
3818 3819
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3820
{
3821
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3822

3823
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3824 3825
	if (s) {
		s->refcount++;
3826

C
Christoph Lameter 已提交
3827 3828 3829 3830
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3831
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3832
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3833

3834
		for_each_memcg_cache(c, s) {
3835 3836 3837 3838 3839
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3840 3841
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3842
			s = NULL;
3843
		}
3844
	}
C
Christoph Lameter 已提交
3845

3846 3847
	return s;
}
P
Pekka Enberg 已提交
3848

3849
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3850
{
3851 3852 3853 3854 3855
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3856

3857 3858 3859 3860
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3861
	memcg_propagate_slab_attrs(s);
3862 3863 3864
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3865

3866
	return err;
C
Christoph Lameter 已提交
3867 3868 3869 3870
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3871 3872
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3873
 */
3874
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3875 3876 3877
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3878 3879
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3880 3881 3882

	switch (action) {
	case CPU_UP_CANCELED:
3883
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3884
	case CPU_DEAD:
3885
	case CPU_DEAD_FROZEN:
3886
		mutex_lock(&slab_mutex);
3887 3888 3889 3890 3891
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3892
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3893 3894 3895 3896 3897 3898 3899
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3900
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3901
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3902
};
C
Christoph Lameter 已提交
3903 3904 3905

#endif

3906
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3907
{
3908
	struct kmem_cache *s;
3909
	void *ret;
3910

3911
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3912 3913
		return kmalloc_large(size, gfpflags);

3914
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3915

3916
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3917
		return s;
C
Christoph Lameter 已提交
3918

3919
	ret = slab_alloc(s, gfpflags, caller);
3920

L
Lucas De Marchi 已提交
3921
	/* Honor the call site pointer we received. */
3922
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3923 3924

	return ret;
C
Christoph Lameter 已提交
3925 3926
}

3927
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3928
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3929
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3930
{
3931
	struct kmem_cache *s;
3932
	void *ret;
3933

3934
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3935 3936 3937 3938 3939 3940 3941 3942
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3943

3944
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3945

3946
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3947
		return s;
C
Christoph Lameter 已提交
3948

3949
	ret = slab_alloc_node(s, gfpflags, node, caller);
3950

L
Lucas De Marchi 已提交
3951
	/* Honor the call site pointer we received. */
3952
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3953 3954

	return ret;
C
Christoph Lameter 已提交
3955
}
3956
#endif
C
Christoph Lameter 已提交
3957

3958
#ifdef CONFIG_SYSFS
3959 3960 3961 3962 3963 3964 3965 3966 3967
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3968
#endif
3969

3970
#ifdef CONFIG_SLUB_DEBUG
3971 3972
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3973 3974
{
	void *p;
3975
	void *addr = page_address(page);
3976 3977 3978 3979 3980 3981

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3982
	bitmap_zero(map, page->objects);
3983

3984 3985 3986 3987 3988
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3989 3990
	}

3991
	for_each_object(p, s, addr, page->objects)
3992
		if (!test_bit(slab_index(p, s, addr), map))
3993
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3994 3995 3996 3997
				return 0;
	return 1;
}

3998 3999
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4000
{
4001 4002 4003
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4004 4005
}

4006 4007
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4008 4009 4010 4011 4012 4013 4014 4015
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4016
		validate_slab_slab(s, page, map);
4017 4018 4019
		count++;
	}
	if (count != n->nr_partial)
4020 4021
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4022 4023 4024 4025 4026

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4027
		validate_slab_slab(s, page, map);
4028 4029 4030
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4031 4032
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4033 4034 4035 4036 4037 4038

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4039
static long validate_slab_cache(struct kmem_cache *s)
4040 4041 4042
{
	int node;
	unsigned long count = 0;
4043
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4044
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4045
	struct kmem_cache_node *n;
4046 4047 4048

	if (!map)
		return -ENOMEM;
4049 4050

	flush_all(s);
C
Christoph Lameter 已提交
4051
	for_each_kmem_cache_node(s, node, n)
4052 4053
		count += validate_slab_node(s, n, map);
	kfree(map);
4054 4055
	return count;
}
4056
/*
C
Christoph Lameter 已提交
4057
 * Generate lists of code addresses where slabcache objects are allocated
4058 4059 4060 4061 4062
 * and freed.
 */

struct location {
	unsigned long count;
4063
	unsigned long addr;
4064 4065 4066 4067 4068
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4069
	DECLARE_BITMAP(cpus, NR_CPUS);
4070
	nodemask_t nodes;
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4086
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4087 4088 4089 4090 4091 4092
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4093
	l = (void *)__get_free_pages(flags, order);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4107
				const struct track *track)
4108 4109 4110
{
	long start, end, pos;
	struct location *l;
4111
	unsigned long caddr;
4112
	unsigned long age = jiffies - track->when;
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4144 4145
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4146 4147
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4148 4149 4150
			return 1;
		}

4151
		if (track->addr < caddr)
4152 4153 4154 4155 4156 4157
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4158
	 * Not found. Insert new tracking element.
4159
	 */
4160
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4161 4162 4163 4164 4165 4166 4167 4168
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4169 4170 4171 4172 4173 4174
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4175 4176
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4177 4178
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4179 4180 4181 4182
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4183
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4184
		unsigned long *map)
4185
{
4186
	void *addr = page_address(page);
4187 4188
	void *p;

4189
	bitmap_zero(map, page->objects);
4190
	get_map(s, page, map);
4191

4192
	for_each_object(p, s, addr, page->objects)
4193 4194
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4195 4196 4197 4198 4199
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4200
	int len = 0;
4201
	unsigned long i;
4202
	struct loc_track t = { 0, 0, NULL };
4203
	int node;
E
Eric Dumazet 已提交
4204 4205
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4206
	struct kmem_cache_node *n;
4207

E
Eric Dumazet 已提交
4208 4209 4210
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4211
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4212
	}
4213 4214 4215
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4216
	for_each_kmem_cache_node(s, node, n) {
4217 4218 4219
		unsigned long flags;
		struct page *page;

4220
		if (!atomic_long_read(&n->nr_slabs))
4221 4222 4223 4224
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4225
			process_slab(&t, s, page, alloc, map);
4226
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4227
			process_slab(&t, s, page, alloc, map);
4228 4229 4230 4231
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4232
		struct location *l = &t.loc[i];
4233

H
Hugh Dickins 已提交
4234
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4235
			break;
4236
		len += sprintf(buf + len, "%7ld ", l->count);
4237 4238

		if (l->addr)
J
Joe Perches 已提交
4239
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4240
		else
4241
			len += sprintf(buf + len, "<not-available>");
4242 4243

		if (l->sum_time != l->min_time) {
4244
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4245 4246 4247
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4248
		} else
4249
			len += sprintf(buf + len, " age=%ld",
4250 4251 4252
				l->min_time);

		if (l->min_pid != l->max_pid)
4253
			len += sprintf(buf + len, " pid=%ld-%ld",
4254 4255
				l->min_pid, l->max_pid);
		else
4256
			len += sprintf(buf + len, " pid=%ld",
4257 4258
				l->min_pid);

R
Rusty Russell 已提交
4259 4260
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4261 4262 4263 4264
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4265

4266
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4267 4268 4269 4270
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4271

4272
		len += sprintf(buf + len, "\n");
4273 4274 4275
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4276
	kfree(map);
4277
	if (!t.count)
4278 4279
		len += sprintf(buf, "No data\n");
	return len;
4280
}
4281
#endif
4282

4283
#ifdef SLUB_RESILIENCY_TEST
4284
static void __init resiliency_test(void)
4285 4286 4287
{
	u8 *p;

4288
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4289

4290 4291 4292
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4293 4294 4295

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4296 4297
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4298 4299 4300 4301 4302 4303

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4304 4305 4306
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4307 4308 4309 4310 4311

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4312 4313 4314
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4315 4316
	validate_slab_cache(kmalloc_caches[6]);

4317
	pr_err("\nB. Corruption after free\n");
4318 4319 4320
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4321
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4322 4323 4324 4325 4326
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4327
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4328 4329 4330 4331 4332
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4333
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4334 4335 4336 4337 4338 4339 4340 4341
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4342
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4343
enum slab_stat_type {
4344 4345 4346 4347 4348
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4349 4350
};

4351
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4352 4353 4354
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4355
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4356

4357 4358
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4359 4360 4361 4362 4363 4364
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4365
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4366 4367
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4368

4369 4370
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4371

4372
		for_each_possible_cpu(cpu) {
4373 4374
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4375
			int node;
4376
			struct page *page;
4377

4378
			page = READ_ONCE(c->page);
4379 4380
			if (!page)
				continue;
4381

4382 4383 4384 4385 4386 4387 4388
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4389

4390 4391 4392
			total += x;
			nodes[node] += x;

4393
			page = READ_ONCE(c->partial);
4394
			if (page) {
L
Li Zefan 已提交
4395 4396 4397 4398 4399 4400 4401
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4402 4403
				total += x;
				nodes[node] += x;
4404
			}
C
Christoph Lameter 已提交
4405 4406 4407
		}
	}

4408
	get_online_mems();
4409
#ifdef CONFIG_SLUB_DEBUG
4410
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4411 4412 4413
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4414

4415 4416 4417 4418 4419
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4420
			else
4421
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4422 4423 4424 4425
			total += x;
			nodes[node] += x;
		}

4426 4427 4428
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4429
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4430

C
Christoph Lameter 已提交
4431
		for_each_kmem_cache_node(s, node, n) {
4432 4433 4434 4435
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4436
			else
4437
				x = n->nr_partial;
C
Christoph Lameter 已提交
4438 4439 4440 4441 4442 4443
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4444
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4445 4446 4447 4448
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4449
	put_online_mems();
C
Christoph Lameter 已提交
4450 4451 4452 4453
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4454
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4455 4456 4457
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4458
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4459

C
Christoph Lameter 已提交
4460
	for_each_kmem_cache_node(s, node, n)
4461
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4462
			return 1;
C
Christoph Lameter 已提交
4463

C
Christoph Lameter 已提交
4464 4465
	return 0;
}
4466
#endif
C
Christoph Lameter 已提交
4467 4468

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4469
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4470 4471 4472 4473 4474 4475 4476 4477

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4478 4479
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4480 4481 4482

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4483
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4499
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4500 4501 4502 4503 4504
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4505
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4506 4507 4508
}
SLAB_ATTR_RO(objs_per_slab);

4509 4510 4511
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4512 4513 4514
	unsigned long order;
	int err;

4515
	err = kstrtoul(buf, 10, &order);
4516 4517
	if (err)
		return err;
4518 4519 4520 4521 4522 4523 4524 4525

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4526 4527
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4528
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4529
}
4530
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4543
	err = kstrtoul(buf, 10, &min);
4544 4545 4546
	if (err)
		return err;

4547
	set_min_partial(s, min);
4548 4549 4550 4551
	return length;
}
SLAB_ATTR(min_partial);

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4563
	err = kstrtoul(buf, 10, &objects);
4564 4565
	if (err)
		return err;
4566
	if (objects && !kmem_cache_has_cpu_partial(s))
4567
		return -EINVAL;
4568 4569 4570 4571 4572 4573 4574

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4575 4576
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4577 4578 4579
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4580 4581 4582 4583 4584
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4585
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4586 4587 4588 4589 4590
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4591
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4592 4593 4594 4595 4596
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4597
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4598 4599 4600 4601 4602
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4603
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4604 4605 4606
}
SLAB_ATTR_RO(objects);

4607 4608 4609 4610 4611 4612
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4679 4680 4681 4682 4683 4684
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4685
#ifdef CONFIG_SLUB_DEBUG
4686 4687 4688 4689 4690 4691
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4692 4693 4694 4695 4696 4697
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4707 4708
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4709
		s->flags |= SLAB_DEBUG_FREE;
4710
	}
C
Christoph Lameter 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4731
	s->flags &= ~SLAB_TRACE;
4732 4733
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4734
		s->flags |= SLAB_TRACE;
4735
	}
C
Christoph Lameter 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4752 4753
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4754
		s->flags |= SLAB_RED_ZONE;
4755
	}
4756
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4773 4774
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4775
		s->flags |= SLAB_POISON;
4776
	}
4777
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4794 4795
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4796
		s->flags |= SLAB_STORE_USER;
4797
	}
4798
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4799 4800 4801 4802
	return length;
}
SLAB_ATTR(store_user);

4803 4804 4805 4806 4807 4808 4809 4810
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4811 4812 4813 4814 4815 4816 4817 4818
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4819 4820
}
SLAB_ATTR(validate);
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4848 4849 4850
	if (s->refcount > 1)
		return -EINVAL;

4851 4852 4853 4854 4855 4856
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4857
#endif
4858

4859 4860 4861 4862 4863 4864 4865 4866
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4867 4868 4869
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4870 4871 4872 4873 4874
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4875
#ifdef CONFIG_NUMA
4876
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4877
{
4878
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4879 4880
}

4881
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4882 4883
				const char *buf, size_t length)
{
4884 4885 4886
	unsigned long ratio;
	int err;

4887
	err = kstrtoul(buf, 10, &ratio);
4888 4889 4890
	if (err)
		return err;

4891
	if (ratio <= 100)
4892
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4893 4894 4895

	return length;
}
4896
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4897 4898
#endif

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4911
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4912 4913 4914 4915 4916 4917 4918

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4919
#ifdef CONFIG_SMP
4920 4921
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4922
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4923
	}
4924
#endif
4925 4926 4927 4928
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4929 4930 4931 4932 4933
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4934
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4935 4936
}

4937 4938 4939 4940 4941
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4942 4943 4944 4945 4946 4947 4948 4949 4950
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4962
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4963 4964 4965 4966 4967 4968 4969
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4970
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4971
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4972 4973
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4974 4975
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4976 4977
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4978 4979
#endif

P
Pekka Enberg 已提交
4980
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4981 4982 4983 4984
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4985
	&min_partial_attr.attr,
4986
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4987
	&objects_attr.attr,
4988
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4989 4990 4991 4992 4993 4994 4995 4996
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4997
	&shrink_attr.attr,
4998
	&reserved_attr.attr,
4999
	&slabs_cpu_partial_attr.attr,
5000
#ifdef CONFIG_SLUB_DEBUG
5001 5002 5003 5004
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5005 5006 5007
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5008
	&validate_attr.attr,
5009 5010
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5011
#endif
C
Christoph Lameter 已提交
5012 5013 5014 5015
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5016
	&remote_node_defrag_ratio_attr.attr,
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5029
	&alloc_node_mismatch_attr.attr,
5030 5031 5032 5033 5034 5035 5036
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5037
	&deactivate_bypass_attr.attr,
5038
	&order_fallback_attr.attr,
5039 5040
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5041 5042
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5043 5044
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5045
#endif
5046 5047 5048 5049
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5091 5092
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5093
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5094

5095 5096 5097 5098
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5116 5117
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5118 5119 5120
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5121 5122 5123
	return err;
}

5124 5125 5126 5127 5128
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5129
	struct kmem_cache *root_cache;
5130

5131
	if (is_root_cache(s))
5132 5133
		return;

5134
	root_cache = s->memcg_params.root_cache;
5135

5136 5137 5138 5139
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5140
	if (!root_cache->max_attr_size)
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5162
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5163 5164 5165 5166 5167 5168 5169 5170
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5171
		attr->show(root_cache, buf);
5172 5173 5174 5175 5176 5177 5178 5179
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5180 5181 5182 5183 5184
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5185
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5186 5187 5188 5189 5190 5191
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5192
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5204
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5205 5206 5207
	.filter = uevent_filter,
};

5208
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5209

5210 5211 5212 5213
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5214
		return s->memcg_params.root_cache->memcg_kset;
5215 5216 5217 5218
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5219 5220 5221
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5222 5223
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5246 5247
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5248 5249 5250
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5251

C
Christoph Lameter 已提交
5252 5253 5254 5255 5256 5257 5258 5259
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5260
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5261 5262 5263 5264 5265 5266 5267

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5268
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5269 5270 5271 5272 5273 5274 5275 5276 5277
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5278
	s->kobj.kset = cache_kset(s);
5279
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5280 5281
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5282 5283

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5284 5285
	if (err)
		goto out_del_kobj;
5286 5287 5288 5289 5290

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5291 5292
			err = -ENOMEM;
			goto out_del_kobj;
5293 5294 5295 5296
		}
	}
#endif

C
Christoph Lameter 已提交
5297 5298 5299 5300 5301
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5302 5303 5304 5305 5306 5307 5308 5309 5310
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5311 5312
}

5313
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5314
{
5315
	if (slab_state < FULL)
5316 5317 5318 5319 5320 5321
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5322 5323 5324
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5325 5326
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5327
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5328 5329 5330 5331
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5332
 * available lest we lose that information.
C
Christoph Lameter 已提交
5333 5334 5335 5336 5337 5338 5339
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5340
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5341 5342 5343 5344 5345

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5346
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5347 5348 5349
		/*
		 * If we have a leftover link then remove it.
		 */
5350 5351
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5367
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5368 5369
	int err;

5370
	mutex_lock(&slab_mutex);
5371

5372
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5373
	if (!slab_kset) {
5374
		mutex_unlock(&slab_mutex);
5375
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5376 5377 5378
		return -ENOSYS;
	}

5379
	slab_state = FULL;
5380

5381
	list_for_each_entry(s, &slab_caches, list) {
5382
		err = sysfs_slab_add(s);
5383
		if (err)
5384 5385
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5386
	}
C
Christoph Lameter 已提交
5387 5388 5389 5390 5391 5392

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5393
		if (err)
5394 5395
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5396 5397 5398
		kfree(al);
	}

5399
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5400 5401 5402 5403 5404
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5405
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5406 5407 5408 5409

/*
 * The /proc/slabinfo ABI
 */
5410
#ifdef CONFIG_SLABINFO
5411
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5412 5413
{
	unsigned long nr_slabs = 0;
5414 5415
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5416
	int node;
C
Christoph Lameter 已提交
5417
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5418

C
Christoph Lameter 已提交
5419
	for_each_kmem_cache_node(s, node, n) {
5420 5421
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5422
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5423 5424
	}

5425 5426 5427 5428 5429 5430
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5431 5432
}

5433
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5434 5435 5436
{
}

5437 5438
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5439
{
5440
	return -EIO;
5441
}
5442
#endif /* CONFIG_SLABINFO */