slub.c 102.5 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 208
#define __KMALLOC_CACHE		0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK	0x10000000 /* Allow fallback to page alloc */
C
Christoph Lameter 已提交
209

210 211 212 213 214
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
215 216 217 218 219 220 221 222 223
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
224
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
225 226 227 228 229
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
230
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
244
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
245 246 247
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
248

C
Christoph Lameter 已提交
249
#else
250 251 252
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
253 254 255 256
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
257

C
Christoph Lameter 已提交
258 259
#endif

260 261 262 263 264 265 266
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

285 286
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
287 288 289 290 291
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
292 293
}

C
Christoph Lameter 已提交
294
/* Verify that a pointer has an address that is valid within a slab page */
295 296 297 298 299
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

300
	if (!object)
301 302
		return 1;

303
	base = page_address(page);
304 305 306 307 308 309 310 311
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
336
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337 338 339 340 341 342 343

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
344 345 346 347
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
348 349 350
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
351
static int slub_debug;
352
#endif
C
Christoph Lameter 已提交
353 354 355

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
369
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
370 371
			newline = 0;
		}
P
Pekka Enberg 已提交
372
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
373 374 375
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
376
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
377 378 379 380 381 382
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
383
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
384 385 386
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
387
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
426 427 428 429 430
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
431 432 433 434 435 436 437
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

438
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
439
	__print_symbol("%s", (unsigned long)t->addr);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
486 487
{
	unsigned int off;	/* Offset of last byte */
488
	u8 *addr = page_address(page);
489 490 491 492 493 494 495 496 497 498 499 500

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
501 502 503 504 505 506 507 508 509 510

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

511
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
512 513 514 515
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
516 517 518
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
519 520 521 522 523
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
524
	slab_bug(s, "%s", reason);
525
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
526 527
}

528
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
529 530 531 532
{
	va_list args;
	char buf[100];

533 534
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
535
	va_end(args);
536
	slab_bug(s, "%s", buf);
537
	print_page_info(page);
C
Christoph Lameter 已提交
538 539 540 541 542 543 544 545 546
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
547
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
548 549 550 551 552 553 554 555
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

556
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
557 558 559
{
	while (bytes) {
		if (*start != (u8)value)
560
			return start;
C
Christoph Lameter 已提交
561 562 563
		start++;
		bytes--;
	}
564 565 566 567 568 569 570 571 572 573 574 575
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
576
			u8 *start, unsigned int value, unsigned int bytes)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
596 597 598 599 600 601 602 603 604
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
605
 *
C
Christoph Lameter 已提交
606 607 608 609 610
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
611 612 613
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
614 615 616 617
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
618 619
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
620 621
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
622
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
623
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
624 625 626
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
627 628
 *
 * object + s->size
C
Christoph Lameter 已提交
629
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
630
 *
C
Christoph Lameter 已提交
631 632
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

651 652
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
653 654 655 656
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
657 658 659 660 661
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
662 663 664 665

	if (!(s->flags & SLAB_POISON))
		return 1;

666
	start = page_address(page);
667
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
668
	length = s->objects * s->size;
669
	remainder = end - (start + length);
C
Christoph Lameter 已提交
670 671 672
	if (!remainder)
		return 1;

673 674 675 676 677 678 679 680 681 682 683
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
684 685 686 687 688 689 690 691 692 693 694 695
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

696 697
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
698 699
			return 0;
	} else {
I
Ingo Molnar 已提交
700 701 702 703
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
704 705 706 707
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
708 709 710
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
711
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
732
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
733
		 */
734
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
735 736 737 738 739 740 741 742 743 744
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
745
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
746 747 748
		return 0;
	}
	if (page->inuse > s->objects) {
749 750
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
751 752 753 754 755 756 757 758
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
759 760
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
761 762 763 764 765 766 767
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

768
	while (fp && nr <= s->objects) {
C
Christoph Lameter 已提交
769 770 771 772 773 774
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
775
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
776 777
				break;
			} else {
778
				slab_err(s, page, "Freepointer corrupt");
779
				page->freelist = NULL;
C
Christoph Lameter 已提交
780
				page->inuse = s->objects;
781
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
782 783 784 785 786 787 788 789 790 791
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
792
		slab_err(s, page, "Wrong object count. Counter is %d but "
793
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
794
		page->inuse = s->objects - nr;
795
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
796 797 798 799
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

816
/*
C
Christoph Lameter 已提交
817
 * Tracking of fully allocated slabs for debugging purposes.
818
 */
C
Christoph Lameter 已提交
819
static void add_full(struct kmem_cache_node *n, struct page *page)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

static inline void inc_slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
	if (!NUMA_BUILD || n)
		atomic_long_inc(&n->nr_slabs);
}
static inline void dec_slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876 877 878 879 880
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
881 882 883 884
{
	if (!check_slab(s, page))
		goto bad;

885
	if (!on_freelist(s, page, object)) {
886
		object_err(s, page, object, "Object already allocated");
887
		goto bad;
C
Christoph Lameter 已提交
888 889 890 891
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
892
		goto bad;
C
Christoph Lameter 已提交
893 894
	}

895
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
896 897
		goto bad;

C
Christoph Lameter 已提交
898 899 900 901 902
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
903
	return 1;
C
Christoph Lameter 已提交
904

C
Christoph Lameter 已提交
905 906 907 908 909
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
910
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
911
		 */
912
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
913
		page->inuse = s->objects;
914
		page->freelist = NULL;
C
Christoph Lameter 已提交
915 916 917 918
	}
	return 0;
}

C
Christoph Lameter 已提交
919 920
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
921 922 923 924 925
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
926
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
927 928 929 930
		goto fail;
	}

	if (on_freelist(s, page, object)) {
931
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
932 933 934 935 936 937 938
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
939
		if (!PageSlab(page)) {
940 941
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
942
		} else if (!page->slab) {
C
Christoph Lameter 已提交
943
			printk(KERN_ERR
944
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
945
						object);
946
			dump_stack();
P
Pekka Enberg 已提交
947
		} else
948 949
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
950 951
		goto fail;
	}
C
Christoph Lameter 已提交
952 953

	/* Special debug activities for freeing objects */
954
	if (!SlabFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
955 956 957 958 959
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
960
	return 1;
C
Christoph Lameter 已提交
961

C
Christoph Lameter 已提交
962
fail:
963
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
964 965 966
	return 0;
}

C
Christoph Lameter 已提交
967 968
static int __init setup_slub_debug(char *str)
{
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
993
	for (; *str && *str != ','; str++) {
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1012
				"unknown. skipped\n", *str);
1013
		}
C
Christoph Lameter 已提交
1014 1015
	}

1016
check_slabs:
C
Christoph Lameter 已提交
1017 1018
	if (*str == ',')
		slub_debug_slabs = str + 1;
1019
out:
C
Christoph Lameter 已提交
1020 1021 1022 1023 1024
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1025 1026
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1027
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1028 1029
{
	/*
1030
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1031
	 */
1032 1033 1034
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1035 1036

	return flags;
C
Christoph Lameter 已提交
1037 1038
}
#else
C
Christoph Lameter 已提交
1039 1040
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1041

C
Christoph Lameter 已提交
1042 1043
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1044

C
Christoph Lameter 已提交
1045 1046
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1047 1048 1049 1050 1051

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1052
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1053 1054
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1055
	void (*ctor)(struct kmem_cache *, void *))
1056 1057 1058
{
	return flags;
}
C
Christoph Lameter 已提交
1059
#define slub_debug 0
1060 1061 1062 1063 1064

static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node) {}
C
Christoph Lameter 已提交
1065
#endif
C
Christoph Lameter 已提交
1066 1067 1068 1069 1070
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1071
	struct page *page;
C
Christoph Lameter 已提交
1072 1073
	int pages = 1 << s->order;

1074
	flags |= s->allocflags;
1075

C
Christoph Lameter 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1095
	setup_object_debug(s, page, object);
1096
	if (unlikely(s->ctor))
1097
		s->ctor(s, object);
C
Christoph Lameter 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1107
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1108

C
Christoph Lameter 已提交
1109 1110
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1111 1112 1113
	if (!page)
		goto out;

1114
	inc_slabs_node(s, page_to_nid(page));
C
Christoph Lameter 已提交
1115 1116 1117 1118
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1119
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1120 1121 1122 1123 1124 1125 1126

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1127
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1128 1129 1130 1131 1132
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1133
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1145
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1146 1147 1148
		void *p;

		slab_pad_check(s, page);
1149
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1150
			check_object(s, page, p, 0);
1151
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1152 1153 1154 1155 1156
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1157
		-pages);
C
Christoph Lameter 已提交
1158

1159 1160
	__ClearPageSlab(page);
	reset_page_mapcount(page);
C
Christoph Lameter 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1187
	dec_slabs_node(s, page_to_nid(page));
C
Christoph Lameter 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1201
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1215 1216
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1217
{
C
Christoph Lameter 已提交
1218 1219
	spin_lock(&n->list_lock);
	n->nr_partial++;
1220 1221 1222 1223
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1239
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1240
 *
C
Christoph Lameter 已提交
1241
 * Must hold list_lock.
C
Christoph Lameter 已提交
1242
 */
1243
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1244 1245 1246 1247
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1248
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1249 1250 1251 1252 1253 1254
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1255
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1256 1257 1258 1259 1260 1261 1262 1263
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1264 1265
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1266 1267 1268 1269 1270 1271
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1272
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1273 1274 1275 1276 1277 1278 1279 1280
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1281
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1282 1283 1284 1285 1286 1287
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
1288 1289
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
C
Christoph Lameter 已提交
1290 1291 1292
	struct page *page;

	/*
C
Christoph Lameter 已提交
1293 1294 1295 1296
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1297
	 *
C
Christoph Lameter 已提交
1298 1299 1300 1301
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1302
	 *
C
Christoph Lameter 已提交
1303
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1304 1305 1306 1307 1308
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1309
	 */
1310 1311
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1312 1313
		return NULL;

1314
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1315
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
C
Christoph Lameter 已提交
1316 1317
		struct kmem_cache_node *n;

1318
		n = get_node(s, zone_to_nid(zone));
C
Christoph Lameter 已提交
1319

1320
		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
C
Christoph Lameter 已提交
1321
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1353
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1354
{
C
Christoph Lameter 已提交
1355
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1356
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1357

1358
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1359
	if (page->inuse) {
C
Christoph Lameter 已提交
1360

1361
		if (page->freelist) {
1362
			add_partial(n, page, tail);
1363 1364 1365 1366 1367 1368
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1369 1370
		slab_unlock(page);
	} else {
1371
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1372 1373
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1374 1375 1376
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
C
Christoph Lameter 已提交
1377 1378 1379 1380 1381
			 * so that the others get filled first. That way the
			 * size of the partial list stays small.
			 *
			 * kmem_cache_shrink can reclaim any empty slabs from the
			 * partial list.
C
Christoph Lameter 已提交
1382
			 */
1383
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1384 1385 1386
			slab_unlock(page);
		} else {
			slab_unlock(page);
1387
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1388 1389
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1390 1391 1392 1393 1394 1395
	}
}

/*
 * Remove the cpu slab
 */
1396
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1397
{
1398
	struct page *page = c->page;
1399
	int tail = 1;
1400

1401
	if (page->freelist)
1402
		stat(c, DEACTIVATE_REMOTE_FREES);
1403
	/*
C
Christoph Lameter 已提交
1404
	 * Merge cpu freelist into slab freelist. Typically we get here
1405 1406 1407
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1408
	while (unlikely(c->freelist)) {
1409 1410
		void **object;

1411 1412
		tail = 0;	/* Hot objects. Put the slab first */

1413
		/* Retrieve object from cpu_freelist */
1414
		object = c->freelist;
1415
		c->freelist = c->freelist[c->offset];
1416 1417

		/* And put onto the regular freelist */
1418
		object[c->offset] = page->freelist;
1419 1420 1421
		page->freelist = object;
		page->inuse--;
	}
1422
	c->page = NULL;
1423
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1424 1425
}

1426
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1427
{
1428
	stat(c, CPUSLAB_FLUSH);
1429 1430
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1431 1432 1433 1434
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1435
 *
C
Christoph Lameter 已提交
1436 1437
 * Called from IPI handler with interrupts disabled.
 */
1438
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1439
{
1440
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1441

1442 1443
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1444 1445 1446 1447 1448 1449
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1450
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1479
/*
1480 1481 1482 1483
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1484
 *
1485 1486 1487
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1488
 *
1489 1490 1491
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1492
 *
1493
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
1494 1495
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
1496
 */
1497
static void *__slab_alloc(struct kmem_cache *s,
1498
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1499 1500
{
	void **object;
1501
	struct page *new;
C
Christoph Lameter 已提交
1502

1503 1504 1505
	/* We handle __GFP_ZERO in the caller */
	gfpflags &= ~__GFP_ZERO;

1506
	if (!c->page)
C
Christoph Lameter 已提交
1507 1508
		goto new_slab;

1509 1510
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1511
		goto another_slab;
C
Christoph Lameter 已提交
1512

1513
	stat(c, ALLOC_REFILL);
C
Christoph Lameter 已提交
1514

1515
load_freelist:
1516
	object = c->page->freelist;
1517
	if (unlikely(!object))
C
Christoph Lameter 已提交
1518
		goto another_slab;
1519
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1520 1521
		goto debug;

1522
	c->freelist = object[c->offset];
1523
	c->page->inuse = s->objects;
1524
	c->page->freelist = NULL;
1525
	c->node = page_to_nid(c->page);
1526
unlock_out:
1527
	slab_unlock(c->page);
1528
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1529 1530 1531
	return object;

another_slab:
1532
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1533 1534

new_slab:
1535 1536 1537
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1538
		stat(c, ALLOC_FROM_PARTIAL);
1539
		goto load_freelist;
C
Christoph Lameter 已提交
1540 1541
	}

1542 1543 1544
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1545
	new = new_slab(s, gfpflags, node);
1546 1547 1548 1549

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1550 1551
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1552
		stat(c, ALLOC_SLAB);
1553
		if (c->page)
1554 1555 1556 1557
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1558
		goto load_freelist;
C
Christoph Lameter 已提交
1559
	}
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	/*
	 * No memory available.
	 *
	 * If the slab uses higher order allocs but the object is
	 * smaller than a page size then we can fallback in emergencies
	 * to the page allocator via kmalloc_large. The page allocator may
	 * have failed to obtain a higher order page and we can try to
	 * allocate a single page if the object fits into a single page.
	 * That is only possible if certain conditions are met that are being
	 * checked when a slab is created.
	 */
1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (!(gfpflags & __GFP_NORETRY) &&
				(s->flags & __PAGE_ALLOC_FALLBACK)) {
		if (gfpflags & __GFP_WAIT)
			local_irq_enable();
		object = kmalloc_large(s->objsize, gfpflags);
		if (gfpflags & __GFP_WAIT)
			local_irq_disable();
		return object;
	}
1581
	return NULL;
C
Christoph Lameter 已提交
1582
debug:
1583
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1584
		goto another_slab;
1585

1586
	c->page->inuse++;
1587
	c->page->freelist = object[c->offset];
1588
	c->node = -1;
1589
	goto unlock_out;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1602
static __always_inline void *slab_alloc(struct kmem_cache *s,
1603
		gfp_t gfpflags, int node, void *addr)
1604 1605
{
	void **object;
1606
	struct kmem_cache_cpu *c;
1607 1608
	unsigned long flags;

1609
	local_irq_save(flags);
1610
	c = get_cpu_slab(s, smp_processor_id());
1611
	if (unlikely(!c->freelist || !node_match(c, node)))
1612

1613
		object = __slab_alloc(s, gfpflags, node, addr, c);
1614 1615

	else {
1616
		object = c->freelist;
1617
		c->freelist = object[c->offset];
1618
		stat(c, ALLOC_FASTPATH);
1619 1620
	}
	local_irq_restore(flags);
1621 1622

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1623
		memset(object, 0, c->objsize);
1624

1625
	return object;
C
Christoph Lameter 已提交
1626 1627 1628 1629
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1630
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1631 1632 1633 1634 1635 1636
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1637
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1638 1639 1640 1641 1642
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1643 1644
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1645
 *
1646 1647 1648
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1649
 */
1650
static void __slab_free(struct kmem_cache *s, struct page *page,
1651
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1652 1653 1654
{
	void *prior;
	void **object = (void *)x;
1655
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1656

1657 1658
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1659 1660
	slab_lock(page);

1661
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1662
		goto debug;
C
Christoph Lameter 已提交
1663

C
Christoph Lameter 已提交
1664
checks_ok:
1665
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1666 1667 1668
	page->freelist = object;
	page->inuse--;

1669 1670
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1671
		goto out_unlock;
1672
	}
C
Christoph Lameter 已提交
1673 1674 1675 1676 1677

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
C
Christoph Lameter 已提交
1678
	 * Objects left in the slab. If it was not on the partial list before
C
Christoph Lameter 已提交
1679 1680
	 * then add it.
	 */
1681
	if (unlikely(!prior)) {
1682
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1683 1684
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1685 1686 1687 1688 1689 1690

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1691
	if (prior) {
C
Christoph Lameter 已提交
1692
		/*
C
Christoph Lameter 已提交
1693
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1694 1695
		 */
		remove_partial(s, page);
1696 1697
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1698
	slab_unlock(page);
1699
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1700 1701 1702 1703
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1704
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1705 1706
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1720
static __always_inline void slab_free(struct kmem_cache *s,
1721 1722 1723
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1724
	struct kmem_cache_cpu *c;
1725 1726
	unsigned long flags;

1727
	local_irq_save(flags);
1728
	c = get_cpu_slab(s, smp_processor_id());
1729
	debug_check_no_locks_freed(object, c->objsize);
1730
	if (likely(page == c->page && c->node >= 0)) {
1731
		object[c->offset] = c->freelist;
1732
		c->freelist = object;
1733
		stat(c, FREE_FASTPATH);
1734
	} else
1735
		__slab_free(s, page, x, addr, c->offset);
1736 1737 1738 1739

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1740 1741
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1742
	struct page *page;
C
Christoph Lameter 已提交
1743

1744
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1745

C
Christoph Lameter 已提交
1746
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1747 1748 1749 1750 1751 1752
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1753
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1754 1755 1756 1757 1758 1759 1760 1761

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1762 1763 1764 1765
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1766 1767 1768 1769
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1770
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1786
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1787 1788 1789 1790 1791 1792
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1804
 *
C
Christoph Lameter 已提交
1805 1806 1807 1808
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1809
 *
C
Christoph Lameter 已提交
1810 1811 1812 1813
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1814
 */
1815 1816
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1817 1818 1819
{
	int order;
	int rem;
1820
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1821

1822
	for (order = max(min_order,
1823 1824
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1825

1826
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1827

1828
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1829 1830 1831 1832
			continue;

		rem = slab_size % size;

1833
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1834 1835 1836
			break;

	}
C
Christoph Lameter 已提交
1837

C
Christoph Lameter 已提交
1838 1839 1840
	return order;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1885
/*
C
Christoph Lameter 已提交
1886
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1887 1888 1889 1890 1891
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
1892 1893
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
1894
	 *
C
Christoph Lameter 已提交
1895 1896
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
1897
	 */
1898 1899 1900 1901 1902 1903
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
C
Christoph Lameter 已提交
1904 1905

	if (align < ARCH_SLAB_MINALIGN)
1906
		align = ARCH_SLAB_MINALIGN;
C
Christoph Lameter 已提交
1907 1908 1909 1910

	return ALIGN(align, sizeof(void *));
}

1911 1912 1913 1914
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1915
	c->freelist = NULL;
1916
	c->node = 0;
1917 1918
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
P
Pekka Enberg 已提交
1919 1920 1921
#ifdef CONFIG_SLUB_STATS
	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
#endif
1922 1923
}

C
Christoph Lameter 已提交
1924 1925 1926 1927 1928
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1929
#ifdef CONFIG_SLUB_DEBUG
1930
	atomic_long_set(&n->nr_slabs, 0);
1931
	INIT_LIST_HEAD(&n->full);
1932
#endif
C
Christoph Lameter 已提交
1933 1934
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2060 2061 2062 2063 2064 2065 2066
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2067 2068
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2069
 */
2070 2071
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2072 2073 2074
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2075
	unsigned long flags;
C
Christoph Lameter 已提交
2076 2077 2078

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2079
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2080 2081

	BUG_ON(!page);
2082 2083 2084 2085 2086 2087 2088
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2089 2090 2091 2092 2093
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2094
#ifdef CONFIG_SLUB_DEBUG
2095 2096
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2097
#endif
C
Christoph Lameter 已提交
2098
	init_kmem_cache_node(n);
2099
	inc_slabs_node(kmalloc_caches, node);
C
Christoph Lameter 已提交
2100

R
root 已提交
2101 2102 2103 2104 2105 2106
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2107
	add_partial(n, page, 0);
R
root 已提交
2108
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2109 2110 2111 2112 2113 2114 2115
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2116
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2134
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

2181 2182 2183 2184 2185 2186 2187 2188
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2189 2190 2191 2192 2193 2194
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2195
			!s->ctor)
C
Christoph Lameter 已提交
2196 2197 2198 2199 2200 2201
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2202
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2203
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2204
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2205 2206 2207
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2208
#endif
C
Christoph Lameter 已提交
2209 2210

	/*
C
Christoph Lameter 已提交
2211 2212
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2213 2214 2215 2216
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2217
		s->ctor)) {
C
Christoph Lameter 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2230
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2231 2232 2233 2234 2235 2236 2237
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2238
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2239 2240 2241 2242 2243 2244 2245 2246
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2247
#endif
C
Christoph Lameter 已提交
2248

C
Christoph Lameter 已提交
2249 2250
	/*
	 * Determine the alignment based on various parameters that the
2251 2252
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	if ((flags & __KMALLOC_CACHE) &&
			PAGE_SIZE / size < slub_min_objects) {
		/*
		 * Kmalloc cache that would not have enough objects in
		 * an order 0 page. Kmalloc slabs can fallback to
		 * page allocator order 0 allocs so take a reasonably large
		 * order that will allows us a good number of objects.
		 */
		s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
		s->flags |= __PAGE_ALLOC_FALLBACK;
		s->allocflags |= __GFP_NOWARN;
	} else
		s->order = calculate_order(size);

C
Christoph Lameter 已提交
2278 2279 2280
	if (s->order < 0)
		return 0;

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	s->allocflags = 0;
	if (s->order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2291 2292 2293 2294 2295
	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2296
	return !!s->objects;
C
Christoph Lameter 已提交
2297 2298 2299 2300 2301 2302

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2303
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2304 2305 2306 2307 2308 2309
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2310
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2311 2312 2313 2314 2315 2316

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2317
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2318
#endif
2319 2320
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2321

2322
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2323
		return 1;
2324
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2339
	struct page *page;
C
Christoph Lameter 已提交
2340 2341 2342 2343 2344 2345 2346

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2347
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2348 2349 2350 2351 2352
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
C
Christoph Lameter 已提交
2353
	 * purpose of kmem_ptr_valid() is to check if the object belongs
C
Christoph Lameter 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2376 2377
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2398
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2399
 */
2400
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2401 2402 2403 2404 2405 2406
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2407
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2408
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2409 2410
		struct kmem_cache_node *n = get_node(s, node);

2411
		n->nr_partial -= free_list(s, n, &n->partial);
2412
		if (slabs_node(s, node))
C
Christoph Lameter 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2429
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2430 2431 2432
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2433 2434
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2435 2436 2437 2438 2439 2440 2441
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2442
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2443 2444 2445 2446
EXPORT_SYMBOL(kmalloc_caches);

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2447
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2448 2449 2450 2451 2452 2453 2454 2455

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2456
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2457 2458 2459 2460 2461 2462 2463 2464

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2465
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2490
			flags | __KMALLOC_CACHE, NULL))
C
Christoph Lameter 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2503
#ifdef CONFIG_ZONE_DMA
2504
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2533 2534 2535 2536 2537 2538 2539 2540 2541
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2542

2543
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2544 2545
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2546 2547 2548 2549 2550 2551 2552 2553
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2554
	}
2555 2556 2557 2558 2559 2560 2561

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2562
	up_write(&slub_lock);
2563
out:
2564
	return kmalloc_caches_dma[index];
2565 2566 2567
}
#endif

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2601 2602
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2603
	int index;
C
Christoph Lameter 已提交
2604

2605 2606 2607
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2608

2609
		index = size_index[(size - 1) / 8];
2610
	} else
2611
		index = fls(size - 1);
C
Christoph Lameter 已提交
2612 2613

#ifdef CONFIG_ZONE_DMA
2614
	if (unlikely((flags & SLUB_DMA)))
2615
		return dma_kmalloc_cache(index, flags);
2616

C
Christoph Lameter 已提交
2617 2618 2619 2620 2621 2622
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2623
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2624

2625
	if (unlikely(size > PAGE_SIZE))
2626
		return kmalloc_large(size, flags);
2627 2628 2629 2630

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2631 2632
		return s;

2633
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2634 2635 2636
}
EXPORT_SYMBOL(__kmalloc);

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
						get_order(size));

	if (page)
		return page_address(page);
	else
		return NULL;
}

C
Christoph Lameter 已提交
2648 2649 2650
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2651
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2652

2653
	if (unlikely(size > PAGE_SIZE))
2654
		return kmalloc_large_node(size, flags, node);
2655 2656 2657 2658

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2659 2660
		return s;

2661
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2662 2663 2664 2665 2666 2667
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2668
	struct page *page;
C
Christoph Lameter 已提交
2669 2670
	struct kmem_cache *s;

2671
	if (unlikely(object == ZERO_SIZE_PTR))
2672 2673
		return 0;

2674 2675 2676 2677 2678
	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2679 2680
	s = page->slab;

2681
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2682 2683 2684 2685 2686 2687 2688
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

2689
#endif
C
Christoph Lameter 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2707
	void *object = (void *)x;
C
Christoph Lameter 已提交
2708

2709
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2710 2711
		return;

2712
	page = virt_to_head_page(x);
2713 2714 2715 2716
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2717
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2718 2719 2720
}
EXPORT_SYMBOL(kfree);

2721
/*
C
Christoph Lameter 已提交
2722 2723 2724 2725 2726 2727 2728 2729
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2746
	for_each_node_state(node, N_NORMAL_MEMORY) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2758
		 * Build lists indexed by the items in use in each slab.
2759
		 *
C
Christoph Lameter 已提交
2760 2761
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2775 2776
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2777 2778 2779 2780
			}
		}

		/*
C
Christoph Lameter 已提交
2781 2782
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
2834
			BUG_ON(slabs_node(s, offline_node));
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2910 2911 2912 2913 2914 2915 2916
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2917
	int caches = 0;
C
Christoph Lameter 已提交
2918

2919 2920
	init_alloc_cpu();

C
Christoph Lameter 已提交
2921 2922 2923
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2924
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2925 2926 2927 2928
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2929
	kmalloc_caches[0].refcount = -1;
2930
	caches++;
2931 2932

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2933 2934 2935 2936 2937 2938
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2939 2940
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2941
				"kmalloc-96", 96, GFP_KERNEL);
2942 2943 2944 2945
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2946
				"kmalloc-192", 192, GFP_KERNEL);
2947 2948
		caches++;
	}
C
Christoph Lameter 已提交
2949

2950
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2951 2952
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2953 2954
		caches++;
	}
C
Christoph Lameter 已提交
2955

2956 2957 2958 2959

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
2960
	 * MIPS it seems. The standard arches will not generate any code here.
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2971
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2972 2973
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2974 2975 2976
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2977
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2978 2979 2980 2981 2982
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2983 2984 2985 2986
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2987 2988
#endif

I
Ingo Molnar 已提交
2989 2990
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2991 2992
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3005
	if ((s->flags & __PAGE_ALLOC_FALLBACK))
3006 3007
		return 1;

3008
	if (s->ctor)
C
Christoph Lameter 已提交
3009 3010
		return 1;

3011 3012 3013 3014 3015 3016
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3017 3018 3019 3020
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3021
		size_t align, unsigned long flags, const char *name,
3022
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3023
{
3024
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3025 3026 3027 3028

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3029
	if (ctor)
C
Christoph Lameter 已提交
3030 3031 3032 3033 3034
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3035
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3036

3037
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3038 3039 3040 3041 3042 3043
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3044
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3045 3046 3047 3048 3049
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3050
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3063
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3064 3065 3066 3067
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3068
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3069
	if (s) {
3070 3071
		int cpu;

C
Christoph Lameter 已提交
3072 3073 3074 3075 3076 3077
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3078 3079 3080 3081 3082 3083 3084

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3085

C
Christoph Lameter 已提交
3086
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3087
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3088

C
Christoph Lameter 已提交
3089 3090
		if (sysfs_slab_alias(s, name))
			goto err;
3091 3092
		return s;
	}
C
Christoph Lameter 已提交
3093

3094 3095 3096
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3097
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3098
			list_add(&s->list, &slab_caches);
3099 3100 3101 3102 3103 3104
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3119 3120
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3121 3122 3123 3124 3125
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3126 3127
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3128 3129

	switch (action) {
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3140
	case CPU_UP_CANCELED:
3141
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3142
	case CPU_DEAD:
3143
	case CPU_DEAD_FROZEN:
3144 3145
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3146 3147
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3148 3149 3150
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3151 3152
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3153 3154
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3155 3156 3157 3158 3159 3160 3161
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3162
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3163
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3164
};
C
Christoph Lameter 已提交
3165 3166 3167 3168 3169

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3170 3171
	struct kmem_cache *s;

3172
	if (unlikely(size > PAGE_SIZE))
3173 3174
		return kmalloc_large(size, gfpflags);

3175
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3176

3177
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3178
		return s;
C
Christoph Lameter 已提交
3179

3180
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3181 3182 3183 3184 3185
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3186 3187
	struct kmem_cache *s;

3188
	if (unlikely(size > PAGE_SIZE))
3189
		return kmalloc_large_node(size, gfpflags, node);
3190

3191
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3192

3193
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3194
		return s;
C
Christoph Lameter 已提交
3195

3196
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3197 3198
}

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
#endif

C
Christoph Lameter 已提交
3214
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3215 3216
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3217 3218
{
	void *p;
3219
	void *addr = page_address(page);
3220 3221 3222 3223 3224 3225 3226 3227

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3228 3229
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3230 3231 3232 3233
		if (!check_object(s, page, p, 0))
			return 0;
	}

3234 3235
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3236 3237 3238 3239 3240
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3241 3242
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3243 3244
{
	if (slab_trylock(page)) {
3245
		validate_slab(s, page, map);
3246 3247 3248 3249 3250 3251
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3252 3253
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3254 3255
				"on slab 0x%p\n", s->name, page);
	} else {
3256 3257
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3258 3259 3260 3261
				"slab 0x%p\n", s->name, page);
	}
}

3262 3263
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3264 3265 3266 3267 3268 3269 3270 3271
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3272
		validate_slab_slab(s, page, map);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3283
		validate_slab_slab(s, page, map);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3296
static long validate_slab_cache(struct kmem_cache *s)
3297 3298 3299
{
	int node;
	unsigned long count = 0;
3300 3301 3302 3303 3304
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3305 3306

	flush_all(s);
C
Christoph Lameter 已提交
3307
	for_each_node_state(node, N_NORMAL_MEMORY) {
3308 3309
		struct kmem_cache_node *n = get_node(s, node);

3310
		count += validate_slab_node(s, n, map);
3311
	}
3312
	kfree(map);
3313 3314 3315
	return count;
}

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3336 3337 3338
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3339 3340 3341 3342 3343 3344 3345

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3346 3347
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3360 3361
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3374
/*
C
Christoph Lameter 已提交
3375
 * Generate lists of code addresses where slabcache objects are allocated
3376 3377 3378 3379 3380 3381
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3382 3383 3384 3385 3386 3387 3388
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3404
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3405 3406 3407 3408 3409 3410
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3411
	l = (void *)__get_free_pages(flags, order);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3425
				const struct track *track)
3426 3427 3428 3429
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3430
	unsigned long age = jiffies - track->when;
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3465 3466 3467
			return 1;
		}

3468
		if (track->addr < caddr)
3469 3470 3471 3472 3473 3474
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3475
	 * Not found. Insert new tracking element.
3476
	 */
3477
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3478 3479 3480 3481 3482 3483 3484 3485
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3496 3497 3498 3499 3500 3501
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3502
	void *addr = page_address(page);
3503
	DECLARE_BITMAP(map, s->objects);
3504 3505 3506
	void *p;

	bitmap_zero(map, s->objects);
3507 3508
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3509

3510
	for_each_object(p, s, addr)
3511 3512
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3513 3514 3515 3516 3517
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3518
	int len = 0;
3519
	unsigned long i;
3520
	struct loc_track t = { 0, 0, NULL };
3521 3522
	int node;

3523
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3524
			GFP_TEMPORARY))
3525
		return sprintf(buf, "Out of memory\n");
3526 3527 3528 3529

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3530
	for_each_node_state(node, N_NORMAL_MEMORY) {
3531 3532 3533 3534
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3535
		if (!atomic_long_read(&n->nr_slabs))
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3547
		struct location *l = &t.loc[i];
3548

3549
		if (len > PAGE_SIZE - 100)
3550
			break;
3551
		len += sprintf(buf + len, "%7ld ", l->count);
3552 3553

		if (l->addr)
3554
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3555
		else
3556
			len += sprintf(buf + len, "<not-available>");
3557 3558 3559 3560

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3561
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3562 3563 3564 3565
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3566
			len += sprintf(buf + len, " age=%ld",
3567 3568 3569
				l->min_time);

		if (l->min_pid != l->max_pid)
3570
			len += sprintf(buf + len, " pid=%ld-%ld",
3571 3572
				l->min_pid, l->max_pid);
		else
3573
			len += sprintf(buf + len, " pid=%ld",
3574 3575
				l->min_pid);

3576
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3577 3578 3579
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3580 3581 3582
					l->cpus);
		}

3583
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3584 3585 3586
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3587 3588 3589
					l->nodes);
		}

3590
		len += sprintf(buf + len, "\n");
3591 3592 3593 3594
	}

	free_loc_track(&t);
	if (!t.count)
3595 3596
		len += sprintf(buf, "No data\n");
	return len;
3597 3598
}

C
Christoph Lameter 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

3611 3612
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3622 3623
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
3624 3625 3626
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3627 3628
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3629

3630 3631 3632 3633
		if (!c)
			continue;

		page = c->page;
3634 3635 3636
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3637 3638 3639 3640 3641 3642 3643
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3644
				nodes[node] += x;
C
Christoph Lameter 已提交
3645
			}
3646
			per_cpu[node]++;
C
Christoph Lameter 已提交
3647 3648 3649
		}
	}

C
Christoph Lameter 已提交
3650
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3663
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3678
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3692 3693 3694 3695
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3696
			return 1;
3697
	}
C
Christoph Lameter 已提交
3698

3699
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3700 3701
		struct kmem_cache_node *n = get_node(s, node);

3702 3703 3704
		if (!n)
			continue;

3705
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3776
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
C
Christoph Lameter 已提交
3777 3778 3779 3780 3781
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3782
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3783 3784 3785 3786 3787
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3788
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3789 3790 3791 3792 3793
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3794
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
C
Christoph Lameter 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3845
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3920 3921 3922 3923 3924 3925 3926 3927
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3928 3929 3930 3931 3932 3933 3934 3935
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3936 3937 3938
}
SLAB_ATTR(validate);

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3974
#ifdef CONFIG_NUMA
3975
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3976
{
3977
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3978 3979
}

3980
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3981 3982 3983 3984 3985
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3986
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3987 3988
	return length;
}
3989
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3990 3991
#endif

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4012
#ifdef CONFIG_SMP
4013 4014
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4015
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4016
	}
4017
#endif
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
4049
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4069
	&validate_attr.attr,
4070
	&shrink_attr.attr,
4071 4072
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4073 4074 4075 4076
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4077
	&remote_node_defrag_ratio_attr.attr,
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4143 4144 4145 4146 4147 4148 4149
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4150 4151 4152 4153 4154 4155 4156
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4157
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4173
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4174 4175 4176 4177

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
4178 4179
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4226
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4236
	s->kobj.kset = slab_kset;
4237 4238 4239
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4240
		return err;
4241
	}
C
Christoph Lameter 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4259
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4272
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4282 4283
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4299
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4300 4301
	int err;

4302
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4303
	if (!slab_kset) {
C
Christoph Lameter 已提交
4304 4305 4306 4307
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4308 4309
	slab_state = SYSFS;

4310
	list_for_each_entry(s, &slab_caches, list) {
4311
		err = sysfs_slab_add(s);
4312 4313 4314
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4315
	}
C
Christoph Lameter 已提交
4316 4317 4318 4319 4320 4321

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4322 4323 4324
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4334 4335 4336 4337

/*
 * The /proc/slabinfo ABI
 */
4338 4339 4340 4341 4342 4343 4344 4345
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4419
#endif /* CONFIG_SLABINFO */