slub.c 97.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
207

208 209 210 211 212
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
213 214 215 216 217 218 219 220 221
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
222
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
223 224 225 226 227
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
228
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
229

230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
242
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
243 244 245 246
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
247 248 249
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
250 251 252 253
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
C
Christoph Lameter 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

274 275
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
276 277 278 279 280
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
281 282
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
332 333 334 335
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
336 337 338
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
339
static int slub_debug;
340
#endif
C
Christoph Lameter 已提交
341 342 343

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
357
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
414 415 416 417 418
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
419 420 421 422 423 424 425
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

426
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
427
	__print_symbol("%s", (unsigned long)t->addr);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
460 461
}

462 463 464 465 466 467 468 469 470 471 472 473
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
474 475
{
	unsigned int off;	/* Offset of last byte */
476 477 478 479 480 481 482 483 484 485 486 487 488
	u8 *addr = page_address(page);

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
489 490 491 492 493 494 495 496 497 498

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

499
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
500 501 502 503
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
504 505 506
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
507 508 509 510 511
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
512 513
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
514 515
}

516
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
517 518 519 520
{
	va_list args;
	char buf[100];

521 522
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
523
	va_end(args);
524 525
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

544
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
545 546 547
{
	while (bytes) {
		if (*start != (u8)value)
548
			return start;
C
Christoph Lameter 已提交
549 550 551
		start++;
		bytes--;
	}
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
			u8* start, unsigned int value, unsigned int bytes)
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
584 585 586 587 588 589 590 591 592
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
593
 *
C
Christoph Lameter 已提交
594 595 596 597 598
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
599 600 601
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
602 603 604 605
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
606 607
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
608 609
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
610 611 612 613 614
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
615 616
 *
 * object + s->size
C
Christoph Lameter 已提交
617
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
618
 *
C
Christoph Lameter 已提交
619 620
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

639 640
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
641 642 643 644
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
645 646 647 648 649
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
650 651 652 653

	if (!(s->flags & SLAB_POISON))
		return 1;

654 655
	start = page_address(page);
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
656
	length = s->objects * s->size;
657
	remainder = end - (start + length);
C
Christoph Lameter 已提交
658 659 660
	if (!remainder)
		return 1;

661 662 663 664 665 666 667 668 669 670 671
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
672 673 674 675 676 677 678 679 680 681 682 683
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

684 685
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
686 687
			return 0;
	} else {
688 689 690
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
				POISON_INUSE, s->inuse - s->objsize);
C
Christoph Lameter 已提交
691 692 693 694
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
695 696 697 698
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
			 	p + s->objsize -1, POISON_END, 1)))
C
Christoph Lameter 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
719
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
720 721 722 723 724 725 726 727 728 729 730 731
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
732
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
733 734 735
		return 0;
	}
	if (page->inuse > s->objects) {
736 737
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
738 739 740 741 742 743 744 745
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
746 747
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
765
				slab_err(s, page, "Freepointer corrupt");
C
Christoph Lameter 已提交
766 767
				page->freelist = NULL;
				page->inuse = s->objects;
768
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
769 770 771 772 773 774 775 776 777 778
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
779
		slab_err(s, page, "Wrong object count. Counter is %d but "
780
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
781
		page->inuse = s->objects - nr;
782
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
783 784 785 786
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

803
/*
C
Christoph Lameter 已提交
804
 * Tracking of fully allocated slabs for debugging purposes.
805
 */
C
Christoph Lameter 已提交
806
static void add_full(struct kmem_cache_node *n, struct page *page)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
827 828 829 830 831 832 833 834 835 836 837 838
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
839 840 841 842 843
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
844
		object_err(s, page, object, "Object already allocated");
845
		goto bad;
C
Christoph Lameter 已提交
846 847 848 849
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
850
		goto bad;
C
Christoph Lameter 已提交
851 852
	}

C
Christoph Lameter 已提交
853
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
854 855
		goto bad;

C
Christoph Lameter 已提交
856 857 858 859 860
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
861
	return 1;
C
Christoph Lameter 已提交
862

C
Christoph Lameter 已提交
863 864 865 866 867
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
868
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
869
		 */
870
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
871 872 873 874 875 876
		page->inuse = s->objects;
		page->freelist = NULL;
	}
	return 0;
}

C
Christoph Lameter 已提交
877 878
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
879 880 881 882 883
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
884
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
885 886 887 888
		goto fail;
	}

	if (on_freelist(s, page, object)) {
889
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
898 899
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
900
		else
901
		if (!page->slab) {
C
Christoph Lameter 已提交
902
			printk(KERN_ERR
903
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
904
						object);
905 906
			dump_stack();
		}
C
Christoph Lameter 已提交
907
		else
908 909
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
910 911
		goto fail;
	}
C
Christoph Lameter 已提交
912 913 914 915 916 917 918 919

	/* Special debug activities for freeing objects */
	if (!SlabFrozen(page) && !page->freelist)
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
920
	return 1;
C
Christoph Lameter 已提交
921

C
Christoph Lameter 已提交
922
fail:
923
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
924 925 926
	return 0;
}

C
Christoph Lameter 已提交
927 928
static int __init setup_slub_debug(char *str)
{
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
	for ( ;*str && *str != ','; str++) {
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
				"unknown. skipped\n",*str);
		}
C
Christoph Lameter 已提交
974 975
	}

976
check_slabs:
C
Christoph Lameter 已提交
977 978
	if (*str == ',')
		slub_debug_slabs = str + 1;
979
out:
C
Christoph Lameter 已提交
980 981 982 983 984
	return 1;
}

__setup("slub_debug", setup_slub_debug);

985 986
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
987
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
988 989 990 991 992 993 994 995 996 997
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
998
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
999 1000
	 * pointer. Fail if this happens.
	 */
1001 1002
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
1003
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1004 1005
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1006 1007 1008 1009
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1010
		    strncmp(slub_debug_slabs, name,
C
Christoph Lameter 已提交
1011
		    	strlen(slub_debug_slabs)) == 0))
1012 1013 1014 1015
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1016 1017
}
#else
C
Christoph Lameter 已提交
1018 1019
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1020

C
Christoph Lameter 已提交
1021 1022
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1023

C
Christoph Lameter 已提交
1024 1025
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1026 1027 1028 1029 1030

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1031
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1032 1033
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1034
	void (*ctor)(struct kmem_cache *, void *))
1035 1036 1037
{
	return flags;
}
C
Christoph Lameter 已提交
1038 1039
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

1054 1055 1056
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1076
	setup_object_debug(s, page, object);
1077
	if (unlikely(s->ctor))
1078
		s->ctor(s, object);
C
Christoph Lameter 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1089
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1090

C
Christoph Lameter 已提交
1091 1092
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1103
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1104 1105 1106 1107 1108 1109 1110

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1111
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1129
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1130 1131 1132
		void *p;

		slab_pad_check(s, page);
1133
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1134
			check_object(s, page, p, 0);
1135
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1173
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1201 1202
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1203
{
C
Christoph Lameter 已提交
1204 1205
	spin_lock(&n->list_lock);
	n->nr_partial++;
1206 1207 1208 1209
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1225
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1226
 *
C
Christoph Lameter 已提交
1227
 * Must hold list_lock.
C
Christoph Lameter 已提交
1228
 */
1229
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1230 1231 1232 1233
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1234
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1235 1236 1237 1238 1239 1240
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1241
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1242 1243 1244 1245 1246 1247 1248 1249
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1250 1251
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1252 1253 1254 1255 1256 1257
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1258
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1259 1260 1261 1262 1263 1264 1265 1266
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1267
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1277 1278 1279 1280
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1281
	 *
C
Christoph Lameter 已提交
1282 1283 1284 1285
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1286 1287
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1288 1289 1290 1291 1292
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1293
	 */
1294 1295
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1306
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1338
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1339
{
C
Christoph Lameter 已提交
1340 1341
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

1342
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1343
	if (page->inuse) {
C
Christoph Lameter 已提交
1344

C
Christoph Lameter 已提交
1345
		if (page->freelist)
1346
			add_partial(n, page, tail);
1347
		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
C
Christoph Lameter 已提交
1348
			add_full(n, page);
C
Christoph Lameter 已提交
1349
		slab_unlock(page);
C
Christoph Lameter 已提交
1350

C
Christoph Lameter 已提交
1351
	} else {
C
Christoph Lameter 已提交
1352 1353
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1354 1355 1356 1357 1358 1359
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1360
			 */
1361
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1362 1363 1364 1365 1366
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1367 1368 1369 1370 1371 1372
	}
}

/*
 * Remove the cpu slab
 */
1373
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1374
{
1375
	struct page *page = c->page;
1376
	int tail = 1;
1377 1378 1379 1380 1381
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1382
	while (unlikely(c->freelist)) {
1383 1384
		void **object;

1385 1386
		tail = 0;	/* Hot objects. Put the slab first */

1387
		/* Retrieve object from cpu_freelist */
1388
		object = c->freelist;
1389
		c->freelist = c->freelist[c->offset];
1390 1391

		/* And put onto the regular freelist */
1392
		object[c->offset] = page->freelist;
1393 1394 1395
		page->freelist = object;
		page->inuse--;
	}
1396
	c->page = NULL;
1397
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1398 1399
}

1400
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1401
{
1402 1403
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1404 1405 1406 1407 1408 1409
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1410
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1411
{
1412
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1413

1414 1415
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1416 1417 1418 1419 1420 1421
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1422
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1451
/*
1452 1453 1454 1455
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1456
 *
1457 1458 1459
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1460
 *
1461 1462 1463
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1464
 *
1465 1466
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1467
 */
1468
static void *__slab_alloc(struct kmem_cache *s,
1469
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1470 1471
{
	void **object;
1472
	struct page *new;
C
Christoph Lameter 已提交
1473

1474
	if (!c->page)
C
Christoph Lameter 已提交
1475 1476
		goto new_slab;

1477 1478
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1479
		goto another_slab;
1480
load_freelist:
1481
	object = c->page->freelist;
C
Christoph Lameter 已提交
1482 1483
	if (unlikely(!object))
		goto another_slab;
1484
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1485 1486
		goto debug;

1487
	object = c->page->freelist;
1488
	c->freelist = object[c->offset];
1489 1490 1491 1492
	c->page->inuse = s->objects;
	c->page->freelist = NULL;
	c->node = page_to_nid(c->page);
	slab_unlock(c->page);
C
Christoph Lameter 已提交
1493 1494 1495
	return object;

another_slab:
1496
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1497 1498

new_slab:
1499 1500 1501
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1502
		goto load_freelist;
C
Christoph Lameter 已提交
1503 1504
	}

1505 1506 1507
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1508
	new = new_slab(s, gfpflags, node);
1509 1510 1511 1512

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1513 1514
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1515
		if (c->page)
1516 1517 1518 1519
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1520
		goto load_freelist;
C
Christoph Lameter 已提交
1521 1522 1523
	}
	return NULL;
debug:
1524 1525
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1526
		goto another_slab;
1527

1528
	c->page->inuse++;
1529
	c->page->freelist = object[c->offset];
1530
	c->node = -1;
1531
	slab_unlock(c->page);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	return object;
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
static void __always_inline *slab_alloc(struct kmem_cache *s,
1546
		gfp_t gfpflags, int node, void *addr)
1547 1548 1549
{
	void **object;
	unsigned long flags;
1550
	struct kmem_cache_cpu *c;
1551 1552

	local_irq_save(flags);
1553
	c = get_cpu_slab(s, smp_processor_id());
1554
	if (unlikely(!c->freelist || !node_match(c, node)))
1555

1556
		object = __slab_alloc(s, gfpflags, node, addr, c);
1557 1558

	else {
1559
		object = c->freelist;
1560
		c->freelist = object[c->offset];
1561 1562
	}
	local_irq_restore(flags);
1563 1564

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1565
		memset(object, 0, c->objsize);
1566

1567
	return object;
C
Christoph Lameter 已提交
1568 1569 1570 1571
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1572
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1573 1574 1575 1576 1577 1578
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1579
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1580 1581 1582 1583 1584
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1585 1586
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1587
 *
1588 1589 1590
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1591
 */
1592
static void __slab_free(struct kmem_cache *s, struct page *page,
1593
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1594 1595 1596 1597 1598 1599
{
	void *prior;
	void **object = (void *)x;

	slab_lock(page);

1600
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1601 1602
		goto debug;
checks_ok:
1603
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1604 1605 1606
	page->freelist = object;
	page->inuse--;

1607
	if (unlikely(SlabFrozen(page)))
C
Christoph Lameter 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
1619
		add_partial(get_node(s, page_to_nid(page)), page, 1);
C
Christoph Lameter 已提交
1620 1621 1622 1623 1624 1625 1626 1627

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
	if (prior)
		/*
C
Christoph Lameter 已提交
1628
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1629 1630 1631 1632 1633 1634 1635 1636
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1637
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1638 1639
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
static void __always_inline slab_free(struct kmem_cache *s,
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
	unsigned long flags;
1658
	struct kmem_cache_cpu *c;
1659 1660

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1661
	debug_check_no_locks_freed(object, s->objsize);
1662
	c = get_cpu_slab(s, smp_processor_id());
1663
	if (likely(page == c->page && c->node >= 0)) {
1664
		object[c->offset] = c->freelist;
1665
		c->freelist = object;
1666
	} else
1667
		__slab_free(s, page, x, addr, c->offset);
1668 1669 1670 1671

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1672 1673
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1674
	struct page *page;
C
Christoph Lameter 已提交
1675

1676
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1677

C
Christoph Lameter 已提交
1678
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1679 1680 1681 1682 1683 1684
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1685
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1686 1687 1688 1689 1690 1691 1692 1693

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1694 1695 1696 1697
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1698 1699 1700 1701
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1702
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1718
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1719 1720 1721 1722 1723 1724
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1736
 *
C
Christoph Lameter 已提交
1737 1738 1739 1740
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1741
 *
C
Christoph Lameter 已提交
1742 1743 1744 1745
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1746
 */
1747 1748
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1749 1750 1751
{
	int order;
	int rem;
1752
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1753

1754
	for (order = max(min_order,
1755 1756
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1757

1758
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1759

1760
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1761 1762 1763 1764
			continue;

		rem = slab_size % size;

1765
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1766 1767 1768
			break;

	}
C
Christoph Lameter 已提交
1769

C
Christoph Lameter 已提交
1770 1771 1772
	return order;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1817
/*
C
Christoph Lameter 已提交
1818
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1832
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1833 1834
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1835 1836 1837 1838 1839 1840 1841

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1842 1843 1844 1845 1846 1847
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
	c->freelist = NULL;
	c->node = 0;
1848 1849
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1850 1851
}

C
Christoph Lameter 已提交
1852 1853 1854 1855 1856 1857
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1858
#ifdef CONFIG_SLUB_DEBUG
1859
	INIT_LIST_HEAD(&n->full);
1860
#endif
C
Christoph Lameter 已提交
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
1995 1996
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
1997
 */
1998 1999
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2000 2001 2002 2003 2004 2005
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2006
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2007 2008

	BUG_ON(!page);
2009 2010 2011 2012 2013 2014 2015
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2016 2017 2018 2019 2020
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2021
#ifdef CONFIG_SLUB_DEBUG
2022 2023
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2024
#endif
C
Christoph Lameter 已提交
2025 2026
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
2027
	add_partial(n, page, 0);
C
Christoph Lameter 已提交
2028 2029 2030 2031 2032 2033 2034
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2035
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2053
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2106
			!s->ctor)
C
Christoph Lameter 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2118
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2119
	/*
C
Christoph Lameter 已提交
2120
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2121
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2122
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2123 2124 2125
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2126
#endif
C
Christoph Lameter 已提交
2127 2128

	/*
C
Christoph Lameter 已提交
2129 2130
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2131 2132 2133 2134
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2135
		s->ctor)) {
C
Christoph Lameter 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2148
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2149 2150 2151 2152 2153 2154 2155
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2156
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2165
#endif
C
Christoph Lameter 已提交
2166

C
Christoph Lameter 已提交
2167 2168
	/*
	 * Determine the alignment based on various parameters that the
2169 2170
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2191
	return !!s->objects;
C
Christoph Lameter 已提交
2192 2193 2194 2195 2196 2197

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2198
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2199 2200 2201 2202 2203 2204
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2205
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2206 2207 2208 2209 2210 2211

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2212
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2213
#endif
2214 2215
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2216

2217
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2218
		return 1;
2219
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
	struct page * page;

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2242
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2271 2272
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2293
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2294
 */
2295
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2296 2297 2298 2299 2300 2301
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2302
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2303
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2304 2305
		struct kmem_cache_node *n = get_node(s, node);

2306
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2324
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2325 2326 2327
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2328 2329
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2330 2331 2332 2333 2334 2335 2336
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2337
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
C
Christoph Lameter 已提交
2338 2339 2340
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2341
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
C
Christoph Lameter 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
#endif

static int __init setup_slub_min_order(char *str)
{
	get_option (&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option (&str, &slub_max_order);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option (&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2389
			flags, NULL))
C
Christoph Lameter 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2402
#ifdef CONFIG_ZONE_DMA
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2440

2441
	realsize = kmalloc_caches[index].objsize;
2442 2443 2444 2445 2446 2447 2448 2449 2450
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2451
	}
2452 2453 2454 2455 2456 2457 2458

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2459
	up_write(&slub_lock);
2460
out:
2461
	return kmalloc_caches_dma[index];
2462 2463 2464
}
#endif

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2498 2499
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2500
	int index;
C
Christoph Lameter 已提交
2501

2502 2503 2504
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2505

2506
		index = size_index[(size - 1) / 8];
2507
	} else
2508
		index = fls(size - 1);
C
Christoph Lameter 已提交
2509 2510

#ifdef CONFIG_ZONE_DMA
2511
	if (unlikely((flags & SLUB_DMA)))
2512
		return dma_kmalloc_cache(index, flags);
2513

C
Christoph Lameter 已提交
2514 2515 2516 2517 2518 2519
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2520
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2521

2522 2523 2524 2525 2526 2527 2528
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2529 2530
		return s;

2531
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2532 2533 2534 2535 2536 2537
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2538
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2539

2540 2541 2542 2543 2544 2545 2546
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2547 2548
		return s;

2549
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2550 2551 2552 2553 2554 2555
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2556
	struct page *page;
C
Christoph Lameter 已提交
2557 2558
	struct kmem_cache *s;

2559 2560
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2561 2562
		return 0;

2563
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2564
	BUG_ON(!page);
2565 2566 2567 2568

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;

2598
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2599 2600
		return;

2601
	page = virt_to_head_page(x);
2602 2603 2604 2605 2606
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
C
Christoph Lameter 已提交
2607 2608 2609
}
EXPORT_SYMBOL(kfree);

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2623
/*
C
Christoph Lameter 已提交
2624 2625 2626 2627 2628 2629 2630 2631
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2648
	for_each_node_state(node, N_NORMAL_MEMORY) {
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2660
		 * Build lists indexed by the items in use in each slab.
2661
		 *
C
Christoph Lameter 已提交
2662 2663
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2677 2678
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2679 2680 2681 2682
			}
		}

		/*
C
Christoph Lameter 已提交
2683 2684
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2736
			BUG_ON(atomic_long_read(&n->nr_slabs));
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2812 2813 2814 2815 2816 2817 2818
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2819
	int caches = 0;
C
Christoph Lameter 已提交
2820

2821 2822
	init_alloc_cpu();

C
Christoph Lameter 已提交
2823 2824 2825
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2826
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2827 2828 2829 2830
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2831
	kmalloc_caches[0].refcount = -1;
2832
	caches++;
2833 2834

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2835 2836 2837 2838 2839 2840
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2841 2842
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2843
				"kmalloc-96", 96, GFP_KERNEL);
2844 2845 2846 2847
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2848
				"kmalloc-192", 192, GFP_KERNEL);
2849 2850
		caches++;
	}
C
Christoph Lameter 已提交
2851

2852
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2853 2854
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2855 2856
		caches++;
	}
C
Christoph Lameter 已提交
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2873
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2874 2875
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2876 2877 2878
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2879
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2880 2881 2882 2883 2884
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2885 2886 2887 2888
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2889 2890 2891 2892
#endif


	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2893 2894
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

2907
	if (s->ctor)
C
Christoph Lameter 已提交
2908 2909
		return 1;

2910 2911 2912 2913 2914 2915
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
2916 2917 2918 2919
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
2920
		size_t align, unsigned long flags, const char *name,
2921
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2922
{
2923
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2924 2925 2926 2927

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

2928
	if (ctor)
C
Christoph Lameter 已提交
2929 2930 2931 2932 2933
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
2934
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
2935

2936
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
2937 2938 2939 2940 2941 2942
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

2943
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align -1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
2962
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2963 2964 2965 2966
{
	struct kmem_cache *s;

	down_write(&slub_lock);
2967
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
2968
	if (s) {
2969 2970
		int cpu;

C
Christoph Lameter 已提交
2971 2972 2973 2974 2975 2976
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
2977 2978 2979 2980 2981 2982 2983

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
2984
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2985
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2986 2987
		if (sysfs_slab_alias(s, name))
			goto err;
2988 2989 2990 2991 2992
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
2993
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
2994
			list_add(&s->list, &slab_caches);
2995 2996 2997 2998 2999 3000
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3015 3016
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3017 3018 3019 3020 3021
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3022 3023
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3024 3025

	switch (action) {
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3036
	case CPU_UP_CANCELED:
3037
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3038
	case CPU_DEAD:
3039
	case CPU_DEAD_FROZEN:
3040 3041
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3042 3043
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3044 3045 3046
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3047 3048
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3049 3050
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata slab_notifier =
	{ &slab_cpuup_callback, NULL, 0 };

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3065 3066 3067 3068 3069 3070
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3071

3072
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3073
		return s;
C
Christoph Lameter 已提交
3074

3075
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3076 3077 3078 3079 3080
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3081 3082 3083 3084 3085 3086
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3087

3088
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3089
		return s;
C
Christoph Lameter 已提交
3090

3091
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3092 3093
}

C
Christoph Lameter 已提交
3094
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3095 3096
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
{
	void *p;
	void *addr = page_address(page);

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3108 3109
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3110 3111 3112 3113
		if (!check_object(s, page, p, 0))
			return 0;
	}

3114 3115
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3116 3117 3118 3119 3120
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3121 3122
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3123 3124
{
	if (slab_trylock(page)) {
3125
		validate_slab(s, page, map);
3126 3127 3128 3129 3130 3131
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3132 3133
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3134 3135
				"on slab 0x%p\n", s->name, page);
	} else {
3136 3137
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3138 3139 3140 3141
				"slab 0x%p\n", s->name, page);
	}
}

3142 3143
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3144 3145 3146 3147 3148 3149 3150 3151
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3152
		validate_slab_slab(s, page, map);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3163
		validate_slab_slab(s, page, map);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3176
static long validate_slab_cache(struct kmem_cache *s)
3177 3178 3179
{
	int node;
	unsigned long count = 0;
3180 3181 3182 3183 3184
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3185 3186

	flush_all(s);
C
Christoph Lameter 已提交
3187
	for_each_node_state(node, N_NORMAL_MEMORY) {
3188 3189
		struct kmem_cache_node *n = get_node(s, node);

3190
		count += validate_slab_node(s, n, map);
3191
	}
3192
	kfree(map);
3193 3194 3195
	return count;
}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3251
/*
C
Christoph Lameter 已提交
3252
 * Generate lists of code addresses where slabcache objects are allocated
3253 3254 3255 3256 3257 3258
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3259 3260 3261 3262 3263 3264 3265
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3281
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3282 3283 3284 3285 3286 3287
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3288
	l = (void *)__get_free_pages(flags, order);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3302
				const struct track *track)
3303 3304 3305 3306
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3307
	unsigned long age = jiffies - track->when;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3342 3343 3344
			return 1;
		}

3345
		if (track->addr < caddr)
3346 3347 3348 3349 3350 3351
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3352
	 * Not found. Insert new tracking element.
3353
	 */
3354
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3355 3356 3357 3358 3359 3360 3361 3362
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3373 3374 3375 3376 3377 3378 3379
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
	void *addr = page_address(page);
3380
	DECLARE_BITMAP(map, s->objects);
3381 3382 3383
	void *p;

	bitmap_zero(map, s->objects);
3384 3385
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3386

3387
	for_each_object(p, s, addr)
3388 3389
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3390 3391 3392 3393 3394
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3395
	int len = 0;
3396
	unsigned long i;
3397
	struct loc_track t = { 0, 0, NULL };
3398 3399
	int node;

3400
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3401
			GFP_TEMPORARY))
3402
		return sprintf(buf, "Out of memory\n");
3403 3404 3405 3406

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3407
	for_each_node_state(node, N_NORMAL_MEMORY) {
3408 3409 3410 3411
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3412
		if (!atomic_long_read(&n->nr_slabs))
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3424
		struct location *l = &t.loc[i];
3425

3426
		if (len > PAGE_SIZE - 100)
3427
			break;
3428
		len += sprintf(buf + len, "%7ld ", l->count);
3429 3430

		if (l->addr)
3431
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3432
		else
3433
			len += sprintf(buf + len, "<not-available>");
3434 3435 3436 3437

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3438
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3439 3440 3441 3442
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3443
			len += sprintf(buf + len, " age=%ld",
3444 3445 3446
				l->min_time);

		if (l->min_pid != l->max_pid)
3447
			len += sprintf(buf + len, " pid=%ld-%ld",
3448 3449
				l->min_pid, l->max_pid);
		else
3450
			len += sprintf(buf + len, " pid=%ld",
3451 3452
				l->min_pid);

3453
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3454 3455 3456
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3457 3458 3459
					l->cpus);
		}

3460
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3461 3462 3463
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3464 3465 3466
					l->nodes);
		}

3467
		len += sprintf(buf + len, "\n");
3468 3469 3470 3471
	}

	free_loc_track(&t);
	if (!t.count)
3472 3473
		len += sprintf(buf, "No data\n");
	return len;
3474 3475
}

C
Christoph Lameter 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3502 3503
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3504

3505 3506 3507 3508
		if (!c)
			continue;

		page = c->page;
3509 3510 3511
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3512 3513 3514 3515 3516 3517 3518
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3519
				nodes[node] += x;
C
Christoph Lameter 已提交
3520
			}
3521
			per_cpu[node]++;
C
Christoph Lameter 已提交
3522 3523 3524
		}
	}

C
Christoph Lameter 已提交
3525
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3538
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3553
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3567 3568 3569 3570
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3571
			return 1;
3572
	}
C
Christoph Lameter 已提交
3573

3574
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3575 3576
		struct kmem_cache_node *n = get_node(s, node);

3577 3578 3579
		if (!n)
			continue;

3580
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3720
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3795 3796 3797 3798 3799 3800 3801 3802
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3803 3804 3805 3806 3807 3808 3809 3810
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3811 3812 3813
}
SLAB_ATTR(validate);

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3849
#ifdef CONFIG_NUMA
3850
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3851
{
3852
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3853 3854
}

3855
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3856 3857 3858 3859 3860
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3861
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3862 3863
	return length;
}
3864
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
#endif

static struct attribute * slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
3887
	&validate_attr.attr,
3888
	&shrink_attr.attr,
3889 3890
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
3891 3892 3893 3894
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
3895
	&remote_node_defrag_ratio_attr.attr,
C
Christoph Lameter 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
3942 3943 3944 3945 3946 3947 3948
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
3949 3950 3951 3952 3953 3954 3955
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
3956
	.release = kmem_cache_release
C
Christoph Lameter 已提交
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

3972
static struct kset *slab_kset;
C
Christoph Lameter 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4025
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4035
	s->kobj.kset = slab_kset;
4036 4037 4038
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4039
		return err;
4040
	}
C
Christoph Lameter 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4058
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4071
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4081 4082
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4098
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4099 4100
	int err;

4101
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4102
	if (!slab_kset) {
C
Christoph Lameter 已提交
4103 4104 4105 4106
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4107 4108
	slab_state = SYSFS;

4109
	list_for_each_entry(s, &slab_caches, list) {
4110
		err = sysfs_slab_add(s);
4111 4112 4113
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4114
	}
C
Christoph Lameter 已提交
4115 4116 4117 4118 4119 4120

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4121 4122 4123
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4133 4134 4135 4136

/*
 * The /proc/slabinfo ABI
 */
4137 4138 4139 4140 4141 4142 4143 4144
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4218
#endif /* CONFIG_SLABINFO */