slub.c 103.3 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

152 153 154 155 156 157 158
/*
 * Currently fastpath is not supported if preemption is enabled.
 */
#if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
#define SLUB_FASTPATH
#endif

C
Christoph Lameter 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

178 179 180 181
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
182
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
183

184 185 186 187 188 189 190
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
191 192
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
193

C
Christoph Lameter 已提交
194 195 196 197 198 199 200 201 202 203
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
204
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
205 206 207
#endif

#ifndef ARCH_SLAB_MINALIGN
208
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
209 210 211
#endif

/* Internal SLUB flags */
212 213
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
214

215 216 217 218 219
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
220 221 222 223 224 225 226 227 228
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
229
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
230 231 232 233 234
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
235
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
249
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
250 251 252
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
253

C
Christoph Lameter 已提交
254
#else
255 256 257
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
258 259 260 261
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
262

C
Christoph Lameter 已提交
263 264
#endif

265 266 267 268 269 270 271
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

290 291
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
292 293 294 295 296
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * The end pointer in a slab is special. It points to the first object in the
 * slab but has bit 0 set to mark it.
 *
 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
 * in the mapping set.
 */
static inline int is_end(void *addr)
{
	return (unsigned long)addr & PAGE_MAPPING_ANON;
}

void *slab_address(struct page *page)
{
	return page->end - PAGE_MAPPING_ANON;
}

316 317 318 319 320
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

321
	if (object == page->end)
322 323
		return 1;

324
	base = slab_address(page);
325 326 327 328 329 330 331 332
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
357 358
	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
		__p))
359 360 361 362 363 364 365

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
366 367 368 369
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
370 371 372
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
373
static int slub_debug;
374
#endif
C
Christoph Lameter 已提交
375 376 377

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
391
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
392 393
			newline = 0;
		}
P
Pekka Enberg 已提交
394
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
395 396 397
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
398
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
399 400 401 402 403 404
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
405
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
406 407 408
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
409
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
448 449 450 451 452
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
453 454 455 456 457 458 459
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

460
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
461
	__print_symbol("%s", (unsigned long)t->addr);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
494 495
}

496 497 498 499 500 501 502 503 504 505 506 507
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
508 509
{
	unsigned int off;	/* Offset of last byte */
510
	u8 *addr = slab_address(page);
511 512 513 514 515 516 517 518 519 520 521 522

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
523 524 525 526 527 528 529 530 531 532

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

533
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
534 535 536 537
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
538 539 540
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
541 542 543 544 545
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
546 547
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
548 549
}

550
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
551 552 553 554
{
	va_list args;
	char buf[100];

555 556
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
557
	va_end(args);
558 559
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
560 561 562 563 564 565 566 567 568
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
569
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
570 571 572 573 574 575 576 577
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

578
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
579 580 581
{
	while (bytes) {
		if (*start != (u8)value)
582
			return start;
C
Christoph Lameter 已提交
583 584 585
		start++;
		bytes--;
	}
586 587 588 589 590 591 592 593 594 595 596 597
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
598
			u8 *start, unsigned int value, unsigned int bytes)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
618 619 620 621 622 623 624 625 626
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
627
 *
C
Christoph Lameter 已提交
628 629 630 631 632
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
633 634 635
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
636 637 638 639
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
640 641
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
642 643
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
644 645 646 647 648
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
649 650
 *
 * object + s->size
C
Christoph Lameter 已提交
651
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
652
 *
C
Christoph Lameter 已提交
653 654
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

673 674
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
675 676 677 678
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
679 680 681 682 683
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
684 685 686 687

	if (!(s->flags & SLAB_POISON))
		return 1;

688
	start = slab_address(page);
689
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
690
	length = s->objects * s->size;
691
	remainder = end - (start + length);
C
Christoph Lameter 已提交
692 693 694
	if (!remainder)
		return 1;

695 696 697 698 699 700 701 702 703 704 705
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714 715 716 717
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

718 719
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
720 721
			return 0;
	} else {
722 723 724
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
				POISON_INUSE, s->inuse - s->objsize);
C
Christoph Lameter 已提交
725 726 727 728
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
729 730 731
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
732
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
753
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
754
		 */
755
		set_freepointer(s, p, page->end);
C
Christoph Lameter 已提交
756 757 758 759 760 761 762 763 764 765
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
766
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
767 768 769
		return 0;
	}
	if (page->inuse > s->objects) {
770 771
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
772 773 774 775 776 777 778 779
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
780 781
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
782 783 784 785 786 787 788
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

789
	while (fp != page->end && nr <= s->objects) {
C
Christoph Lameter 已提交
790 791 792 793 794 795
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
796
				set_freepointer(s, object, page->end);
C
Christoph Lameter 已提交
797 798
				break;
			} else {
799
				slab_err(s, page, "Freepointer corrupt");
800
				page->freelist = page->end;
C
Christoph Lameter 已提交
801
				page->inuse = s->objects;
802
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
803 804 805 806 807 808 809 810 811 812
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
813
		slab_err(s, page, "Wrong object count. Counter is %d but "
814
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
815
		page->inuse = s->objects - nr;
816
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
817 818 819 820
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

837
/*
C
Christoph Lameter 已提交
838
 * Tracking of fully allocated slabs for debugging purposes.
839
 */
C
Christoph Lameter 已提交
840
static void add_full(struct kmem_cache_node *n, struct page *page)
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
861 862 863 864 865 866 867 868 869 870 871 872
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
873 874 875 876 877
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
878
		object_err(s, page, object, "Object already allocated");
879
		goto bad;
C
Christoph Lameter 已提交
880 881 882 883
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
884
		goto bad;
C
Christoph Lameter 已提交
885 886
	}

C
Christoph Lameter 已提交
887
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
888 889
		goto bad;

C
Christoph Lameter 已提交
890 891 892 893 894
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
895
	return 1;
C
Christoph Lameter 已提交
896

C
Christoph Lameter 已提交
897 898 899 900 901
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
902
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
903
		 */
904
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
905
		page->inuse = s->objects;
906
		page->freelist = page->end;
C
Christoph Lameter 已提交
907 908 909 910
	}
	return 0;
}

C
Christoph Lameter 已提交
911 912
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
913 914 915 916 917
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
918
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
919 920 921 922
		goto fail;
	}

	if (on_freelist(s, page, object)) {
923
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
924 925 926 927 928 929 930 931
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
932 933
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
934
		else
935
		if (!page->slab) {
C
Christoph Lameter 已提交
936
			printk(KERN_ERR
937
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
938
						object);
939
			dump_stack();
P
Pekka Enberg 已提交
940
		} else
941 942
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
943 944
		goto fail;
	}
C
Christoph Lameter 已提交
945 946

	/* Special debug activities for freeing objects */
947
	if (!SlabFrozen(page) && page->freelist == page->end)
C
Christoph Lameter 已提交
948 949 950 951 952
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
953
	return 1;
C
Christoph Lameter 已提交
954

C
Christoph Lameter 已提交
955
fail:
956
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
957 958 959
	return 0;
}

C
Christoph Lameter 已提交
960 961
static int __init setup_slub_debug(char *str)
{
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
986
	for (; *str && *str != ','; str++) {
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1005
				"unknown. skipped\n", *str);
1006
		}
C
Christoph Lameter 已提交
1007 1008
	}

1009
check_slabs:
C
Christoph Lameter 已提交
1010 1011
	if (*str == ',')
		slub_debug_slabs = str + 1;
1012
out:
C
Christoph Lameter 已提交
1013 1014 1015 1016 1017
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1018 1019
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1020
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
1031
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
1032 1033
	 * pointer. Fail if this happens.
	 */
1034 1035
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
1036
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037 1038
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1039 1040 1041 1042
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1043
		    strncmp(slub_debug_slabs, name,
C
Christoph Lameter 已提交
1044
		    	strlen(slub_debug_slabs)) == 0))
1045 1046 1047 1048
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1049 1050
}
#else
C
Christoph Lameter 已提交
1051 1052
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1053

C
Christoph Lameter 已提交
1054 1055
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1056

C
Christoph Lameter 已提交
1057 1058
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1059 1060 1061 1062 1063

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1064
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065 1066
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1067
	void (*ctor)(struct kmem_cache *, void *))
1068 1069 1070
{
	return flags;
}
C
Christoph Lameter 已提交
1071 1072
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1073 1074 1075 1076 1077
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1078
	struct page *page;
C
Christoph Lameter 已提交
1079 1080 1081 1082 1083 1084 1085 1086
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

1087 1088 1089
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1109
	setup_object_debug(s, page, object);
1110
	if (unlikely(s->ctor))
1111
		s->ctor(s, object);
C
Christoph Lameter 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1122
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1123

C
Christoph Lameter 已提交
1124 1125
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1136
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1137 1138

	start = page_address(page);
1139
	page->end = start + 1;
C
Christoph Lameter 已提交
1140 1141 1142 1143 1144

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1145
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1146 1147 1148 1149 1150
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1151
	set_freepointer(s, last, page->end);
C
Christoph Lameter 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1163
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1164 1165 1166
		void *p;

		slab_pad_check(s, page);
1167
		for_each_object(p, s, slab_address(page))
C
Christoph Lameter 已提交
1168
			check_object(s, page, p, 0);
1169
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1170 1171 1172 1173 1174
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1175
		-pages);
C
Christoph Lameter 已提交
1176

1177
	page->mapping = NULL;
C
Christoph Lameter 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1208
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1222
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1236 1237
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1238
{
C
Christoph Lameter 已提交
1239 1240
	spin_lock(&n->list_lock);
	n->nr_partial++;
1241 1242 1243 1244
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1260
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1261
 *
C
Christoph Lameter 已提交
1262
 * Must hold list_lock.
C
Christoph Lameter 已提交
1263
 */
1264
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1265 1266 1267 1268
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1269
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1270 1271 1272 1273 1274 1275
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1276
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1277 1278 1279 1280 1281 1282 1283 1284
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1285 1286
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1287 1288 1289 1290 1291 1292
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1293
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1294 1295 1296 1297 1298 1299 1300 1301
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1302
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1312 1313 1314 1315
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1316
	 *
C
Christoph Lameter 已提交
1317 1318 1319 1320
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1321 1322
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1323 1324 1325 1326 1327
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1328
	 */
1329 1330
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1341
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1373
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1374
{
C
Christoph Lameter 已提交
1375
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1377

1378
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1379
	if (page->inuse) {
C
Christoph Lameter 已提交
1380

1381
		if (page->freelist != page->end) {
1382
			add_partial(n, page, tail);
1383 1384 1385 1386 1387 1388
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1389 1390
		slab_unlock(page);
	} else {
1391
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1392 1393
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1394 1395 1396 1397 1398 1399
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1400
			 */
1401
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1402 1403 1404
			slab_unlock(page);
		} else {
			slab_unlock(page);
1405
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1406 1407
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1408 1409 1410 1411 1412 1413
	}
}

/*
 * Remove the cpu slab
 */
1414
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1415
{
1416
	struct page *page = c->page;
1417
	int tail = 1;
1418 1419 1420

	if (c->freelist)
		stat(c, DEACTIVATE_REMOTE_FREES);
1421 1422 1423 1424
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
1425 1426 1427 1428
	 *
	 * We need to use _is_end here because deactivate slab may
	 * be called for a debug slab. Then c->freelist may contain
	 * a dummy pointer.
1429
	 */
1430
	while (unlikely(!is_end(c->freelist))) {
1431 1432
		void **object;

1433 1434
		tail = 0;	/* Hot objects. Put the slab first */

1435
		/* Retrieve object from cpu_freelist */
1436
		object = c->freelist;
1437
		c->freelist = c->freelist[c->offset];
1438 1439

		/* And put onto the regular freelist */
1440
		object[c->offset] = page->freelist;
1441 1442 1443
		page->freelist = object;
		page->inuse--;
	}
1444
	c->page = NULL;
1445
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1446 1447
}

1448
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1449
{
1450
	stat(c, CPUSLAB_FLUSH);
1451 1452
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1453 1454 1455 1456 1457 1458
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1459
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1460
{
1461
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1462

1463 1464
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1465 1466 1467 1468 1469 1470
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1471
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1500
/*
1501 1502 1503 1504
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1505
 *
1506 1507 1508
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1509
 *
1510 1511 1512
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1513
 *
1514 1515
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1516
 */
1517
static void *__slab_alloc(struct kmem_cache *s,
1518
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1519 1520
{
	void **object;
1521
	struct page *new;
1522 1523
#ifdef SLUB_FASTPATH
	unsigned long flags;
C
Christoph Lameter 已提交
1524

1525 1526
	local_irq_save(flags);
#endif
1527
	if (!c->page)
C
Christoph Lameter 已提交
1528 1529
		goto new_slab;

1530 1531
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1532
		goto another_slab;
1533
	stat(c, ALLOC_REFILL);
1534
load_freelist:
1535
	object = c->page->freelist;
1536
	if (unlikely(object == c->page->end))
C
Christoph Lameter 已提交
1537
		goto another_slab;
1538
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1539 1540
		goto debug;

1541
	object = c->page->freelist;
1542
	c->freelist = object[c->offset];
1543
	c->page->inuse = s->objects;
1544
	c->page->freelist = c->page->end;
1545
	c->node = page_to_nid(c->page);
1546
unlock_out:
1547
	slab_unlock(c->page);
1548
	stat(c, ALLOC_SLOWPATH);
1549 1550 1551 1552
out:
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1553 1554 1555
	return object;

another_slab:
1556
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1557 1558

new_slab:
1559 1560 1561
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1562
		stat(c, ALLOC_FROM_PARTIAL);
1563
		goto load_freelist;
C
Christoph Lameter 已提交
1564 1565
	}

1566 1567 1568
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1569
	new = new_slab(s, gfpflags, node);
1570 1571 1572 1573

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1574 1575
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1576
		stat(c, ALLOC_SLAB);
1577
		if (c->page)
1578 1579 1580 1581
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1582
		goto load_freelist;
C
Christoph Lameter 已提交
1583
	}
1584 1585
	object = NULL;
	goto out;
C
Christoph Lameter 已提交
1586
debug:
1587 1588
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1589
		goto another_slab;
1590

1591
	c->page->inuse++;
1592
	c->page->freelist = object[c->offset];
1593
	c->node = -1;
1594
	goto unlock_out;
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1607
static __always_inline void *slab_alloc(struct kmem_cache *s,
1608
		gfp_t gfpflags, int node, void *addr)
1609 1610
{
	void **object;
1611
	struct kmem_cache_cpu *c;
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/*
 * The SLUB_FASTPATH path is provisional and is currently disabled if the
 * kernel is compiled with preemption or if the arch does not support
 * fast cmpxchg operations. There are a couple of coming changes that will
 * simplify matters and allow preemption. Ultimately we may end up making
 * SLUB_FASTPATH the default.
 *
 * 1. The introduction of the per cpu allocator will avoid array lookups
 *    through get_cpu_slab(). A special register can be used instead.
 *
 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
 *    we can realize the logic here entirely with per cpu atomics. The
 *    per cpu atomic ops will take care of the preemption issues.
 */

#ifdef SLUB_FASTPATH
	c = get_cpu_slab(s, raw_smp_processor_id());
	do {
		object = c->freelist;
		if (unlikely(is_end(object) || !node_match(c, node))) {
			object = __slab_alloc(s, gfpflags, node, addr, c);
			break;
		}
1636
		stat(c, ALLOC_FASTPATH);
1637 1638 1639 1640 1641
	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
								!= object);
#else
	unsigned long flags;

1642
	local_irq_save(flags);
1643
	c = get_cpu_slab(s, smp_processor_id());
1644
	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1645

1646
		object = __slab_alloc(s, gfpflags, node, addr, c);
1647 1648

	else {
1649
		object = c->freelist;
1650
		c->freelist = object[c->offset];
1651
		stat(c, ALLOC_FASTPATH);
1652 1653
	}
	local_irq_restore(flags);
1654
#endif
1655 1656

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1657
		memset(object, 0, c->objsize);
1658

1659
	return object;
C
Christoph Lameter 已提交
1660 1661 1662 1663
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1664
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1665 1666 1667 1668 1669 1670
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1671
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1672 1673 1674 1675 1676
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1677 1678
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1679
 *
1680 1681 1682
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1683
 */
1684
static void __slab_free(struct kmem_cache *s, struct page *page,
1685
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1686 1687 1688
{
	void *prior;
	void **object = (void *)x;
1689
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1690

1691 1692 1693 1694 1695
#ifdef SLUB_FASTPATH
	unsigned long flags;

	local_irq_save(flags);
#endif
1696 1697
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1698 1699
	slab_lock(page);

1700
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1701 1702
		goto debug;
checks_ok:
1703
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1704 1705 1706
	page->freelist = object;
	page->inuse--;

1707 1708
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1709
		goto out_unlock;
1710
	}
C
Christoph Lameter 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
1720
	if (unlikely(prior == page->end)) {
1721
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1722 1723
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1724 1725 1726

out_unlock:
	slab_unlock(page);
1727 1728 1729
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1730 1731 1732
	return;

slab_empty:
1733
	if (prior != page->end) {
C
Christoph Lameter 已提交
1734
		/*
C
Christoph Lameter 已提交
1735
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1736 1737
		 */
		remove_partial(s, page);
1738 1739
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1740
	slab_unlock(page);
1741
	stat(c, FREE_SLAB);
1742 1743 1744
#ifdef SLUB_FASTPATH
	local_irq_restore(flags);
#endif
C
Christoph Lameter 已提交
1745 1746 1747 1748
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1749
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1750 1751
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1765
static __always_inline void slab_free(struct kmem_cache *s,
1766 1767 1768
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1769
	struct kmem_cache_cpu *c;
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
#ifdef SLUB_FASTPATH
	void **freelist;

	c = get_cpu_slab(s, raw_smp_processor_id());
	debug_check_no_locks_freed(object, s->objsize);
	do {
		freelist = c->freelist;
		barrier();
		/*
		 * If the compiler would reorder the retrieval of c->page to
		 * come before c->freelist then an interrupt could
		 * change the cpu slab before we retrieve c->freelist. We
		 * could be matching on a page no longer active and put the
		 * object onto the freelist of the wrong slab.
		 *
		 * On the other hand: If we already have the freelist pointer
		 * then any change of cpu_slab will cause the cmpxchg to fail
		 * since the freelist pointers are unique per slab.
		 */
		if (unlikely(page != c->page || c->node < 0)) {
			__slab_free(s, page, x, addr, c->offset);
			break;
		}
		object[c->offset] = freelist;
1795
		stat(c, FREE_FASTPATH);
1796 1797 1798 1799
	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
#else
	unsigned long flags;

1800
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1801
	debug_check_no_locks_freed(object, s->objsize);
1802
	c = get_cpu_slab(s, smp_processor_id());
1803
	if (likely(page == c->page && c->node >= 0)) {
1804
		object[c->offset] = c->freelist;
1805
		c->freelist = object;
1806
		stat(c, FREE_FASTPATH);
1807
	} else
1808
		__slab_free(s, page, x, addr, c->offset);
1809 1810

	local_irq_restore(flags);
1811
#endif
1812 1813
}

C
Christoph Lameter 已提交
1814 1815
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1816
	struct page *page;
C
Christoph Lameter 已提交
1817

1818
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1819

C
Christoph Lameter 已提交
1820
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1821 1822 1823 1824 1825 1826
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1827
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1828 1829 1830 1831 1832 1833 1834 1835

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1836 1837 1838 1839
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1840 1841 1842 1843
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1844
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1860
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1861 1862 1863 1864 1865 1866
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1878
 *
C
Christoph Lameter 已提交
1879 1880 1881 1882
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1883
 *
C
Christoph Lameter 已提交
1884 1885 1886 1887
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1888
 */
1889 1890
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1891 1892 1893
{
	int order;
	int rem;
1894
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1895

1896
	for (order = max(min_order,
1897 1898
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1899

1900
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1901

1902
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1903 1904 1905 1906
			continue;

		rem = slab_size % size;

1907
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1908 1909 1910
			break;

	}
C
Christoph Lameter 已提交
1911

C
Christoph Lameter 已提交
1912 1913 1914
	return order;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1959
/*
C
Christoph Lameter 已提交
1960
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1974
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1975 1976
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1977 1978 1979 1980 1981 1982 1983

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1984 1985 1986 1987
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1988
	c->freelist = (void *)PAGE_MAPPING_ANON;
1989
	c->node = 0;
1990 1991
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1992 1993
}

C
Christoph Lameter 已提交
1994 1995 1996 1997 1998 1999
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2000
#ifdef CONFIG_SLUB_DEBUG
2001
	INIT_LIST_HEAD(&n->full);
2002
#endif
C
Christoph Lameter 已提交
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2130 2131 2132 2133 2134 2135 2136
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2137 2138
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2139
 */
2140 2141
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2142 2143 2144
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2145
	unsigned long flags;
C
Christoph Lameter 已提交
2146 2147 2148

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2149
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2150 2151

	BUG_ON(!page);
2152 2153 2154 2155 2156 2157 2158
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2159 2160 2161 2162 2163
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2164
#ifdef CONFIG_SLUB_DEBUG
2165 2166
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2167
#endif
C
Christoph Lameter 已提交
2168 2169
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
R
root 已提交
2170 2171 2172 2173 2174 2175
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2176
	add_partial(n, page, 0);
R
root 已提交
2177
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2178 2179 2180 2181 2182 2183 2184
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2185
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2203
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2256
			!s->ctor)
C
Christoph Lameter 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2268
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2269
	/*
C
Christoph Lameter 已提交
2270
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2271
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2272
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2273 2274 2275
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2276
#endif
C
Christoph Lameter 已提交
2277 2278

	/*
C
Christoph Lameter 已提交
2279 2280
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2281 2282 2283 2284
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2285
		s->ctor)) {
C
Christoph Lameter 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2298
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2299 2300 2301 2302 2303 2304 2305
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2306
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2307 2308 2309 2310 2311 2312 2313 2314
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2315
#endif
C
Christoph Lameter 已提交
2316

C
Christoph Lameter 已提交
2317 2318
	/*
	 * Determine the alignment based on various parameters that the
2319 2320
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2341
	return !!s->objects;
C
Christoph Lameter 已提交
2342 2343 2344 2345 2346 2347

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2348
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2349 2350 2351 2352 2353 2354
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2355
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2356 2357 2358 2359 2360 2361

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2362
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2363
#endif
2364 2365
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2366

2367
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2368
		return 1;
2369
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2384
	struct page *page;
C
Christoph Lameter 已提交
2385 2386 2387 2388 2389 2390 2391

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2392
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2421 2422
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2443
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2444
 */
2445
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2446 2447 2448 2449 2450 2451
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2452
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2453
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2454 2455
		struct kmem_cache_node *n = get_node(s, node);

2456
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2474
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2475 2476 2477
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2478 2479
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2480 2481 2482 2483 2484 2485 2486
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2487
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
C
Christoph Lameter 已提交
2488 2489 2490
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2491
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
C
Christoph Lameter 已提交
2492 2493 2494 2495
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2496
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2497 2498 2499 2500 2501 2502 2503 2504

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2505
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2506 2507 2508 2509 2510 2511 2512 2513

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2514
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2539
			flags, NULL))
C
Christoph Lameter 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2552
#ifdef CONFIG_ZONE_DMA
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2581 2582 2583 2584 2585 2586 2587 2588 2589
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2590

2591
	realsize = kmalloc_caches[index].objsize;
2592 2593 2594 2595 2596 2597 2598 2599 2600
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2601
	}
2602 2603 2604 2605 2606 2607 2608

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2609
	up_write(&slub_lock);
2610
out:
2611
	return kmalloc_caches_dma[index];
2612 2613 2614
}
#endif

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2648 2649
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2650
	int index;
C
Christoph Lameter 已提交
2651

2652 2653 2654
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2655

2656
		index = size_index[(size - 1) / 8];
2657
	} else
2658
		index = fls(size - 1);
C
Christoph Lameter 已提交
2659 2660

#ifdef CONFIG_ZONE_DMA
2661
	if (unlikely((flags & SLUB_DMA)))
2662
		return dma_kmalloc_cache(index, flags);
2663

C
Christoph Lameter 已提交
2664 2665 2666 2667 2668 2669
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2670
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2671

2672 2673 2674 2675 2676 2677 2678
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2679 2680
		return s;

2681
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2682 2683 2684 2685 2686 2687
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2688
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2689

2690 2691 2692 2693 2694 2695 2696
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2697 2698
		return s;

2699
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2700 2701 2702 2703 2704 2705
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2706
	struct page *page;
C
Christoph Lameter 已提交
2707 2708
	struct kmem_cache *s;

2709 2710
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2711 2712
		return 0;

2713
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2714
	BUG_ON(!page);
2715 2716 2717 2718

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2747
	void *object = (void *)x;
C
Christoph Lameter 已提交
2748

2749
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2750 2751
		return;

2752
	page = virt_to_head_page(x);
2753 2754 2755 2756
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2757
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2758 2759 2760
}
EXPORT_SYMBOL(kfree);

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2774
/*
C
Christoph Lameter 已提交
2775 2776 2777 2778 2779 2780 2781 2782
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2799
	for_each_node_state(node, N_NORMAL_MEMORY) {
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2811
		 * Build lists indexed by the items in use in each slab.
2812
		 *
C
Christoph Lameter 已提交
2813 2814
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2828 2829
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2830 2831 2832 2833
			}
		}

		/*
C
Christoph Lameter 已提交
2834 2835
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2887
			BUG_ON(atomic_long_read(&n->nr_slabs));
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2963 2964 2965 2966 2967 2968 2969
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2970
	int caches = 0;
C
Christoph Lameter 已提交
2971

2972 2973
	init_alloc_cpu();

C
Christoph Lameter 已提交
2974 2975 2976
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2977
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2978 2979 2980 2981
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2982
	kmalloc_caches[0].refcount = -1;
2983
	caches++;
2984 2985

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2986 2987 2988 2989 2990 2991
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2992 2993
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2994
				"kmalloc-96", 96, GFP_KERNEL);
2995 2996 2997 2998
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2999
				"kmalloc-192", 192, GFP_KERNEL);
3000 3001
		caches++;
	}
C
Christoph Lameter 已提交
3002

3003
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
3004 3005
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
3006 3007
		caches++;
	}
C
Christoph Lameter 已提交
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3024
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025 3026
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
3027 3028 3029
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3030
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
3031 3032 3033 3034 3035
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3036 3037 3038 3039
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3040 3041 3042 3043
#endif


	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3044 3045
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3058
	if (s->ctor)
C
Christoph Lameter 已提交
3059 3060
		return 1;

3061 3062 3063 3064 3065 3066
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3067 3068 3069 3070
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3071
		size_t align, unsigned long flags, const char *name,
3072
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3073
{
3074
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3075 3076 3077 3078

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3079
	if (ctor)
C
Christoph Lameter 已提交
3080 3081 3082 3083 3084
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3085
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3086

3087
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3088 3089 3090 3091 3092 3093
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3094
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3095 3096 3097 3098 3099
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3100
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3113
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3114 3115 3116 3117
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3118
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3119
	if (s) {
3120 3121
		int cpu;

C
Christoph Lameter 已提交
3122 3123 3124 3125 3126 3127
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3128 3129 3130 3131 3132 3133 3134

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3135
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3136
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3137 3138
		if (sysfs_slab_alias(s, name))
			goto err;
3139 3140 3141 3142 3143
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3144
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3145
			list_add(&s->list, &slab_caches);
3146 3147 3148 3149 3150 3151
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3166 3167
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3168 3169 3170 3171 3172
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3173 3174
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3175 3176

	switch (action) {
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3187
	case CPU_UP_CANCELED:
3188
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3189
	case CPU_DEAD:
3190
	case CPU_DEAD_FROZEN:
3191 3192
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3193 3194
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3195 3196 3197
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3198 3199
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3200 3201
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3202 3203 3204 3205 3206 3207 3208
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3209 3210 3211
static struct notifier_block __cpuinitdata slab_notifier = {
	&slab_cpuup_callback, NULL, 0
};
C
Christoph Lameter 已提交
3212 3213 3214 3215 3216

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3217 3218 3219 3220 3221 3222
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3223

3224
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3225
		return s;
C
Christoph Lameter 已提交
3226

3227
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3228 3229 3230 3231 3232
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3233 3234 3235 3236 3237 3238
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3239

3240
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3241
		return s;
C
Christoph Lameter 已提交
3242

3243
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3244 3245
}

C
Christoph Lameter 已提交
3246
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3247 3248
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3249 3250
{
	void *p;
3251
	void *addr = slab_address(page);
3252 3253 3254 3255 3256 3257 3258 3259

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3260 3261
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3262 3263 3264 3265
		if (!check_object(s, page, p, 0))
			return 0;
	}

3266 3267
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3268 3269 3270 3271 3272
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3273 3274
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3275 3276
{
	if (slab_trylock(page)) {
3277
		validate_slab(s, page, map);
3278 3279 3280 3281 3282 3283
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3284 3285
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3286 3287
				"on slab 0x%p\n", s->name, page);
	} else {
3288 3289
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3290 3291 3292 3293
				"slab 0x%p\n", s->name, page);
	}
}

3294 3295
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3296 3297 3298 3299 3300 3301 3302 3303
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3304
		validate_slab_slab(s, page, map);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3315
		validate_slab_slab(s, page, map);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3328
static long validate_slab_cache(struct kmem_cache *s)
3329 3330 3331
{
	int node;
	unsigned long count = 0;
3332 3333 3334 3335 3336
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3337 3338

	flush_all(s);
C
Christoph Lameter 已提交
3339
	for_each_node_state(node, N_NORMAL_MEMORY) {
3340 3341
		struct kmem_cache_node *n = get_node(s, node);

3342
		count += validate_slab_node(s, n, map);
3343
	}
3344
	kfree(map);
3345 3346 3347
	return count;
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3403
/*
C
Christoph Lameter 已提交
3404
 * Generate lists of code addresses where slabcache objects are allocated
3405 3406 3407 3408 3409 3410
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3411 3412 3413 3414 3415 3416 3417
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3433
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3434 3435 3436 3437 3438 3439
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3440
	l = (void *)__get_free_pages(flags, order);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3454
				const struct track *track)
3455 3456 3457 3458
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3459
	unsigned long age = jiffies - track->when;
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3494 3495 3496
			return 1;
		}

3497
		if (track->addr < caddr)
3498 3499 3500 3501 3502 3503
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3504
	 * Not found. Insert new tracking element.
3505
	 */
3506
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3507 3508 3509 3510 3511 3512 3513 3514
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3525 3526 3527 3528 3529 3530
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3531
	void *addr = slab_address(page);
3532
	DECLARE_BITMAP(map, s->objects);
3533 3534 3535
	void *p;

	bitmap_zero(map, s->objects);
3536 3537
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3538

3539
	for_each_object(p, s, addr)
3540 3541
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3542 3543 3544 3545 3546
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3547
	int len = 0;
3548
	unsigned long i;
3549
	struct loc_track t = { 0, 0, NULL };
3550 3551
	int node;

3552
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3553
			GFP_TEMPORARY))
3554
		return sprintf(buf, "Out of memory\n");
3555 3556 3557 3558

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3559
	for_each_node_state(node, N_NORMAL_MEMORY) {
3560 3561 3562 3563
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3564
		if (!atomic_long_read(&n->nr_slabs))
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3576
		struct location *l = &t.loc[i];
3577

3578
		if (len > PAGE_SIZE - 100)
3579
			break;
3580
		len += sprintf(buf + len, "%7ld ", l->count);
3581 3582

		if (l->addr)
3583
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3584
		else
3585
			len += sprintf(buf + len, "<not-available>");
3586 3587 3588 3589

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3590
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3591 3592 3593 3594
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3595
			len += sprintf(buf + len, " age=%ld",
3596 3597 3598
				l->min_time);

		if (l->min_pid != l->max_pid)
3599
			len += sprintf(buf + len, " pid=%ld-%ld",
3600 3601
				l->min_pid, l->max_pid);
		else
3602
			len += sprintf(buf + len, " pid=%ld",
3603 3604
				l->min_pid);

3605
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3606 3607 3608
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3609 3610 3611
					l->cpus);
		}

3612
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3613 3614 3615
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3616 3617 3618
					l->nodes);
		}

3619
		len += sprintf(buf + len, "\n");
3620 3621 3622 3623
	}

	free_loc_track(&t);
	if (!t.count)
3624 3625
		len += sprintf(buf, "No data\n");
	return len;
3626 3627
}

C
Christoph Lameter 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3654 3655
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3656

3657 3658 3659 3660
		if (!c)
			continue;

		page = c->page;
3661 3662 3663
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3664 3665 3666 3667 3668 3669 3670
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3671
				nodes[node] += x;
C
Christoph Lameter 已提交
3672
			}
3673
			per_cpu[node]++;
C
Christoph Lameter 已提交
3674 3675 3676
		}
	}

C
Christoph Lameter 已提交
3677
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3690
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3705
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3719 3720 3721 3722
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3723
			return 1;
3724
	}
C
Christoph Lameter 已提交
3725

3726
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3727 3728
		struct kmem_cache_node *n = get_node(s, node);

3729 3730 3731
		if (!n)
			continue;

3732
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3872
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3947 3948 3949 3950 3951 3952 3953 3954
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3955 3956 3957 3958 3959 3960 3961 3962
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3963 3964 3965
}
SLAB_ATTR(validate);

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
4001
#ifdef CONFIG_NUMA
4002
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4003
{
4004
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4005 4006
}

4007
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4008 4009 4010 4011 4012
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
4013
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
4014 4015
	return length;
}
4016
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4017 4018
#endif

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
#ifdef CONFIG_SLUB_STATS

static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
	}
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
4075
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4095
	&validate_attr.attr,
4096
	&shrink_attr.attr,
4097 4098
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4099 4100 4101 4102
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4103
	&remote_node_defrag_ratio_attr.attr,
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4169 4170 4171 4172 4173 4174 4175
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4176 4177 4178 4179 4180 4181 4182
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4183
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4199
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4252
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4262
	s->kobj.kset = slab_kset;
4263 4264 4265
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4266
		return err;
4267
	}
C
Christoph Lameter 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4285
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4298
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4308 4309
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4325
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4326 4327
	int err;

4328
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4329
	if (!slab_kset) {
C
Christoph Lameter 已提交
4330 4331 4332 4333
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4334 4335
	slab_state = SYSFS;

4336
	list_for_each_entry(s, &slab_caches, list) {
4337
		err = sysfs_slab_add(s);
4338 4339 4340
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4341
	}
C
Christoph Lameter 已提交
4342 4343 4344 4345 4346 4347

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4348 4349 4350
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4360 4361 4362 4363

/*
 * The /proc/slabinfo ABI
 */
4364 4365 4366 4367 4368 4369 4370 4371
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4445
#endif /* CONFIG_SLABINFO */