intel_pstate.c 51.0 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

221 222 223
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
224
 * @policy:		CPUFreq policy value
225
 * @update_util:	CPUFreq utility callback information
226
 * @update_util_set:	CPUFreq utility callback is set
227 228
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
229 230 231 232 233 234 235 236 237 238
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
239 240 241
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
242 243
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
244 245 246
 *
 * This structure stores per CPU instance data for all CPUs.
 */
247 248 249
struct cpudata {
	int cpu;

250
	unsigned int policy;
251
	struct update_util_data update_util;
252
	bool   update_util_set;
253 254

	struct pstate_data pstate;
255
	struct vid_data vid;
256 257
	struct _pid pid;

258
	u64	last_update;
259
	u64	last_sample_time;
260 261
	u64	prev_aperf;
	u64	prev_mperf;
262
	u64	prev_tsc;
263
	u64	prev_cummulative_iowait;
264
	struct sample sample;
265
	struct perf_limits *perf_limits;
266 267 268 269
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
270
	unsigned int iowait_boost;
271 272 273
};

static struct cpudata **all_cpu_data;
274 275

/**
276
 * struct pstate_adjust_policy - Stores static PID configuration data
277 278 279 280 281 282 283 284 285 286
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
287 288
struct pstate_adjust_policy {
	int sample_rate_ms;
289
	s64 sample_rate_ns;
290 291 292 293 294 295 296
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
311 312
struct pstate_funcs {
	int (*get_max)(void);
313
	int (*get_max_physical)(void);
314 315
	int (*get_min)(void);
	int (*get_turbo)(void);
316
	int (*get_scaling)(void);
317
	u64 (*get_val)(struct cpudata*, int pstate);
318
	void (*get_vid)(struct cpudata *);
319
	int32_t (*get_target_pstate)(struct cpudata *);
320 321
};

322 323 324 325 326
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
327 328 329
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
330 331
};

332
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
333
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
334

335 336 337
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
338
static bool per_cpu_limits __read_mostly;
339

340 341 342
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
358
	.no_turbo = 0,
359
	.turbo_disabled = 0,
360 361 362 363
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
364 365
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
366 367
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
368 369
};

370 371 372 373 374 375
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

376 377
static DEFINE_MUTEX(intel_pstate_limits_lock);

378
#ifdef CONFIG_ACPI
379 380 381 382 383 384 385 386 387 388

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

389 390 391 392 393 394
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

395 396 397
	if (hwp_active)
		return;

398
	if (!intel_pstate_get_ppc_enable_status())
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
441
	 * correct max turbo frequency based on the turbo state.
442 443
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
444
	if (!limits->turbo_disabled)
445 446 447
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
448
	pr_debug("_PPC limits will be enforced\n");
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

478
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
479
			     int deadband, int integral) {
480 481
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
482
	pid->integral  = int_tofp(integral);
483
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
484 485 486 487
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
488
	pid->p_gain = div_fp(percent, 100);
489 490 491 492
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
493
	pid->i_gain = div_fp(percent, 100);
494 495 496 497
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
498
	pid->d_gain = div_fp(percent, 100);
499 500
}

501
static signed int pid_calc(struct _pid *pid, int32_t busy)
502
{
503
	signed int result;
504 505 506
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

507
	fp_error = pid->setpoint - busy;
508

509
	if (abs(fp_error) <= pid->deadband)
510 511 512 513 514 515
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

516 517 518 519 520 521 522 523
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
524 525 526 527 528 529
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

530 531
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
532 533

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
534
	result = result + (1 << (FRAC_BITS-1));
535 536 537 538 539
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
540 541 542
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
543

544
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
545 546 547 548 549
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
550

551 552 553 554 555 556
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

557 558 559 560 561 562 563
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564
	limits->turbo_disabled =
565 566 567 568
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

569
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
570
{
571
	int min, hw_min, max, hw_max, cpu, range, adj_range;
572
	struct perf_limits *perf_limits = limits;
573 574
	u64 value, cap;

575
	for_each_cpu(cpu, cpumask) {
576 577 578 579 580
		int max_perf_pct, min_perf_pct;

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

581 582 583 584 585
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

586 587 588
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
589
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
590
		adj_range = min_perf_pct * range / 100;
591
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
592 593 594
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

595
		adj_range = max_perf_pct * range / 100;
596
		max = hw_min + adj_range;
597
		if (limits->no_turbo) {
598 599 600
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
601 602 603 604 605 606
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
607
}
D
Dirk Brandewie 已提交
608

609 610 611 612 613 614 615 616
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

617 618 619 620
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
621 622 623
	put_online_cpus();
}

624 625 626 627 628 629 630
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
631

632 633 634 635 636
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
637
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
638 639 640 641 642 643 644

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
645 646 647 648 649 650
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
651 652 653
	{NULL, NULL}
};

654
static void __init intel_pstate_debug_expose_params(void)
655
{
656
	struct dentry *debugfs_parent;
657 658
	int i = 0;

659 660
	if (hwp_active ||
	    pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
D
Dirk Brandewie 已提交
661
		return;
662

663 664 665 666 667
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
668 669
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
670 671 672 673 674 675 676 677 678 679 680
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
681
		return sprintf(buf, "%u\n", limits->object);		\
682 683
	}

684 685 686 687 688 689 690 691 692 693 694
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
695
	turbo_fp = div_fp(no_turbo, total);
696 697 698 699
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

700 701 702 703 704 705 706 707 708 709 710
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

711 712 713 714 715 716
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
717 718
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
719
	else
720
		ret = sprintf(buf, "%u\n", limits->no_turbo);
721 722 723 724

	return ret;
}

725
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
726
			      const char *buf, size_t count)
727 728 729
{
	unsigned int input;
	int ret;
730

731 732 733
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
734

735 736
	mutex_lock(&intel_pstate_limits_lock);

737
	update_turbo_state();
738
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
739
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
740
		mutex_unlock(&intel_pstate_limits_lock);
741
		return -EPERM;
742
	}
D
Dirk Brandewie 已提交
743

744
	limits->no_turbo = clamp_t(int, input, 0, 1);
745

746 747
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
748
	if (hwp_active)
749
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
750

751 752 753 754
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
755
				  const char *buf, size_t count)
756 757 758
{
	unsigned int input;
	int ret;
759

760 761 762 763
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

764 765
	mutex_lock(&intel_pstate_limits_lock);

766 767 768 769 770 771 772
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
773
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
774

775 776
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
777
	if (hwp_active)
778
		intel_pstate_hwp_set_online_cpus();
779 780 781 782
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
783
				  const char *buf, size_t count)
784 785 786
{
	unsigned int input;
	int ret;
787

788 789 790
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
791

792 793
	mutex_lock(&intel_pstate_limits_lock);

794 795 796 797 798 799 800
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
801
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
802

803 804
	mutex_unlock(&intel_pstate_limits_lock);

D
Dirk Brandewie 已提交
805
	if (hwp_active)
806
		intel_pstate_hwp_set_online_cpus();
807 808 809 810 811 812 813 814 815
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
816
define_one_global_ro(turbo_pct);
817
define_one_global_ro(num_pstates);
818 819 820

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
821
	&turbo_pct.attr,
822
	&num_pstates.attr,
823 824 825 826 827 828 829
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

830
static void __init intel_pstate_sysfs_expose_params(void)
831
{
832
	struct kobject *intel_pstate_kobject;
833 834 835 836
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
837 838 839
	if (WARN_ON(!intel_pstate_kobject))
		return;

840
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

857 858
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
859

860
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
861
{
862
	/* First disable HWP notification interrupt as we don't process them */
863 864
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
865

866
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
867 868
}

869
static int atom_get_min_pstate(void)
870 871
{
	u64 value;
872

873
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
874
	return (value >> 8) & 0x7F;
875 876
}

877
static int atom_get_max_pstate(void)
878 879
{
	u64 value;
880

881
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
882
	return (value >> 16) & 0x7F;
883
}
884

885
static int atom_get_turbo_pstate(void)
886 887
{
	u64 value;
888

889
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
890
	return value & 0x7F;
891 892
}

893
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
894 895 896 897 898
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

899
	val = (u64)pstate << 8;
900
	if (limits->no_turbo && !limits->turbo_disabled)
901 902 903 904 905 906 907
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
908
	vid = ceiling_fp(vid_fp);
909

910 911 912
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

913
	return val | vid;
914 915
}

916
static int silvermont_get_scaling(void)
917 918 919
{
	u64 value;
	int i;
920 921 922
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
923 924

	rdmsrl(MSR_FSB_FREQ, value);
925 926
	i = value & 0x7;
	WARN_ON(i > 4);
927

928 929
	return silvermont_freq_table[i];
}
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
945 946
}

947
static void atom_get_vid(struct cpudata *cpudata)
948 949 950
{
	u64 value;

951
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
952 953
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
954 955 956 957
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
958

959
	rdmsrl(ATOM_TURBO_VIDS, value);
960
	cpudata->vid.turbo = value & 0x7f;
961 962
}

963
static int core_get_min_pstate(void)
964 965
{
	u64 value;
966

967
	rdmsrl(MSR_PLATFORM_INFO, value);
968 969 970
	return (value >> 40) & 0xFF;
}

971
static int core_get_max_pstate_physical(void)
972 973
{
	u64 value;
974

975
	rdmsrl(MSR_PLATFORM_INFO, value);
976 977 978
	return (value >> 8) & 0xFF;
}

979
static int core_get_max_pstate(void)
980
{
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1001
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1002 1003 1004 1005
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1006 1007 1008 1009 1010
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1011 1012 1013 1014 1015 1016 1017 1018
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1019

1020 1021
skip_tar:
	return max_pstate;
1022 1023
}

1024
static int core_get_turbo_pstate(void)
1025 1026 1027
{
	u64 value;
	int nont, ret;
1028

1029
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1030
	nont = core_get_max_pstate();
1031
	ret = (value) & 255;
1032 1033 1034 1035 1036
	if (ret <= nont)
		ret = nont;
	return ret;
}

1037 1038 1039 1040 1041
static inline int core_get_scaling(void)
{
	return 100000;
}

1042
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1043 1044 1045
{
	u64 val;

1046
	val = (u64)pstate << 8;
1047
	if (limits->no_turbo && !limits->turbo_disabled)
1048 1049
		val |= (u64)1 << 32;

1050
	return val;
1051 1052
}

1053 1054 1055 1056 1057
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1058
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1059 1060 1061 1062 1063 1064 1065
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1077
		.get_max_physical = core_get_max_pstate_physical,
1078 1079
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1080
		.get_scaling = core_get_scaling,
1081
		.get_val = core_get_val,
1082
		.get_target_pstate = get_target_pstate_use_performance,
1083 1084 1085
	},
};

1086
static const struct cpu_defaults silvermont_params = {
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1100
		.get_val = atom_get_val,
1101 1102
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1103
		.get_target_pstate = get_target_pstate_use_cpu_load,
1104 1105 1106
	},
};

1107
static const struct cpu_defaults airmont_params = {
1108 1109 1110
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1111
		.setpoint = 60,
1112 1113 1114 1115 1116
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1117 1118 1119 1120
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1121
		.get_val = atom_get_val,
1122
		.get_scaling = airmont_get_scaling,
1123
		.get_vid = atom_get_vid,
1124
		.get_target_pstate = get_target_pstate_use_cpu_load,
1125 1126 1127
	},
};

1128
static const struct cpu_defaults knl_params = {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1139
		.get_max_physical = core_get_max_pstate_physical,
1140 1141
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1142
		.get_scaling = core_get_scaling,
1143
		.get_val = core_get_val,
1144
		.get_target_pstate = get_target_pstate_use_performance,
1145 1146 1147
	},
};

1148
static const struct cpu_defaults bxt_params = {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1168 1169 1170
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1171
	int max_perf_adj;
1172
	int min_perf;
1173
	struct perf_limits *perf_limits = limits;
1174

1175
	if (limits->no_turbo || limits->turbo_disabled)
1176 1177
		max_perf = cpu->pstate.max_pstate;

1178 1179 1180
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1181 1182 1183 1184 1185
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1186
	max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
1187 1188
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1189

1190
	min_perf = fp_toint(max_perf * perf_limits->min_perf);
1191
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1192 1193
}

1194
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1195
{
1196 1197
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1198 1199 1200 1201 1202 1203 1204
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1221 1222
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1223 1224
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1225
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1226
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1227
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1228

1229 1230
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1231 1232

	intel_pstate_set_min_pstate(cpu);
1233 1234
}

1235
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1236
{
1237
	struct sample *sample = &cpu->sample;
1238

1239
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1240 1241
}

1242
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1243 1244
{
	u64 aperf, mperf;
1245
	unsigned long flags;
1246
	u64 tsc;
1247

1248
	local_irq_save(flags);
1249 1250
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1251
	tsc = rdtsc();
1252
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1253
		local_irq_restore(flags);
1254
		return false;
1255
	}
1256
	local_irq_restore(flags);
1257

1258
	cpu->last_sample_time = cpu->sample.time;
1259
	cpu->sample.time = time;
1260 1261
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1262
	cpu->sample.tsc =  tsc;
1263 1264
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1265
	cpu->sample.tsc -= cpu->prev_tsc;
1266

1267 1268
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1269
	cpu->prev_tsc = tsc;
1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1278 1279
}

1280 1281
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1282 1283
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1284 1285
}

1286 1287
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1288 1289
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1290 1291
}

1292 1293 1294
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1295
	int32_t busy_frac, boost;
1296
	int target, avg_pstate;
1297

1298
	busy_frac = div_fp(sample->mperf, sample->tsc);
1299

1300 1301
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1302

1303 1304
	if (busy_frac < boost)
		busy_frac = boost;
1305

1306
	sample->busy_scaled = busy_frac * 100;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1327 1328
}

1329
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1330
{
1331
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1332
	u64 duration_ns;
1333

1334
	/*
1335 1336 1337 1338 1339
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1340
	 */
1341 1342
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1343
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1344
			       div_fp(100 * max_pstate, current_pstate));
1345

1346
	/*
1347 1348 1349
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1350
	 * enough period of time to adjust our performance metric.
1351
	 */
1352
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1353
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1354
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1355
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1356 1357 1358
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1359
			perf_scaled = 0;
1360 1361
	}

1362 1363
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1374
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1375 1376 1377
	if (pstate == cpu->pstate.current_pstate)
		return;

1378
	cpu->pstate.current_pstate = pstate;
1379 1380 1381
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1382 1383
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1384
	int from, target_pstate;
1385 1386 1387
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1388

1389 1390
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1391

1392
	intel_pstate_update_pstate(cpu, target_pstate);
1393 1394

	sample = &cpu->sample;
1395
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1396
		fp_toint(sample->busy_scaled),
1397 1398 1399 1400 1401
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1402 1403
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1404 1405
}

1406
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1407
				     unsigned int flags)
1408
{
1409
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1410 1411
	u64 delta_ns;

1412
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1423

1424
	delta_ns = time - cpu->sample.time;
1425
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1426 1427
		bool sample_taken = intel_pstate_sample(cpu, time);

1428
		if (sample_taken) {
1429
			intel_pstate_calc_avg_perf(cpu);
1430 1431 1432
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1433
	}
1434 1435 1436
}

#define ICPU(model, policy) \
1437 1438
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1439 1440

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1458
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1459 1460 1461 1462
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1463
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1464
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1465 1466
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1467 1468 1469
	{}
};

1470 1471 1472 1473
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

	}
1491 1492 1493 1494

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1495

1496
	if (hwp_active) {
1497
		intel_pstate_hwp_enable(cpu);
1498 1499 1500
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1501

1502
	intel_pstate_get_cpu_pstates(cpu);
1503

1504 1505
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1506
	pr_debug("controlling: cpu %d\n", cpunum);
1507 1508 1509 1510 1511 1512

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1513
	struct cpudata *cpu = all_cpu_data[cpu_num];
1514

1515
	return cpu ? get_avg_frequency(cpu) : 0;
1516 1517
}

1518
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1519
{
1520 1521
	struct cpudata *cpu = all_cpu_data[cpu_num];

1522 1523 1524
	if (cpu->update_util_set)
		return;

1525 1526
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1527 1528
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1529
	cpu->update_util_set = true;
1530 1531 1532 1533
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1534 1535 1536 1537 1538
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1539
	cpufreq_remove_update_util_hook(cpu);
1540
	cpu_data->update_util_set = false;
1541 1542 1543
	synchronize_sched();
}

1544 1545
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
1546
	mutex_lock(&intel_pstate_limits_lock);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
1557
	mutex_unlock(&intel_pstate_limits_lock);
1558 1559
}

1560 1561 1562
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
1563 1564 1565

	mutex_lock(&intel_pstate_limits_lock);

1566 1567 1568
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1569 1570 1571 1572 1573 1574 1575 1576
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
		limits->min_policy_pct = (policy->min * 100) /
						policy->cpuinfo.max_freq;
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);

1595 1596
	mutex_unlock(&intel_pstate_limits_lock);

1597 1598 1599 1600
	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

1601 1602
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1603
	struct cpudata *cpu;
1604
	struct perf_limits *perf_limits = NULL;
1605

1606 1607 1608
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1609 1610 1611
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1612
	cpu = all_cpu_data[policy->cpu];
1613 1614
	cpu->policy = policy->policy;

1615 1616 1617 1618 1619
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1620 1621
	}

1622 1623 1624 1625 1626 1627 1628 1629
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
1630
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1631
			pr_debug("set performance\n");
1632
			intel_pstate_set_performance_limits(perf_limits);
1633 1634 1635
			goto out;
		}
	} else {
J
Joe Perches 已提交
1636
		pr_debug("set powersave\n");
1637 1638 1639 1640
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
1641

1642
	}
1643

1644
	intel_pstate_update_perf_limits(policy, perf_limits);
1645
 out:
1646
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1647 1648 1649 1650 1651 1652 1653 1654
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

1655 1656
	intel_pstate_set_update_util_hook(policy->cpu);

1657
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1658

1659 1660 1661 1662 1663
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1664
	cpufreq_verify_within_cpu_limits(policy);
1665

1666
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1667
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1668 1669 1670 1671 1672
		return -EINVAL;

	return 0;
}

1673
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1674
{
1675 1676
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1677

J
Joe Perches 已提交
1678
	pr_debug("CPU %d exiting\n", cpu_num);
1679

1680
	intel_pstate_clear_update_util_hook(cpu_num);
1681

D
Dirk Brandewie 已提交
1682 1683 1684
	if (hwp_active)
		return;

1685
	intel_pstate_set_min_pstate(cpu);
1686 1687
}

1688
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1689 1690
{
	struct cpudata *cpu;
1691
	int rc;
1692 1693 1694 1695 1696 1697 1698

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1699
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1700 1701 1702 1703
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1704 1705 1706 1707 1708 1709 1710 1711
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));

1712 1713
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1714 1715

	/* cpuinfo and default policy values */
1716
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1717 1718 1719 1720 1721
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1722
	intel_pstate_init_acpi_perf_limits(policy);
1723 1724 1725 1726 1727 1728
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1729 1730 1731 1732 1733 1734 1735
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1736 1737 1738 1739
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1740
	.resume		= intel_pstate_hwp_set_policy,
1741 1742
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1743
	.exit		= intel_pstate_cpu_exit,
1744
	.stop_cpu	= intel_pstate_stop_cpu,
1745 1746 1747
	.name		= "intel_pstate",
};

1748 1749 1750
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1751
static unsigned int force_load __initdata;
1752

1753
static int __init intel_pstate_msrs_not_valid(void)
1754
{
1755
	if (!pstate_funcs.get_max() ||
1756 1757
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1758 1759 1760 1761
		return -ENODEV;

	return 0;
}
1762

1763
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1764 1765
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1766
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1767 1768 1769 1770 1771 1772 1773
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

1787
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1788 1789
{
	pstate_funcs.get_max   = funcs->get_max;
1790
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1791 1792
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1793
	pstate_funcs.get_scaling = funcs->get_scaling;
1794
	pstate_funcs.get_val   = funcs->get_val;
1795
	pstate_funcs.get_vid   = funcs->get_vid;
1796 1797
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1798
	intel_pstate_use_acpi_profile();
1799 1800
}

1801
#ifdef CONFIG_ACPI
1802

1803
static bool __init intel_pstate_no_acpi_pss(void)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1832
static bool __init intel_pstate_has_acpi_ppc(void)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1852 1853 1854 1855
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1856
	int  oem_pwr_table;
1857 1858 1859
};

/* Hardware vendor-specific info that has its own power management modes */
1860
static struct hw_vendor_info vendor_info[] __initdata = {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1872 1873 1874 1875
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1876 1877 1878
	{0, "", ""},
};

1879
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1880 1881 1882
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1892

1893 1894
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1895 1896 1897
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1898
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1899 1900 1901 1902 1903 1904
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1905 1906
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1907
			}
1908 1909 1910 1911 1912 1913
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1914
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1915 1916
#endif /* CONFIG_ACPI */

1917 1918 1919 1920 1921
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1922 1923
static int __init intel_pstate_init(void)
{
1924
	int cpu, rc = 0;
1925
	const struct x86_cpu_id *id;
1926
	struct cpu_defaults *cpu_def;
1927

1928 1929 1930
	if (no_load)
		return -ENODEV;

1931 1932 1933 1934 1935 1936
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1937 1938 1939 1940
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1941
	cpu_def = (struct cpu_defaults *)id->driver_data;
1942

1943 1944
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1945

1946 1947 1948
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1949 1950 1951 1952 1953 1954 1955 1956
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1957
	pr_info("Intel P-state driver initializing\n");
1958

1959
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1960 1961 1962
	if (!all_cpu_data)
		return -ENOMEM;

1963 1964 1965
	if (!hwp_active && hwp_only)
		goto out;

1966 1967 1968 1969 1970 1971
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1972

1973
	if (hwp_active)
J
Joe Perches 已提交
1974
		pr_info("HWP enabled\n");
1975

1976 1977
	return rc;
out:
1978 1979 1980
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1981
			intel_pstate_clear_update_util_hook(cpu);
1982 1983 1984 1985 1986 1987
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1988 1989 1990 1991
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1992 1993 1994 1995 1996 1997 1998
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1999
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2000
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2001
		no_hwp = 1;
2002
	}
2003 2004
	if (!strcmp(str, "force"))
		force_load = 1;
2005 2006
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2007 2008
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2009 2010 2011 2012 2013 2014

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2015 2016 2017 2018
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2019 2020 2021
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");