slub.c 126.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
213
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
214
#else
215 216 217
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
218
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
219 220
#endif

221
static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 223
{
#ifdef CONFIG_SLUB_STATS
224 225 226 227 228
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
229 230 231
#endif
}

C
Christoph Lameter 已提交
232 233 234 235
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
236
/* Verify that a pointer has an address that is valid within a slab page */
237 238 239 240 241
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

242
	if (!object)
243 244
		return 1;

245
	base = page_address(page);
246
	if (object < base || object >= base + page->objects * s->size ||
247 248 249 250 251 252 253
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

254 255 256 257 258
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

259 260 261 262 263
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

264 265 266 267 268 269 270 271 272 273 274 275
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

276 277 278 279 280 281
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
282 283
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 285 286 287 288 289 290 291
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

292 293 294 295 296 297 298 299
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300
		return s->object_size;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

316 317 318 319 320
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

321
static inline struct kmem_cache_order_objects oo_make(int order,
322
		unsigned long size, int reserved)
323 324
{
	struct kmem_cache_order_objects x = {
325
		(order << OO_SHIFT) + order_objects(order, size, reserved)
326 327 328 329 330 331 332
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
333
	return x.x >> OO_SHIFT;
334 335 336 337
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
338
	return x.x & OO_MASK;
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

369 370 371 372 373 374 375
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
376 377
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
378
	if (s->flags & __CMPXCHG_DOUBLE) {
379
		if (cmpxchg_double(&page->freelist, &page->counters,
380 381 382 383 384 385 386
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
387 388
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
389
			page->freelist = freelist_new;
390
			set_page_slub_counters(page, counters_new);
391 392 393 394 395 396 397 398 399 400
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
401
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
402 403 404 405 406
#endif

	return 0;
}

407 408 409 410 411
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
412 413
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
414
	if (s->flags & __CMPXCHG_DOUBLE) {
415
		if (cmpxchg_double(&page->freelist, &page->counters,
416 417 418 419 420 421
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
422 423 424
		unsigned long flags;

		local_irq_save(flags);
425
		slab_lock(page);
426 427
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
428
			page->freelist = freelist_new;
429
			set_page_slub_counters(page, counters_new);
430
			slab_unlock(page);
431
			local_irq_restore(flags);
432 433
			return 1;
		}
434
		slab_unlock(page);
435
		local_irq_restore(flags);
436 437 438 439 440 441
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
442
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
443 444 445 446 447
#endif

	return 0;
}

C
Christoph Lameter 已提交
448
#ifdef CONFIG_SLUB_DEBUG
449 450 451
/*
 * Determine a map of object in use on a page.
 *
452
 * Node listlock must be held to guarantee that the page does
453 454 455 456 457 458 459 460 461 462 463
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
464 465 466
/*
 * Debug settings:
 */
467 468 469
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
470
static int slub_debug;
471
#endif
C
Christoph Lameter 已提交
472 473

static char *slub_debug_slabs;
474
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
475

C
Christoph Lameter 已提交
476 477 478 479 480
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
481 482
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
499
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
500
{
A
Akinobu Mita 已提交
501
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
502 503

	if (addr) {
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
522 523
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
524
		p->pid = current->pid;
C
Christoph Lameter 已提交
525 526 527 528 529 530 531
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
532 533 534
	if (!(s->flags & SLAB_STORE_USER))
		return;

535 536
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
537 538 539 540 541 542 543
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

544 545
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
546 547 548 549 550
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
551
				pr_err("\t%pS\n", (void *)t->addrs[i]);
552 553 554 555
			else
				break;
	}
#endif
556 557 558 559 560 561 562 563 564 565 566 567 568
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
569
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
570
	       page, page->objects, page->inuse, page->freelist, page->flags);
571 572 573 574 575

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
576
	struct va_format vaf;
577 578 579
	va_list args;

	va_start(args, fmt);
580 581
	vaf.fmt = fmt;
	vaf.va = &args;
582
	pr_err("=============================================================================\n");
583
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
584
	pr_err("-----------------------------------------------------------------------------\n\n");
585

586
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
587
	va_end(args);
C
Christoph Lameter 已提交
588 589
}

590 591
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
592
	struct va_format vaf;
593 594 595
	va_list args;

	va_start(args, fmt);
596 597 598
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
599 600 601 602
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
603 604
{
	unsigned int off;	/* Offset of last byte */
605
	u8 *addr = page_address(page);
606 607 608 609 610

	print_tracking(s, p);

	print_page_info(page);

611 612
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
613 614

	if (p > addr + 16)
615
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
616

617
	print_section("Object ", p, min_t(unsigned long, s->object_size,
618
				PAGE_SIZE));
C
Christoph Lameter 已提交
619
	if (s->flags & SLAB_RED_ZONE)
620 621
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
622 623 624 625 626 627

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

628
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
629 630 631 632
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
633
		print_section("Padding ", p + off, s->size - off);
634 635

	dump_stack();
C
Christoph Lameter 已提交
636 637 638 639 640
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
641
	slab_bug(s, "%s", reason);
642
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
643 644
}

645 646
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
647 648 649 650
{
	va_list args;
	char buf[100];

651 652
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
653
	va_end(args);
654
	slab_bug(s, "%s", buf);
655
	print_page_info(page);
C
Christoph Lameter 已提交
656 657 658
	dump_stack();
}

659
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
660 661 662 663
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
664 665
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
666 667 668
	}

	if (s->flags & SLAB_RED_ZONE)
669
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
670 671
}

672 673 674 675 676 677 678 679 680
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
681
			u8 *start, unsigned int value, unsigned int bytes)
682 683 684 685
{
	u8 *fault;
	u8 *end;

686
	fault = memchr_inv(start, value, bytes);
687 688 689 690 691 692 693 694
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
695
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
696 697 698 699 700
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
701 702 703 704 705 706 707 708 709
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
710
 *
C
Christoph Lameter 已提交
711 712 713
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
714
 * object + s->object_size
C
Christoph Lameter 已提交
715
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
716
 * 	Padding is extended by another word if Redzoning is enabled and
717
 * 	object_size == inuse.
C
Christoph Lameter 已提交
718
 *
C
Christoph Lameter 已提交
719 720 721 722
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
723 724
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
725 726
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
727
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
728
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
729 730 731
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
732 733
 *
 * object + s->size
C
Christoph Lameter 已提交
734
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
735
 *
736
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
737
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

756 757
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
758 759
}

760
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
761 762
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
763 764 765 766 767
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
768 769 770 771

	if (!(s->flags & SLAB_POISON))
		return 1;

772
	start = page_address(page);
773
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
774 775
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
776 777 778
	if (!remainder)
		return 1;

779
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
780 781 782 783 784 785
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
786
	print_section("Padding ", end - remainder, remainder);
787

E
Eric Dumazet 已提交
788
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
789
	return 0;
C
Christoph Lameter 已提交
790 791 792
}

static int check_object(struct kmem_cache *s, struct page *page,
793
					void *object, u8 val)
C
Christoph Lameter 已提交
794 795
{
	u8 *p = object;
796
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
797 798

	if (s->flags & SLAB_RED_ZONE) {
799
		if (!check_bytes_and_report(s, page, object, "Redzone",
800
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
801 802
			return 0;
	} else {
803
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
804
			check_bytes_and_report(s, page, p, "Alignment padding",
805 806
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
807
		}
C
Christoph Lameter 已提交
808 809 810
	}

	if (s->flags & SLAB_POISON) {
811
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
812
			(!check_bytes_and_report(s, page, p, "Poison", p,
813
					POISON_FREE, s->object_size - 1) ||
814
			 !check_bytes_and_report(s, page, p, "Poison",
815
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
816 817 818 819 820 821 822
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

823
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
824 825 826 827 828 829 830 831 832 833
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
834
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
835
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
836
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
837
		 */
838
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
839 840 841 842 843 844 845
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
846 847
	int maxobj;

C
Christoph Lameter 已提交
848 849 850
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
851
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
852 853
		return 0;
	}
854

855
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
856 857 858 859 860 861
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
862
		slab_err(s, page, "inuse %u > max %u",
863
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
864 865 866 867 868 869 870 871
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
872 873
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
874 875 876 877
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
878
	void *fp;
C
Christoph Lameter 已提交
879
	void *object = NULL;
880
	unsigned long max_objects;
C
Christoph Lameter 已提交
881

882
	fp = page->freelist;
883
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
884 885 886 887 888 889
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
890
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
891
			} else {
892
				slab_err(s, page, "Freepointer corrupt");
893
				page->freelist = NULL;
894
				page->inuse = page->objects;
895
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
896 897 898 899 900 901 902 903 904
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

905
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
906 907
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
908 909 910 911 912 913 914

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
915
	if (page->inuse != page->objects - nr) {
916
		slab_err(s, page, "Wrong object count. Counter is %d but "
917 918
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
919
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
920 921 922 923
	}
	return search == NULL;
}

924 925
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
926 927
{
	if (s->flags & SLAB_TRACE) {
928
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
929 930 931 932 933 934
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
935 936
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
937 938 939 940 941

		dump_stack();
	}
}

942
/*
C
Christoph Lameter 已提交
943
 * Tracking of fully allocated slabs for debugging purposes.
944
 */
945 946
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
947
{
948 949 950
	if (!(s->flags & SLAB_STORE_USER))
		return;

951
	lockdep_assert_held(&n->list_lock);
952 953 954
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
955
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
956 957 958 959
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

960
	lockdep_assert_held(&n->list_lock);
961 962 963
	list_del(&page->lru);
}

964 965 966 967 968 969 970 971
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

972 973 974 975 976
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

977
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
978 979 980 981 982 983 984 985 986
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
987
	if (likely(n)) {
988
		atomic_long_inc(&n->nr_slabs);
989 990
		atomic_long_add(objects, &n->total_objects);
	}
991
}
992
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
993 994 995 996
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
997
	atomic_long_sub(objects, &n->total_objects);
998 999 1000
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1001 1002 1003 1004 1005 1006
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1007
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1008 1009 1010
	init_tracking(s, object);
}

1011 1012
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1013
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1014 1015 1016 1017 1018 1019
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1020
		goto bad;
C
Christoph Lameter 已提交
1021 1022
	}

1023
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1024 1025
		goto bad;

C
Christoph Lameter 已提交
1026 1027 1028 1029
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1030
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1031
	return 1;
C
Christoph Lameter 已提交
1032

C
Christoph Lameter 已提交
1033 1034 1035 1036 1037
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1038
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1039
		 */
1040
		slab_fix(s, "Marking all objects used");
1041
		page->inuse = page->objects;
1042
		page->freelist = NULL;
C
Christoph Lameter 已提交
1043 1044 1045 1046
	}
	return 0;
}

1047 1048 1049
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1050
{
1051
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1052

1053
	spin_lock_irqsave(&n->list_lock, *flags);
1054 1055
	slab_lock(page);

C
Christoph Lameter 已提交
1056 1057 1058 1059
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1060
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1061 1062 1063 1064
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1065
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1066 1067 1068
		goto fail;
	}

1069
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1070
		goto out;
C
Christoph Lameter 已提交
1071

1072
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1073
		if (!PageSlab(page)) {
1074 1075
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1076
		} else if (!page->slab_cache) {
1077 1078
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1079
			dump_stack();
P
Pekka Enberg 已提交
1080
		} else
1081 1082
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1083 1084
		goto fail;
	}
C
Christoph Lameter 已提交
1085 1086 1087 1088

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1089
	init_object(s, object, SLUB_RED_INACTIVE);
1090
out:
1091
	slab_unlock(page);
1092 1093 1094 1095 1096
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1097

C
Christoph Lameter 已提交
1098
fail:
1099 1100
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1101
	slab_fix(s, "Object at 0x%p not freed", object);
1102
	return NULL;
C
Christoph Lameter 已提交
1103 1104
}

C
Christoph Lameter 已提交
1105 1106
static int __init setup_slub_debug(char *str)
{
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1121 1122 1123 1124 1125 1126 1127 1128 1129
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1140
	for (; *str && *str != ','; str++) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1157 1158 1159
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1160
		default:
1161 1162
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1163
		}
C
Christoph Lameter 已提交
1164 1165
	}

1166
check_slabs:
C
Christoph Lameter 已提交
1167 1168
	if (*str == ',')
		slub_debug_slabs = str + 1;
1169
out:
C
Christoph Lameter 已提交
1170 1171 1172 1173 1174
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1175
static unsigned long kmem_cache_flags(unsigned long object_size,
1176
	unsigned long flags, const char *name,
1177
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1178 1179
{
	/*
1180
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1181
	 */
1182 1183
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1184
		flags |= slub_debug;
1185 1186

	return flags;
C
Christoph Lameter 已提交
1187 1188
}
#else
C
Christoph Lameter 已提交
1189 1190
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1191

C
Christoph Lameter 已提交
1192
static inline int alloc_debug_processing(struct kmem_cache *s,
1193
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1194

1195 1196 1197
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1198 1199 1200 1201

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1202
			void *object, u8 val) { return 1; }
1203 1204
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1205 1206
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1207
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1208
	unsigned long flags, const char *name,
1209
	void (*ctor)(void *))
1210 1211 1212
{
	return flags;
}
C
Christoph Lameter 已提交
1213
#define slub_debug 0
1214

1215 1216
#define disable_higher_order_debug 0

1217 1218
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1219 1220
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1221 1222 1223 1224
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1225

1226 1227 1228 1229 1230 1231
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1242
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1243 1244 1245 1246
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1247

1248 1249 1250 1251 1252
	return should_failslab(s->object_size, flags, s->flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1253
{
1254 1255 1256
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1257
}
1258

1259 1260 1261
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1281

C
Christoph Lameter 已提交
1282 1283 1284
/*
 * Slab allocation and freeing
 */
1285 1286
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1287
{
1288
	struct page *page;
1289 1290
	int order = oo_order(oo);

1291 1292
	flags |= __GFP_NOTRACK;

1293 1294 1295
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1296
	if (node == NUMA_NO_NODE)
1297
		page = alloc_pages(flags, order);
1298
	else
1299 1300 1301 1302 1303 1304
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1305 1306
}

C
Christoph Lameter 已提交
1307 1308
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1309
	struct page *page;
1310
	struct kmem_cache_order_objects oo = s->oo;
1311
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1312

1313 1314 1315 1316 1317
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1318
	flags |= s->allocflags;
1319

1320 1321 1322 1323 1324 1325
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1326
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1327 1328
	if (unlikely(!page)) {
		oo = s->min;
1329
		alloc_gfp = flags;
1330 1331 1332 1333
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1334
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1335

1336 1337
		if (page)
			stat(s, ORDER_FALLBACK);
1338
	}
V
Vegard Nossum 已提交
1339

1340
	if (kmemcheck_enabled && page
1341
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1342 1343
		int pages = 1 << oo_order(oo);

1344
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1345 1346 1347 1348 1349 1350 1351 1352 1353

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1354 1355
	}

1356 1357 1358 1359 1360
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1361
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1362 1363 1364
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1365
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1366 1367 1368 1369 1370 1371 1372

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1373
	setup_object_debug(s, page, object);
1374
	if (unlikely(s->ctor))
1375
		s->ctor(object);
C
Christoph Lameter 已提交
1376 1377 1378 1379 1380 1381 1382 1383
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1384
	int order;
C
Christoph Lameter 已提交
1385

C
Christoph Lameter 已提交
1386
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1387

C
Christoph Lameter 已提交
1388 1389
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1390 1391 1392
	if (!page)
		goto out;

G
Glauber Costa 已提交
1393
	order = compound_order(page);
1394
	inc_slabs_node(s, page_to_nid(page), page->objects);
1395
	page->slab_cache = s;
1396
	__SetPageSlab(page);
1397 1398
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1399 1400 1401 1402

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1403
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1404 1405

	last = start;
1406
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1407 1408 1409 1410 1411
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1412
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1413 1414

	page->freelist = start;
1415
	page->inuse = page->objects;
1416
	page->frozen = 1;
C
Christoph Lameter 已提交
1417 1418 1419 1420 1421 1422
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1423 1424
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1425

1426
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1427 1428 1429
		void *p;

		slab_pad_check(s, page);
1430 1431
		for_each_object(p, s, page_address(page),
						page->objects)
1432
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1433 1434
	}

1435
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1436

C
Christoph Lameter 已提交
1437 1438 1439
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1440
		-pages);
C
Christoph Lameter 已提交
1441

1442
	__ClearPageSlabPfmemalloc(page);
1443
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1444

1445
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1446 1447
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1448 1449
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1450 1451
}

1452 1453 1454
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1455 1456 1457 1458
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1459 1460 1461 1462 1463
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1464
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1465 1466 1467 1468 1469
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1484 1485 1486 1487 1488 1489 1490 1491

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1492
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1493 1494 1495 1496
	free_slab(s, page);
}

/*
1497
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1498
 */
1499 1500
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1501
{
C
Christoph Lameter 已提交
1502
	n->nr_partial++;
1503
	if (tail == DEACTIVATE_TO_TAIL)
1504 1505 1506
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1507 1508
}

1509 1510
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1511
{
P
Peter Zijlstra 已提交
1512
	lockdep_assert_held(&n->list_lock);
1513 1514
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1515

1516 1517 1518
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1519 1520 1521 1522
	list_del(&page->lru);
	n->nr_partial--;
}

1523 1524 1525 1526 1527 1528 1529
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1530
/*
1531 1532
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1533
 *
1534
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1535
 */
1536
static inline void *acquire_slab(struct kmem_cache *s,
1537
		struct kmem_cache_node *n, struct page *page,
1538
		int mode, int *objects)
C
Christoph Lameter 已提交
1539
{
1540 1541 1542 1543
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1544 1545
	lockdep_assert_held(&n->list_lock);

1546 1547 1548 1549 1550
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1551 1552 1553
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1554
	*objects = new.objects - new.inuse;
1555
	if (mode) {
1556
		new.inuse = page->objects;
1557 1558 1559 1560
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1561

1562
	VM_BUG_ON(new.frozen);
1563
	new.frozen = 1;
1564

1565
	if (!__cmpxchg_double_slab(s, page,
1566
			freelist, counters,
1567
			new.freelist, new.counters,
1568 1569
			"acquire_slab"))
		return NULL;
1570 1571

	remove_partial(n, page);
1572
	WARN_ON(!freelist);
1573
	return freelist;
C
Christoph Lameter 已提交
1574 1575
}

1576
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1577
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1578

C
Christoph Lameter 已提交
1579
/*
C
Christoph Lameter 已提交
1580
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1581
 */
1582 1583
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1584
{
1585 1586
	struct page *page, *page2;
	void *object = NULL;
1587 1588
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1589 1590 1591 1592

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1593 1594
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1595 1596 1597 1598 1599
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1600
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1601
		void *t;
1602

1603 1604 1605
		if (!pfmemalloc_match(page, flags))
			continue;

1606
		t = acquire_slab(s, n, page, object == NULL, &objects);
1607 1608 1609
		if (!t)
			break;

1610
		available += objects;
1611
		if (!object) {
1612 1613 1614 1615
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1616
			put_cpu_partial(s, page, 0);
1617
			stat(s, CPU_PARTIAL_NODE);
1618
		}
1619 1620
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1621 1622
			break;

1623
	}
C
Christoph Lameter 已提交
1624
	spin_unlock(&n->list_lock);
1625
	return object;
C
Christoph Lameter 已提交
1626 1627 1628
}

/*
C
Christoph Lameter 已提交
1629
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1630
 */
1631
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1632
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1633 1634 1635
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1636
	struct zoneref *z;
1637 1638
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1639
	void *object;
1640
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1641 1642

	/*
C
Christoph Lameter 已提交
1643 1644 1645 1646
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1647
	 *
C
Christoph Lameter 已提交
1648 1649 1650 1651
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1652
	 *
C
Christoph Lameter 已提交
1653
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1654 1655 1656 1657 1658
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1659
	 */
1660 1661
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1662 1663
		return NULL;

1664
	do {
1665
		cpuset_mems_cookie = read_mems_allowed_begin();
1666
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1667 1668 1669 1670 1671 1672 1673
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1674
				object = get_partial_node(s, n, c, flags);
1675 1676
				if (object) {
					/*
1677 1678 1679 1680 1681
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1682 1683 1684
					 */
					return object;
				}
1685
			}
C
Christoph Lameter 已提交
1686
		}
1687
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1688 1689 1690 1691 1692 1693 1694
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1695
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1696
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1697
{
1698
	void *object;
1699
	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
C
Christoph Lameter 已提交
1700

1701
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1702 1703
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1704

1705
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1706 1707
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1749
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1750 1751 1752

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1753
		pr_warn("due to cpu change %d -> %d\n",
1754 1755 1756 1757
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1758
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1759 1760
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1761
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1762 1763
			actual_tid, tid, next_tid(tid));
#endif
1764
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1765 1766
}

1767
static void init_kmem_cache_cpus(struct kmem_cache *s)
1768 1769 1770 1771 1772 1773
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1774

C
Christoph Lameter 已提交
1775 1776 1777
/*
 * Remove the cpu slab
 */
1778 1779
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1780
{
1781 1782 1783 1784 1785
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1786
	int tail = DEACTIVATE_TO_HEAD;
1787 1788 1789 1790
	struct page new;
	struct page old;

	if (page->freelist) {
1791
		stat(s, DEACTIVATE_REMOTE_FREES);
1792
		tail = DEACTIVATE_TO_TAIL;
1793 1794
	}

1795
	/*
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1813
			VM_BUG_ON(!new.frozen);
1814

1815
		} while (!__cmpxchg_double_slab(s, page,
1816 1817 1818 1819 1820 1821 1822
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1823
	/*
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1836
	 */
1837
redo:
1838

1839 1840
	old.freelist = page->freelist;
	old.counters = page->counters;
1841
	VM_BUG_ON(!old.frozen);
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1854
	if (!new.inuse && n->nr_partial >= s->min_partial)
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1887

P
Peter Zijlstra 已提交
1888
			remove_full(s, n, page);
1889 1890 1891 1892

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1893
			stat(s, tail);
1894 1895

		} else if (m == M_FULL) {
1896

1897 1898 1899 1900 1901 1902 1903
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1904
	if (!__cmpxchg_double_slab(s, page,
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1917
	}
C
Christoph Lameter 已提交
1918 1919
}

1920 1921 1922
/*
 * Unfreeze all the cpu partial slabs.
 *
1923 1924 1925
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1926
 */
1927 1928
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1929
{
1930
#ifdef CONFIG_SLUB_CPU_PARTIAL
1931
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1932
	struct page *page, *discard_page = NULL;
1933 1934 1935 1936 1937 1938

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1939 1940 1941 1942 1943 1944 1945 1946 1947

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1948 1949 1950 1951 1952

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1953
			VM_BUG_ON(!old.frozen);
1954 1955 1956 1957 1958 1959

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1960
		} while (!__cmpxchg_double_slab(s, page,
1961 1962 1963 1964
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1965
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1966 1967
			page->next = discard_page;
			discard_page = page;
1968 1969 1970
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1971 1972 1973 1974 1975
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1976 1977 1978 1979 1980 1981 1982 1983 1984

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1985
#endif
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1997
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1998
{
1999
#ifdef CONFIG_SLUB_CPU_PARTIAL
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2019
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2020
				local_irq_restore(flags);
2021
				oldpage = NULL;
2022 2023
				pobjects = 0;
				pages = 0;
2024
				stat(s, CPU_PARTIAL_DRAIN);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2035 2036
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2037
#endif
2038 2039
}

2040
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2041
{
2042
	stat(s, CPUSLAB_FLUSH);
2043 2044 2045 2046 2047
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2048 2049 2050 2051
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2052
 *
C
Christoph Lameter 已提交
2053 2054
 * Called from IPI handler with interrupts disabled.
 */
2055
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2056
{
2057
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2058

2059 2060 2061 2062
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2063
		unfreeze_partials(s, c);
2064
	}
C
Christoph Lameter 已提交
2065 2066 2067 2068 2069 2070
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2071
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2072 2073
}

2074 2075 2076 2077 2078
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2079
	return c->page || c->partial;
2080 2081
}

C
Christoph Lameter 已提交
2082 2083
static void flush_all(struct kmem_cache *s)
{
2084
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2085 2086
}

2087 2088 2089 2090
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2091
static inline int node_match(struct page *page, int node)
2092 2093
{
#ifdef CONFIG_NUMA
2094
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2095 2096 2097 2098 2099
		return 0;
#endif
	return 1;
}

2100
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2101 2102 2103 2104 2105
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2106 2107 2108 2109 2110 2111 2112
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2126
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2127

P
Pekka Enberg 已提交
2128 2129 2130
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2131 2132 2133
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2134
	int node;
C
Christoph Lameter 已提交
2135
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2136

2137 2138 2139
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2140
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2141
		nid, gfpflags);
2142 2143 2144
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2145

2146
	if (oo_order(s->min) > get_order(s->object_size))
2147 2148
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2149

C
Christoph Lameter 已提交
2150
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2151 2152 2153 2154
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2155 2156 2157
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2158

2159
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2160 2161
			node, nr_slabs, nr_objs, nr_free);
	}
2162
#endif
P
Pekka Enberg 已提交
2163 2164
}

2165 2166 2167
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2168
	void *freelist;
2169 2170
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2171

2172
	freelist = get_partial(s, flags, node, c);
2173

2174 2175 2176 2177
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2178
	if (page) {
2179
		c = raw_cpu_ptr(s->cpu_slab);
2180 2181 2182 2183 2184 2185 2186
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2187
		freelist = page->freelist;
2188 2189 2190 2191 2192 2193
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2194
		freelist = NULL;
2195

2196
	return freelist;
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2207
/*
2208 2209
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2210 2211 2212 2213
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2214 2215
 *
 * This function must be called with interrupt disabled.
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2226

2227
		new.counters = counters;
2228
		VM_BUG_ON(!new.frozen);
2229 2230 2231 2232

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2233
	} while (!__cmpxchg_double_slab(s, page,
2234 2235 2236 2237 2238 2239 2240
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2241
/*
2242 2243 2244 2245 2246 2247
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2248
 *
2249 2250 2251
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2252
 *
2253
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2254 2255
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2256
 */
2257 2258
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2259
{
2260
	void *freelist;
2261
	struct page *page;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2273

2274 2275
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2276
		goto new_slab;
2277
redo:
2278

2279
	if (unlikely(!node_match(page, node))) {
2280
		stat(s, ALLOC_NODE_MISMATCH);
2281
		deactivate_slab(s, page, c->freelist);
2282 2283
		c->page = NULL;
		c->freelist = NULL;
2284 2285
		goto new_slab;
	}
C
Christoph Lameter 已提交
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2299
	/* must check again c->freelist in case of cpu migration or IRQ */
2300 2301
	freelist = c->freelist;
	if (freelist)
2302
		goto load_freelist;
2303

2304
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2305

2306
	if (!freelist) {
2307 2308
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2309
		goto new_slab;
2310
	}
C
Christoph Lameter 已提交
2311

2312
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2313

2314
load_freelist:
2315 2316 2317 2318 2319
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2320
	VM_BUG_ON(!c->page->frozen);
2321
	c->freelist = get_freepointer(s, freelist);
2322 2323
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2324
	return freelist;
C
Christoph Lameter 已提交
2325 2326

new_slab:
2327

2328
	if (c->partial) {
2329 2330
		page = c->page = c->partial;
		c->partial = page->next;
2331 2332 2333
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2334 2335
	}

2336
	freelist = new_slab_objects(s, gfpflags, node, &c);
2337

2338
	if (unlikely(!freelist)) {
2339
		slab_out_of_memory(s, gfpflags, node);
2340 2341
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2342
	}
2343

2344
	page = c->page;
2345
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2346
		goto load_freelist;
2347

2348
	/* Only entered in the debug case */
2349 2350
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2351
		goto new_slab;	/* Slab failed checks. Next slab needed */
2352

2353
	deactivate_slab(s, page, get_freepointer(s, freelist));
2354 2355
	c->page = NULL;
	c->freelist = NULL;
2356
	local_irq_restore(flags);
2357
	return freelist;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2370
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2371
		gfp_t gfpflags, int node, unsigned long addr)
2372 2373
{
	void **object;
2374
	struct kmem_cache_cpu *c;
2375
	struct page *page;
2376
	unsigned long tid;
2377

2378
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2379
		return NULL;
2380

2381
	s = memcg_kmem_get_cache(s, gfpflags);
2382 2383 2384 2385 2386 2387
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2388 2389 2390 2391 2392
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2393
	 */
2394
	preempt_disable();
2395
	c = this_cpu_ptr(s->cpu_slab);
2396 2397 2398 2399 2400 2401 2402 2403

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2404
	preempt_enable();
2405

2406
	object = c->freelist;
2407
	page = c->page;
D
Dave Hansen 已提交
2408
	if (unlikely(!object || !node_match(page, node))) {
2409
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2410 2411
		stat(s, ALLOC_SLOWPATH);
	} else {
2412 2413
		void *next_object = get_freepointer_safe(s, object);

2414
		/*
L
Lucas De Marchi 已提交
2415
		 * The cmpxchg will only match if there was no additional
2416 2417
		 * operation and if we are on the right processor.
		 *
2418 2419
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2420 2421 2422 2423
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2424 2425 2426
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2427
		 */
2428
		if (unlikely(!this_cpu_cmpxchg_double(
2429 2430
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2431
				next_object, next_tid(tid)))) {
2432 2433 2434 2435

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2436
		prefetch_freepointer(s, next_object);
2437
		stat(s, ALLOC_FASTPATH);
2438
	}
2439

2440
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2441
		memset(object, 0, s->object_size);
2442

2443
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2444

2445
	return object;
C
Christoph Lameter 已提交
2446 2447
}

2448 2449 2450 2451 2452 2453
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2454 2455
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2456
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2457

2458 2459
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2460 2461

	return ret;
C
Christoph Lameter 已提交
2462 2463 2464
}
EXPORT_SYMBOL(kmem_cache_alloc);

2465
#ifdef CONFIG_TRACING
2466 2467
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2468
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2469 2470 2471 2472
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2473 2474
#endif

C
Christoph Lameter 已提交
2475 2476 2477
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2478
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2479

2480
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2481
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2482 2483

	return ret;
C
Christoph Lameter 已提交
2484 2485 2486
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2487
#ifdef CONFIG_TRACING
2488
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2489
				    gfp_t gfpflags,
2490
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2491
{
2492
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2493 2494 2495 2496

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2497
}
2498
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2499
#endif
2500
#endif
E
Eduard - Gabriel Munteanu 已提交
2501

C
Christoph Lameter 已提交
2502
/*
2503 2504
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2505
 *
2506 2507 2508
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2509
 */
2510
static void __slab_free(struct kmem_cache *s, struct page *page,
2511
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2512 2513 2514
{
	void *prior;
	void **object = (void *)x;
2515 2516 2517 2518
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2519
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2520

2521
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2522

2523 2524
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2525
		return;
C
Christoph Lameter 已提交
2526

2527
	do {
2528 2529 2530 2531
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2532 2533 2534 2535 2536 2537
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2538
		if ((!new.inuse || !prior) && !was_frozen) {
2539

P
Peter Zijlstra 已提交
2540
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2541 2542

				/*
2543 2544 2545 2546
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2547 2548 2549
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2550
			} else { /* Needs to be taken off a list */
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2564
		}
C
Christoph Lameter 已提交
2565

2566 2567 2568 2569
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2570

2571
	if (likely(!n)) {
2572 2573 2574 2575 2576

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2577
		if (new.frozen && !was_frozen) {
2578
			put_cpu_partial(s, page, 1);
2579 2580
			stat(s, CPU_PARTIAL_FREE);
		}
2581
		/*
2582 2583 2584 2585 2586
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2587
                return;
2588
        }
C
Christoph Lameter 已提交
2589

2590
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2591 2592
		goto slab_empty;

C
Christoph Lameter 已提交
2593
	/*
2594 2595
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2596
	 */
2597 2598
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2599
			remove_full(s, n, page);
2600 2601
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2602
	}
2603
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2604 2605 2606
	return;

slab_empty:
2607
	if (prior) {
C
Christoph Lameter 已提交
2608
		/*
2609
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2610
		 */
2611
		remove_partial(n, page);
2612
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2613
	} else {
2614
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2615 2616
		remove_full(s, n, page);
	}
2617

2618
	spin_unlock_irqrestore(&n->list_lock, flags);
2619
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2620 2621 2622
	discard_slab(s, page);
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2634
static __always_inline void slab_free(struct kmem_cache *s,
2635
			struct page *page, void *x, unsigned long addr)
2636 2637
{
	void **object = (void *)x;
2638
	struct kmem_cache_cpu *c;
2639
	unsigned long tid;
2640

2641 2642
	slab_free_hook(s, x);

2643 2644 2645 2646 2647 2648 2649
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2650
	preempt_disable();
2651
	c = this_cpu_ptr(s->cpu_slab);
2652

2653
	tid = c->tid;
2654
	preempt_enable();
2655

2656
	if (likely(page == c->page)) {
2657
		set_freepointer(s, object, c->freelist);
2658

2659
		if (unlikely(!this_cpu_cmpxchg_double(
2660 2661 2662 2663 2664 2665 2666
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2667
		stat(s, FREE_FASTPATH);
2668
	} else
2669
		__slab_free(s, page, x, addr);
2670 2671 2672

}

C
Christoph Lameter 已提交
2673 2674
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2675 2676
	s = cache_from_obj(s, x);
	if (!s)
2677
		return;
2678
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2679
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2680 2681 2682 2683
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2684 2685 2686 2687
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2688 2689 2690 2691
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2692
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2703
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2704
static int slub_min_objects;
C
Christoph Lameter 已提交
2705 2706 2707

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2708
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2709 2710 2711 2712 2713 2714
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2715 2716 2717 2718
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2719
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2720 2721 2722 2723 2724 2725
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2726
 *
C
Christoph Lameter 已提交
2727 2728 2729 2730
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2731
 *
C
Christoph Lameter 已提交
2732 2733 2734 2735
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2736
 */
2737
static inline int slab_order(int size, int min_objects,
2738
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2739 2740 2741
{
	int order;
	int rem;
2742
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2743

2744
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2745
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2746

2747
	for (order = max(min_order,
2748 2749
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2750

2751
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2752

2753
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2754 2755
			continue;

2756
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2757

2758
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2759 2760 2761
			break;

	}
C
Christoph Lameter 已提交
2762

C
Christoph Lameter 已提交
2763 2764 2765
	return order;
}

2766
static inline int calculate_order(int size, int reserved)
2767 2768 2769 2770
{
	int order;
	int min_objects;
	int fraction;
2771
	int max_objects;
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2782 2783
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2784
	max_objects = order_objects(slub_max_order, size, reserved);
2785 2786
	min_objects = min(min_objects, max_objects);

2787
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2788
		fraction = 16;
2789 2790
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2791
					slub_max_order, fraction, reserved);
2792 2793 2794 2795
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2796
		min_objects--;
2797 2798 2799 2800 2801 2802
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2803
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2804 2805 2806 2807 2808 2809
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2810
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2811
	if (order < MAX_ORDER)
2812 2813 2814 2815
		return order;
	return -ENOSYS;
}

2816
static void
2817
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2818 2819 2820 2821
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2822
#ifdef CONFIG_SLUB_DEBUG
2823
	atomic_long_set(&n->nr_slabs, 0);
2824
	atomic_long_set(&n->total_objects, 0);
2825
	INIT_LIST_HEAD(&n->full);
2826
#endif
C
Christoph Lameter 已提交
2827 2828
}

2829
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2830
{
2831
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2832
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2833

2834
	/*
2835 2836
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2837
	 */
2838 2839
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2840 2841 2842 2843 2844

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2845

2846
	return 1;
2847 2848
}

2849 2850
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2851 2852 2853 2854 2855
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2856 2857
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2858
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2859
 */
2860
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2861 2862 2863 2864
{
	struct page *page;
	struct kmem_cache_node *n;

2865
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2866

2867
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2868 2869

	BUG_ON(!page);
2870
	if (page_to_nid(page) != node) {
2871 2872
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2873 2874
	}

C
Christoph Lameter 已提交
2875 2876
	n = page->freelist;
	BUG_ON(!n);
2877
	page->freelist = get_freepointer(kmem_cache_node, n);
2878
	page->inuse = 1;
2879
	page->frozen = 0;
2880
	kmem_cache_node->node[node] = n;
2881
#ifdef CONFIG_SLUB_DEBUG
2882
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2883
	init_tracking(kmem_cache_node, n);
2884
#endif
2885
	init_kmem_cache_node(n);
2886
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2887

2888
	/*
2889 2890
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2891
	 */
2892
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2893 2894 2895 2896 2897
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2898
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2899

C
Christoph Lameter 已提交
2900 2901
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2902 2903 2904 2905
		s->node[node] = NULL;
	}
}

2906
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2907 2908 2909
{
	int node;

C
Christoph Lameter 已提交
2910
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2911 2912
		struct kmem_cache_node *n;

2913
		if (slab_state == DOWN) {
2914
			early_kmem_cache_node_alloc(node);
2915 2916
			continue;
		}
2917
		n = kmem_cache_alloc_node(kmem_cache_node,
2918
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2919

2920 2921 2922
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2923
		}
2924

C
Christoph Lameter 已提交
2925
		s->node[node] = n;
2926
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2927 2928 2929 2930
	}
	return 1;
}

2931
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2932 2933 2934 2935 2936 2937 2938 2939
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2940 2941 2942 2943
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2944
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2945 2946
{
	unsigned long flags = s->flags;
2947
	unsigned long size = s->object_size;
2948
	int order;
C
Christoph Lameter 已提交
2949

2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2958 2959 2960 2961 2962 2963
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2964
			!s->ctor)
C
Christoph Lameter 已提交
2965 2966 2967 2968 2969 2970
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2971
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2972
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2973
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2974
	 */
2975
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2976
		size += sizeof(void *);
C
Christoph Lameter 已提交
2977
#endif
C
Christoph Lameter 已提交
2978 2979

	/*
C
Christoph Lameter 已提交
2980 2981
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2982 2983 2984 2985
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2986
		s->ctor)) {
C
Christoph Lameter 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2999
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3000 3001 3002 3003 3004 3005 3006
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3007
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3008 3009 3010 3011
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3012
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3013 3014 3015
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3016
#endif
C
Christoph Lameter 已提交
3017

C
Christoph Lameter 已提交
3018 3019 3020 3021 3022
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3023
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3024
	s->size = size;
3025 3026 3027
	if (forced_order >= 0)
		order = forced_order;
	else
3028
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3029

3030
	if (order < 0)
C
Christoph Lameter 已提交
3031 3032
		return 0;

3033
	s->allocflags = 0;
3034
	if (order)
3035 3036 3037
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3038
		s->allocflags |= GFP_DMA;
3039 3040 3041 3042

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3043 3044 3045
	/*
	 * Determine the number of objects per slab
	 */
3046 3047
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3048 3049
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3050

3051
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3052 3053
}

3054
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3055
{
3056
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3057
	s->reserved = 0;
C
Christoph Lameter 已提交
3058

3059 3060
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3061

3062
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3063
		goto error;
3064 3065 3066 3067 3068
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3069
		if (get_order(s->size) > get_order(s->object_size)) {
3070 3071 3072 3073 3074 3075
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3076

3077 3078
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3079 3080 3081 3082 3083
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3084 3085 3086 3087
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3103
	 * B) The number of objects in cpu partial slabs to extract from the
3104 3105
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3106
	 */
3107
	if (!kmem_cache_has_cpu_partial(s))
3108 3109
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3110 3111 3112 3113 3114 3115 3116 3117
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3118
#ifdef CONFIG_NUMA
3119
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3120
#endif
3121
	if (!init_kmem_cache_nodes(s))
3122
		goto error;
C
Christoph Lameter 已提交
3123

3124
	if (alloc_kmem_cache_cpus(s))
3125
		return 0;
3126

3127
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3128 3129 3130 3131
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3132 3133
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3134
	return -EINVAL;
C
Christoph Lameter 已提交
3135 3136
}

3137 3138 3139 3140 3141 3142
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3143 3144
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3145 3146
	if (!map)
		return;
3147
	slab_err(s, page, text, s->name);
3148 3149
	slab_lock(page);

3150
	get_map(s, page, map);
3151 3152 3153
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3154
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3155 3156 3157 3158
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3159
	kfree(map);
3160 3161 3162
#endif
}

C
Christoph Lameter 已提交
3163
/*
C
Christoph Lameter 已提交
3164
 * Attempt to free all partial slabs on a node.
3165 3166
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3167
 */
C
Christoph Lameter 已提交
3168
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3169 3170 3171
{
	struct page *page, *h;

3172
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3173
		if (!page->inuse) {
3174
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3175
			discard_slab(s, page);
3176 3177
		} else {
			list_slab_objects(s, page,
3178
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3179
		}
3180
	}
C
Christoph Lameter 已提交
3181 3182 3183
}

/*
C
Christoph Lameter 已提交
3184
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3185
 */
3186
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3187 3188
{
	int node;
C
Christoph Lameter 已提交
3189
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3190 3191 3192

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3193
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3194 3195
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3196 3197
			return 1;
	}
3198
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3199 3200 3201 3202
	free_kmem_cache_nodes(s);
	return 0;
}

3203
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3204
{
3205
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3206 3207 3208 3209 3210 3211 3212 3213
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3214
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3215 3216 3217 3218 3219 3220 3221 3222

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3223
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3224
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3225 3226 3227 3228 3229 3230 3231 3232

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3233
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3250
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3251
	void *ret;
C
Christoph Lameter 已提交
3252

3253
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3254
		return kmalloc_large(size, flags);
3255

3256
	s = kmalloc_slab(size, flags);
3257 3258

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3259 3260
		return s;

3261
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3262

3263
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3264 3265

	return ret;
C
Christoph Lameter 已提交
3266 3267 3268
}
EXPORT_SYMBOL(__kmalloc);

3269
#ifdef CONFIG_NUMA
3270 3271
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3272
	struct page *page;
3273
	void *ptr = NULL;
3274

V
Vladimir Davydov 已提交
3275 3276
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3277
	if (page)
3278 3279
		ptr = page_address(page);

3280
	kmalloc_large_node_hook(ptr, size, flags);
3281
	return ptr;
3282 3283
}

C
Christoph Lameter 已提交
3284 3285
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3286
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3287
	void *ret;
C
Christoph Lameter 已提交
3288

3289
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3290 3291
		ret = kmalloc_large_node(size, flags, node);

3292 3293 3294
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3295 3296 3297

		return ret;
	}
3298

3299
	s = kmalloc_slab(size, flags);
3300 3301

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 3303
		return s;

3304
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3305

3306
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3307 3308

	return ret;
C
Christoph Lameter 已提交
3309 3310 3311 3312 3313 3314
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3315
	struct page *page;
C
Christoph Lameter 已提交
3316

3317
	if (unlikely(object == ZERO_SIZE_PTR))
3318 3319
		return 0;

3320 3321
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3322 3323
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3324
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3325
	}
C
Christoph Lameter 已提交
3326

3327
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3328
}
K
Kirill A. Shutemov 已提交
3329
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3330 3331 3332 3333

void kfree(const void *x)
{
	struct page *page;
3334
	void *object = (void *)x;
C
Christoph Lameter 已提交
3335

3336 3337
	trace_kfree(_RET_IP_, x);

3338
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3339 3340
		return;

3341
	page = virt_to_head_page(x);
3342
	if (unlikely(!PageSlab(page))) {
3343
		BUG_ON(!PageCompound(page));
3344
		kfree_hook(x);
V
Vladimir Davydov 已提交
3345
		__free_kmem_pages(page, compound_order(page));
3346 3347
		return;
	}
3348
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3349 3350 3351
}
EXPORT_SYMBOL(kfree);

3352
/*
C
Christoph Lameter 已提交
3353 3354 3355 3356 3357 3358 3359 3360
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3361
 */
3362
int __kmem_cache_shrink(struct kmem_cache *s)
3363 3364 3365 3366 3367 3368
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3369
	int objects = oo_objects(s->max);
3370
	struct list_head *slabs_by_inuse =
3371
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3372 3373 3374 3375 3376 3377
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3378
	for_each_kmem_cache_node(s, node, n) {
3379 3380 3381
		if (!n->nr_partial)
			continue;

3382
		for (i = 0; i < objects; i++)
3383 3384 3385 3386 3387
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3388
		 * Build lists indexed by the items in use in each slab.
3389
		 *
C
Christoph Lameter 已提交
3390 3391
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3392 3393
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3394 3395 3396
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3397 3398 3399
		}

		/*
C
Christoph Lameter 已提交
3400 3401
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3402
		 */
3403
		for (i = objects - 1; i > 0; i--)
3404 3405 3406
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3407 3408 3409 3410

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3411 3412 3413 3414 3415 3416
	}

	kfree(slabs_by_inuse);
	return 0;
}

3417 3418 3419 3420
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3421
	mutex_lock(&slab_mutex);
3422
	list_for_each_entry(s, &slab_caches, list)
3423
		__kmem_cache_shrink(s);
3424
	mutex_unlock(&slab_mutex);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3436
	offline_node = marg->status_change_nid_normal;
3437 3438 3439 3440 3441 3442 3443 3444

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3445
	mutex_lock(&slab_mutex);
3446 3447 3448 3449 3450 3451
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3452
			 * and offline_pages() function shouldn't call this
3453 3454
			 * callback. So, we must fail.
			 */
3455
			BUG_ON(slabs_node(s, offline_node));
3456 3457

			s->node[offline_node] = NULL;
3458
			kmem_cache_free(kmem_cache_node, n);
3459 3460
		}
	}
3461
	mutex_unlock(&slab_mutex);
3462 3463 3464 3465 3466 3467 3468
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3469
	int nid = marg->status_change_nid_normal;
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3480
	 * We are bringing a node online. No memory is available yet. We must
3481 3482 3483
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3484
	mutex_lock(&slab_mutex);
3485 3486 3487 3488 3489 3490
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3491
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3492 3493 3494 3495
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3496
		init_kmem_cache_node(n);
3497 3498 3499
		s->node[nid] = n;
	}
out:
3500
	mutex_unlock(&slab_mutex);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3524 3525 3526 3527
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3528 3529 3530
	return ret;
}

3531 3532 3533 3534
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3535

C
Christoph Lameter 已提交
3536 3537 3538 3539
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3540 3541
/*
 * Used for early kmem_cache structures that were allocated using
3542 3543
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3544 3545
 */

3546
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3547 3548
{
	int node;
3549
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3550
	struct kmem_cache_node *n;
3551

3552
	memcpy(s, static_cache, kmem_cache->object_size);
3553

3554 3555 3556 3557 3558 3559
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3560
	for_each_kmem_cache_node(s, node, n) {
3561 3562
		struct page *p;

C
Christoph Lameter 已提交
3563 3564
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3565

L
Li Zefan 已提交
3566
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3567 3568
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3569 3570
#endif
	}
3571 3572
	list_add(&s->list, &slab_caches);
	return s;
3573 3574
}

C
Christoph Lameter 已提交
3575 3576
void __init kmem_cache_init(void)
{
3577 3578
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3579

3580 3581 3582
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3583 3584
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3585

3586 3587
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3588

3589
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3590 3591 3592 3593

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3594 3595 3596 3597
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3598

3599
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3600

3601 3602 3603 3604 3605
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3606
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3607 3608

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3609
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3610 3611 3612

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3613
#endif
C
Christoph Lameter 已提交
3614

3615
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3616
		cache_line_size(),
C
Christoph Lameter 已提交
3617 3618 3619 3620
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3621 3622 3623 3624
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3625 3626 3627 3628 3629 3630 3631 3632
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3633 3634 3635
	if (!is_root_cache(s))
		return 1;

3636
	if (s->ctor)
C
Christoph Lameter 已提交
3637 3638
		return 1;

3639 3640 3641 3642 3643 3644
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3645 3646 3647
	return 0;
}

3648 3649
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3650
{
3651
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3652 3653 3654 3655

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3656
	if (ctor)
C
Christoph Lameter 已提交
3657 3658 3659 3660 3661
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3662
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3663

3664
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3665 3666 3667 3668 3669 3670
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3671
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3672
			continue;
C
Christoph Lameter 已提交
3673 3674 3675 3676
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3677
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3688
struct kmem_cache *
3689 3690
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3691 3692 3693
{
	struct kmem_cache *s;

3694
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3695
	if (s) {
3696 3697 3698
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3699
		s->refcount++;
3700

C
Christoph Lameter 已提交
3701 3702 3703 3704
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3705
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3706
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3717 3718
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3719
			s = NULL;
3720
		}
3721
	}
C
Christoph Lameter 已提交
3722

3723 3724
	return s;
}
P
Pekka Enberg 已提交
3725

3726
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3727
{
3728 3729 3730 3731 3732
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3733

3734 3735 3736 3737
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3738
	memcg_propagate_slab_attrs(s);
3739 3740 3741
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3742

3743
	return err;
C
Christoph Lameter 已提交
3744 3745 3746 3747
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3748 3749
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3750
 */
3751
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3752 3753 3754
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3755 3756
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3757 3758 3759

	switch (action) {
	case CPU_UP_CANCELED:
3760
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3761
	case CPU_DEAD:
3762
	case CPU_DEAD_FROZEN:
3763
		mutex_lock(&slab_mutex);
3764 3765 3766 3767 3768
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3769
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3770 3771 3772 3773 3774 3775 3776
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3777
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3778
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3779
};
C
Christoph Lameter 已提交
3780 3781 3782

#endif

3783
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3784
{
3785
	struct kmem_cache *s;
3786
	void *ret;
3787

3788
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3789 3790
		return kmalloc_large(size, gfpflags);

3791
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3792

3793
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3794
		return s;
C
Christoph Lameter 已提交
3795

3796
	ret = slab_alloc(s, gfpflags, caller);
3797

L
Lucas De Marchi 已提交
3798
	/* Honor the call site pointer we received. */
3799
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3800 3801

	return ret;
C
Christoph Lameter 已提交
3802 3803
}

3804
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3805
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3806
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3807
{
3808
	struct kmem_cache *s;
3809
	void *ret;
3810

3811
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3812 3813 3814 3815 3816 3817 3818 3819
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3820

3821
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3822

3823
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3824
		return s;
C
Christoph Lameter 已提交
3825

3826
	ret = slab_alloc_node(s, gfpflags, node, caller);
3827

L
Lucas De Marchi 已提交
3828
	/* Honor the call site pointer we received. */
3829
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3830 3831

	return ret;
C
Christoph Lameter 已提交
3832
}
3833
#endif
C
Christoph Lameter 已提交
3834

3835
#ifdef CONFIG_SYSFS
3836 3837 3838 3839 3840 3841 3842 3843 3844
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3845
#endif
3846

3847
#ifdef CONFIG_SLUB_DEBUG
3848 3849
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3850 3851
{
	void *p;
3852
	void *addr = page_address(page);
3853 3854 3855 3856 3857 3858

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3859
	bitmap_zero(map, page->objects);
3860

3861 3862 3863 3864 3865
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3866 3867
	}

3868
	for_each_object(p, s, addr, page->objects)
3869
		if (!test_bit(slab_index(p, s, addr), map))
3870
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3871 3872 3873 3874
				return 0;
	return 1;
}

3875 3876
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3877
{
3878 3879 3880
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3881 3882
}

3883 3884
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3885 3886 3887 3888 3889 3890 3891 3892
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3893
		validate_slab_slab(s, page, map);
3894 3895 3896
		count++;
	}
	if (count != n->nr_partial)
3897 3898
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3899 3900 3901 3902 3903

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3904
		validate_slab_slab(s, page, map);
3905 3906 3907
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3908 3909
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3910 3911 3912 3913 3914 3915

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3916
static long validate_slab_cache(struct kmem_cache *s)
3917 3918 3919
{
	int node;
	unsigned long count = 0;
3920
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3921
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3922
	struct kmem_cache_node *n;
3923 3924 3925

	if (!map)
		return -ENOMEM;
3926 3927

	flush_all(s);
C
Christoph Lameter 已提交
3928
	for_each_kmem_cache_node(s, node, n)
3929 3930
		count += validate_slab_node(s, n, map);
	kfree(map);
3931 3932
	return count;
}
3933
/*
C
Christoph Lameter 已提交
3934
 * Generate lists of code addresses where slabcache objects are allocated
3935 3936 3937 3938 3939
 * and freed.
 */

struct location {
	unsigned long count;
3940
	unsigned long addr;
3941 3942 3943 3944 3945
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3946
	DECLARE_BITMAP(cpus, NR_CPUS);
3947
	nodemask_t nodes;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3963
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3964 3965 3966 3967 3968 3969
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3970
	l = (void *)__get_free_pages(flags, order);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3984
				const struct track *track)
3985 3986 3987
{
	long start, end, pos;
	struct location *l;
3988
	unsigned long caddr;
3989
	unsigned long age = jiffies - track->when;
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4021 4022
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4023 4024
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4025 4026 4027
			return 1;
		}

4028
		if (track->addr < caddr)
4029 4030 4031 4032 4033 4034
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4035
	 * Not found. Insert new tracking element.
4036
	 */
4037
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4038 4039 4040 4041 4042 4043 4044 4045
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4046 4047 4048 4049 4050 4051
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4052 4053
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4054 4055
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4056 4057 4058 4059
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4060
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4061
		unsigned long *map)
4062
{
4063
	void *addr = page_address(page);
4064 4065
	void *p;

4066
	bitmap_zero(map, page->objects);
4067
	get_map(s, page, map);
4068

4069
	for_each_object(p, s, addr, page->objects)
4070 4071
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4072 4073 4074 4075 4076
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4077
	int len = 0;
4078
	unsigned long i;
4079
	struct loc_track t = { 0, 0, NULL };
4080
	int node;
E
Eric Dumazet 已提交
4081 4082
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4083
	struct kmem_cache_node *n;
4084

E
Eric Dumazet 已提交
4085 4086 4087
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4088
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4089
	}
4090 4091 4092
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4093
	for_each_kmem_cache_node(s, node, n) {
4094 4095 4096
		unsigned long flags;
		struct page *page;

4097
		if (!atomic_long_read(&n->nr_slabs))
4098 4099 4100 4101
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4102
			process_slab(&t, s, page, alloc, map);
4103
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4104
			process_slab(&t, s, page, alloc, map);
4105 4106 4107 4108
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4109
		struct location *l = &t.loc[i];
4110

H
Hugh Dickins 已提交
4111
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4112
			break;
4113
		len += sprintf(buf + len, "%7ld ", l->count);
4114 4115

		if (l->addr)
J
Joe Perches 已提交
4116
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4117
		else
4118
			len += sprintf(buf + len, "<not-available>");
4119 4120

		if (l->sum_time != l->min_time) {
4121
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4122 4123 4124
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4125
		} else
4126
			len += sprintf(buf + len, " age=%ld",
4127 4128 4129
				l->min_time);

		if (l->min_pid != l->max_pid)
4130
			len += sprintf(buf + len, " pid=%ld-%ld",
4131 4132
				l->min_pid, l->max_pid);
		else
4133
			len += sprintf(buf + len, " pid=%ld",
4134 4135
				l->min_pid);

R
Rusty Russell 已提交
4136 4137
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4138 4139
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4140 4141
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4142
						 to_cpumask(l->cpus));
4143 4144
		}

4145
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4146 4147
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4148 4149 4150
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4151 4152
		}

4153
		len += sprintf(buf + len, "\n");
4154 4155 4156
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4157
	kfree(map);
4158
	if (!t.count)
4159 4160
		len += sprintf(buf, "No data\n");
	return len;
4161
}
4162
#endif
4163

4164
#ifdef SLUB_RESILIENCY_TEST
4165
static void __init resiliency_test(void)
4166 4167 4168
{
	u8 *p;

4169
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4170

4171 4172 4173
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4174 4175 4176

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4177 4178
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4179 4180 4181 4182 4183 4184

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4185 4186 4187
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4188 4189 4190 4191 4192

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4193 4194 4195
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4196 4197
	validate_slab_cache(kmalloc_caches[6]);

4198
	pr_err("\nB. Corruption after free\n");
4199 4200 4201
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4202
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4203 4204 4205 4206 4207
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4208
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4209 4210 4211 4212 4213
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4214
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4215 4216 4217 4218 4219 4220 4221 4222
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4223
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4224
enum slab_stat_type {
4225 4226 4227 4228 4229
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4230 4231
};

4232
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4233 4234 4235
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4236
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4237

4238 4239
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4240 4241 4242 4243 4244 4245
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4246
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4247 4248
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4249

4250 4251
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4252

4253
		for_each_possible_cpu(cpu) {
4254 4255
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4256
			int node;
4257
			struct page *page;
4258

4259
			page = ACCESS_ONCE(c->page);
4260 4261
			if (!page)
				continue;
4262

4263 4264 4265 4266 4267 4268 4269
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4270

4271 4272 4273 4274
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4275
			if (page) {
L
Li Zefan 已提交
4276 4277 4278 4279 4280 4281 4282
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4283 4284
				total += x;
				nodes[node] += x;
4285
			}
C
Christoph Lameter 已提交
4286 4287 4288
		}
	}

4289
	get_online_mems();
4290
#ifdef CONFIG_SLUB_DEBUG
4291
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4292 4293 4294
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4295

4296 4297 4298 4299 4300
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4301
			else
4302
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4303 4304 4305 4306
			total += x;
			nodes[node] += x;
		}

4307 4308 4309
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4310
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4311

C
Christoph Lameter 已提交
4312
		for_each_kmem_cache_node(s, node, n) {
4313 4314 4315 4316
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4317
			else
4318
				x = n->nr_partial;
C
Christoph Lameter 已提交
4319 4320 4321 4322 4323 4324
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4325
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4326 4327 4328 4329
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4330
	put_online_mems();
C
Christoph Lameter 已提交
4331 4332 4333 4334
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4335
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4336 4337 4338
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4339
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4340

C
Christoph Lameter 已提交
4341
	for_each_kmem_cache_node(s, node, n)
4342
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4343
			return 1;
C
Christoph Lameter 已提交
4344

C
Christoph Lameter 已提交
4345 4346
	return 0;
}
4347
#endif
C
Christoph Lameter 已提交
4348 4349

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4350
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4351 4352 4353 4354 4355 4356 4357 4358

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4359 4360
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4361 4362 4363

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4364
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4380
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4381 4382 4383 4384 4385
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4386
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4387 4388 4389
}
SLAB_ATTR_RO(objs_per_slab);

4390 4391 4392
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4393 4394 4395
	unsigned long order;
	int err;

4396
	err = kstrtoul(buf, 10, &order);
4397 4398
	if (err)
		return err;
4399 4400 4401 4402 4403 4404 4405 4406

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4407 4408
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4409
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4410
}
4411
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4424
	err = kstrtoul(buf, 10, &min);
4425 4426 4427
	if (err)
		return err;

4428
	set_min_partial(s, min);
4429 4430 4431 4432
	return length;
}
SLAB_ATTR(min_partial);

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4444
	err = kstrtoul(buf, 10, &objects);
4445 4446
	if (err)
		return err;
4447
	if (objects && !kmem_cache_has_cpu_partial(s))
4448
		return -EINVAL;
4449 4450 4451 4452 4453 4454 4455

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4456 4457
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4458 4459 4460
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4472
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4473 4474 4475 4476 4477
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4478
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4479 4480 4481 4482 4483
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4484
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4485 4486 4487
}
SLAB_ATTR_RO(objects);

4488 4489 4490 4491 4492 4493
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4560 4561 4562 4563 4564 4565
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4566
#ifdef CONFIG_SLUB_DEBUG
4567 4568 4569 4570 4571 4572
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4573 4574 4575 4576 4577 4578
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4588 4589
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4590
		s->flags |= SLAB_DEBUG_FREE;
4591
	}
C
Christoph Lameter 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4605 4606
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4607
		s->flags |= SLAB_TRACE;
4608
	}
C
Christoph Lameter 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4625 4626
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4627
		s->flags |= SLAB_RED_ZONE;
4628
	}
4629
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4646 4647
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4648
		s->flags |= SLAB_POISON;
4649
	}
4650
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4667 4668
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4669
		s->flags |= SLAB_STORE_USER;
4670
	}
4671
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4672 4673 4674 4675
	return length;
}
SLAB_ATTR(store_user);

4676 4677 4678 4679 4680 4681 4682 4683
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4684 4685 4686 4687 4688 4689 4690 4691
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4692 4693
}
SLAB_ATTR(validate);
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4727
#endif
4728

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4748
#ifdef CONFIG_NUMA
4749
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4750
{
4751
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4752 4753
}

4754
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4755 4756
				const char *buf, size_t length)
{
4757 4758 4759
	unsigned long ratio;
	int err;

4760
	err = kstrtoul(buf, 10, &ratio);
4761 4762 4763
	if (err)
		return err;

4764
	if (ratio <= 100)
4765
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4766 4767 4768

	return length;
}
4769
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4770 4771
#endif

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4784
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4785 4786 4787 4788 4789 4790 4791

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4792
#ifdef CONFIG_SMP
4793 4794
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4795
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4796
	}
4797
#endif
4798 4799 4800 4801
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4802 4803 4804 4805 4806
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4807
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4808 4809
}

4810 4811 4812 4813 4814
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4835
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4836 4837 4838 4839 4840 4841 4842
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4843
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4844
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4845 4846
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4847 4848
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4849 4850
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4851 4852
#endif

P
Pekka Enberg 已提交
4853
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4854 4855 4856 4857
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4858
	&min_partial_attr.attr,
4859
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4860
	&objects_attr.attr,
4861
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4862 4863 4864 4865 4866 4867 4868 4869
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4870
	&shrink_attr.attr,
4871
	&reserved_attr.attr,
4872
	&slabs_cpu_partial_attr.attr,
4873
#ifdef CONFIG_SLUB_DEBUG
4874 4875 4876 4877
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4878 4879 4880
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4881
	&validate_attr.attr,
4882 4883
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4884
#endif
C
Christoph Lameter 已提交
4885 4886 4887 4888
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4889
	&remote_node_defrag_ratio_attr.attr,
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4902
	&alloc_node_mismatch_attr.attr,
4903 4904 4905 4906 4907 4908 4909
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4910
	&deactivate_bypass_attr.attr,
4911
	&order_fallback_attr.attr,
4912 4913
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4914 4915
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4916 4917
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4918
#endif
4919 4920 4921 4922
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4964 4965 4966
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4967

4968 4969 4970 4971
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4989
		for_each_memcg_cache_index(i) {
4990
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4991 4992 4993 4994 4995 4996
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
4997 4998 4999
	return err;
}

5000 5001 5002 5003 5004
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5005
	struct kmem_cache *root_cache;
5006

5007
	if (is_root_cache(s))
5008 5009
		return;

5010 5011
	root_cache = s->memcg_params->root_cache;

5012 5013 5014 5015
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5016
	if (!root_cache->max_attr_size)
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5038
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5039 5040 5041 5042 5043 5044 5045 5046
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5047
		attr->show(root_cache, buf);
5048 5049 5050 5051 5052 5053 5054 5055
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5056 5057 5058 5059 5060
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5061
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5062 5063 5064 5065 5066 5067
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5068
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5080
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5081 5082 5083
	.filter = uevent_filter,
};

5084
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5085

5086 5087 5088 5089 5090 5091 5092 5093 5094
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5095 5096 5097
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5098 5099
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5122 5123
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5124 5125 5126
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5127 5128 5129

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5130 5131
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5132 5133
#endif

C
Christoph Lameter 已提交
5134 5135 5136 5137 5138 5139 5140 5141
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5142
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5143 5144 5145 5146 5147 5148 5149

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5150
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5160
	s->kobj.kset = cache_kset(s);
5161
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5162 5163
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5164 5165

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5166 5167
	if (err)
		goto out_del_kobj;
5168 5169 5170 5171 5172

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5173 5174
			err = -ENOMEM;
			goto out_del_kobj;
5175 5176 5177 5178
		}
	}
#endif

C
Christoph Lameter 已提交
5179 5180 5181 5182 5183
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5184 5185 5186 5187 5188 5189 5190 5191 5192
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5193 5194
}

5195
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5196
{
5197
	if (slab_state < FULL)
5198 5199 5200 5201 5202 5203
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5204 5205 5206
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5207 5208
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5209
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5210 5211 5212 5213
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5214
 * available lest we lose that information.
C
Christoph Lameter 已提交
5215 5216 5217 5218 5219 5220 5221
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5222
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5223 5224 5225 5226 5227

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5228
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5229 5230 5231
		/*
		 * If we have a leftover link then remove it.
		 */
5232 5233
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5249
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5250 5251
	int err;

5252
	mutex_lock(&slab_mutex);
5253

5254
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5255
	if (!slab_kset) {
5256
		mutex_unlock(&slab_mutex);
5257
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5258 5259 5260
		return -ENOSYS;
	}

5261
	slab_state = FULL;
5262

5263
	list_for_each_entry(s, &slab_caches, list) {
5264
		err = sysfs_slab_add(s);
5265
		if (err)
5266 5267
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5268
	}
C
Christoph Lameter 已提交
5269 5270 5271 5272 5273 5274

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5275
		if (err)
5276 5277
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5278 5279 5280
		kfree(al);
	}

5281
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5282 5283 5284 5285 5286
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5287
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5288 5289 5290 5291

/*
 * The /proc/slabinfo ABI
 */
5292
#ifdef CONFIG_SLABINFO
5293
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5294 5295
{
	unsigned long nr_slabs = 0;
5296 5297
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5298
	int node;
C
Christoph Lameter 已提交
5299
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5300

C
Christoph Lameter 已提交
5301
	for_each_kmem_cache_node(s, node, n) {
5302 5303
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5304
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5305 5306
	}

5307 5308 5309 5310 5311 5312
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5313 5314
}

5315
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5316 5317 5318
{
}

5319 5320
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5321
{
5322
	return -EIO;
5323
}
5324
#endif /* CONFIG_SLABINFO */