intel_pstate.c 47.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181 182
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
183
 * @update_util_set:	CPUFreq utility callback is set
184 185
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
186 187 188 189 190 191 192 193 194 195
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
196 197
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198 199 200
 *
 * This structure stores per CPU instance data for all CPUs.
 */
201 202 203
struct cpudata {
	int cpu;

204
	struct update_util_data update_util;
205
	bool   update_util_set;
206 207

	struct pstate_data pstate;
208
	struct vid_data vid;
209 210
	struct _pid pid;

211
	u64	last_update;
212
	u64	last_sample_time;
213 214
	u64	prev_aperf;
	u64	prev_mperf;
215
	u64	prev_tsc;
216
	u64	prev_cummulative_iowait;
217
	struct sample sample;
218 219 220 221
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
222
	unsigned int iowait_boost;
223 224 225
};

static struct cpudata **all_cpu_data;
226 227

/**
228
 * struct pstate_adjust_policy - Stores static PID configuration data
229 230 231 232 233 234 235 236 237 238
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
239 240
struct pstate_adjust_policy {
	int sample_rate_ms;
241
	s64 sample_rate_ns;
242 243 244 245 246 247 248
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

249 250 251 252 253 254 255 256 257 258 259 260 261 262
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
263 264
struct pstate_funcs {
	int (*get_max)(void);
265
	int (*get_max_physical)(void);
266 267
	int (*get_min)(void);
	int (*get_turbo)(void);
268
	int (*get_scaling)(void);
269
	u64 (*get_val)(struct cpudata*, int pstate);
270
	void (*get_vid)(struct cpudata *);
271
	int32_t (*get_target_pstate)(struct cpudata *);
272 273
};

274 275 276 277 278
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
279 280 281
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
282 283
};

284
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
285
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
286

287 288 289
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
290

291 292 293
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
322 323
struct perf_limits {
	int no_turbo;
324
	int turbo_disabled;
325 326 327 328
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
329 330
	int max_policy_pct;
	int max_sysfs_pct;
331 332
	int min_policy_pct;
	int min_sysfs_pct;
333 334
};

335 336 337 338 339 340 341 342 343 344 345 346 347 348
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
349
	.no_turbo = 0,
350
	.turbo_disabled = 0,
351 352 353 354
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
355 356
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
357 358
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
359 360
};

361 362 363 364 365 366
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

367
#ifdef CONFIG_ACPI
368 369 370 371 372 373 374 375 376 377

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

378 379 380 381 382 383
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

384 385 386
	if (hwp_active)
		return;

387
	if (!intel_pstate_get_ppc_enable_status())
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
430
	 * correct max turbo frequency based on the turbo state.
431 432
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
433
	if (!limits->turbo_disabled)
434 435 436
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
437
	pr_debug("_PPC limits will be enforced\n");
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

467
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468
			     int deadband, int integral) {
469 470
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
471
	pid->integral  = int_tofp(integral);
472
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
473 474 475 476
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
477
	pid->p_gain = div_fp(percent, 100);
478 479 480 481
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
482
	pid->i_gain = div_fp(percent, 100);
483 484 485 486
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
487
	pid->d_gain = div_fp(percent, 100);
488 489
}

490
static signed int pid_calc(struct _pid *pid, int32_t busy)
491
{
492
	signed int result;
493 494 495
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

496
	fp_error = pid->setpoint - busy;
497

498
	if (abs(fp_error) <= pid->deadband)
499 500 501 502 503 504
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

505 506 507 508 509 510 511 512
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
513 514 515 516 517 518
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

519 520
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
521 522

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523
	result = result + (1 << (FRAC_BITS-1));
524 525 526 527 528
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
529 530 531
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532

533
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 535 536 537 538
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
539

540 541 542 543 544 545
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

546 547 548 549 550 551 552
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553
	limits->turbo_disabled =
554 555 556 557
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

558
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
559
{
560 561 562
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

563
	for_each_cpu(cpu, cpumask) {
564 565 566 567 568
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

D
Dirk Brandewie 已提交
569
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570
		adj_range = limits->min_perf_pct * range / 100;
571
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
572 573 574
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

575
		adj_range = limits->max_perf_pct * range / 100;
576
		max = hw_min + adj_range;
577
		if (limits->no_turbo) {
578 579 580
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
581 582 583 584 585 586
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
587
}
D
Dirk Brandewie 已提交
588

589 590 591 592 593 594 595 596
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

597 598 599 600
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
601 602 603
	put_online_cpus();
}

604 605 606 607 608 609 610
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
611

612 613 614 615 616
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
617
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
618 619 620 621 622 623 624

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
625 626 627 628 629 630
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
631 632 633
	{NULL, NULL}
};

634
static void __init intel_pstate_debug_expose_params(void)
635
{
636
	struct dentry *debugfs_parent;
637 638
	int i = 0;

D
Dirk Brandewie 已提交
639 640
	if (hwp_active)
		return;
641 642 643 644 645
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
646 647
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
648 649 650 651 652 653 654 655 656 657 658
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
659
		return sprintf(buf, "%u\n", limits->object);		\
660 661
	}

662 663 664 665 666 667 668 669 670 671 672
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
673
	turbo_fp = div_fp(no_turbo, total);
674 675 676 677
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

678 679 680 681 682 683 684 685 686 687 688
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

689 690 691 692 693 694
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
695 696
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
697
	else
698
		ret = sprintf(buf, "%u\n", limits->no_turbo);
699 700 701 702

	return ret;
}

703
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
704
			      const char *buf, size_t count)
705 706 707
{
	unsigned int input;
	int ret;
708

709 710 711
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
712 713

	update_turbo_state();
714
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
715
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716
		return -EPERM;
717
	}
D
Dirk Brandewie 已提交
718

719
	limits->no_turbo = clamp_t(int, input, 0, 1);
720

D
Dirk Brandewie 已提交
721
	if (hwp_active)
722
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
723

724 725 726 727
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
728
				  const char *buf, size_t count)
729 730 731
{
	unsigned int input;
	int ret;
732

733 734 735 736
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

737 738 739 740 741 742 743
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
744
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
745

D
Dirk Brandewie 已提交
746
	if (hwp_active)
747
		intel_pstate_hwp_set_online_cpus();
748 749 750 751
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
752
				  const char *buf, size_t count)
753 754 755
{
	unsigned int input;
	int ret;
756

757 758 759
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
760

761 762 763 764 765 766 767
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
768
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
769

D
Dirk Brandewie 已提交
770
	if (hwp_active)
771
		intel_pstate_hwp_set_online_cpus();
772 773 774 775 776 777 778 779 780
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
781
define_one_global_ro(turbo_pct);
782
define_one_global_ro(num_pstates);
783 784 785 786 787

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
788
	&turbo_pct.attr,
789
	&num_pstates.attr,
790 791 792 793 794 795 796
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

797
static void __init intel_pstate_sysfs_expose_params(void)
798
{
799
	struct kobject *intel_pstate_kobject;
800 801 802 803 804
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
805
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
806 807 808
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
809

810
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
811
{
812
	/* First disable HWP notification interrupt as we don't process them */
813 814
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
815

816
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
817 818
}

819
static int atom_get_min_pstate(void)
820 821
{
	u64 value;
822

823
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
824
	return (value >> 8) & 0x7F;
825 826
}

827
static int atom_get_max_pstate(void)
828 829
{
	u64 value;
830

831
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
832
	return (value >> 16) & 0x7F;
833
}
834

835
static int atom_get_turbo_pstate(void)
836 837
{
	u64 value;
838

839
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
840
	return value & 0x7F;
841 842
}

843
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
844 845 846 847 848
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

849
	val = (u64)pstate << 8;
850
	if (limits->no_turbo && !limits->turbo_disabled)
851 852 853 854 855 856 857
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
858
	vid = ceiling_fp(vid_fp);
859

860 861 862
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

863
	return val | vid;
864 865
}

866
static int silvermont_get_scaling(void)
867 868 869
{
	u64 value;
	int i;
870 871 872
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
873 874

	rdmsrl(MSR_FSB_FREQ, value);
875 876
	i = value & 0x7;
	WARN_ON(i > 4);
877

878 879
	return silvermont_freq_table[i];
}
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
895 896
}

897
static void atom_get_vid(struct cpudata *cpudata)
898 899 900
{
	u64 value;

901
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
902 903
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
904 905 906 907
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
908

909
	rdmsrl(ATOM_TURBO_VIDS, value);
910
	cpudata->vid.turbo = value & 0x7f;
911 912
}

913
static int core_get_min_pstate(void)
914 915
{
	u64 value;
916

917
	rdmsrl(MSR_PLATFORM_INFO, value);
918 919 920
	return (value >> 40) & 0xFF;
}

921
static int core_get_max_pstate_physical(void)
922 923
{
	u64 value;
924

925
	rdmsrl(MSR_PLATFORM_INFO, value);
926 927 928
	return (value >> 8) & 0xFF;
}

929
static int core_get_max_pstate(void)
930
{
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

951
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
952 953 954 955
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

956 957 958 959 960
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
961 962 963 964 965 966 967 968
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
969

970 971
skip_tar:
	return max_pstate;
972 973
}

974
static int core_get_turbo_pstate(void)
975 976 977
{
	u64 value;
	int nont, ret;
978

979
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
980
	nont = core_get_max_pstate();
981
	ret = (value) & 255;
982 983 984 985 986
	if (ret <= nont)
		ret = nont;
	return ret;
}

987 988 989 990 991
static inline int core_get_scaling(void)
{
	return 100000;
}

992
static u64 core_get_val(struct cpudata *cpudata, int pstate)
993 994 995
{
	u64 val;

996
	val = (u64)pstate << 8;
997
	if (limits->no_turbo && !limits->turbo_disabled)
998 999
		val |= (u64)1 << 32;

1000
	return val;
1001 1002
}

1003 1004 1005 1006 1007
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1008
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1009 1010 1011 1012 1013 1014 1015
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1027
		.get_max_physical = core_get_max_pstate_physical,
1028 1029
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1030
		.get_scaling = core_get_scaling,
1031
		.get_val = core_get_val,
1032
		.get_target_pstate = get_target_pstate_use_performance,
1033 1034 1035
	},
};

1036
static const struct cpu_defaults silvermont_params = {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1050
		.get_val = atom_get_val,
1051 1052
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1053
		.get_target_pstate = get_target_pstate_use_cpu_load,
1054 1055 1056
	},
};

1057
static const struct cpu_defaults airmont_params = {
1058 1059 1060
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1061
		.setpoint = 60,
1062 1063 1064 1065 1066
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1067 1068 1069 1070
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1071
		.get_val = atom_get_val,
1072
		.get_scaling = airmont_get_scaling,
1073
		.get_vid = atom_get_vid,
1074
		.get_target_pstate = get_target_pstate_use_cpu_load,
1075 1076 1077
	},
};

1078
static const struct cpu_defaults knl_params = {
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1089
		.get_max_physical = core_get_max_pstate_physical,
1090 1091
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1092
		.get_scaling = core_get_scaling,
1093
		.get_val = core_get_val,
1094
		.get_target_pstate = get_target_pstate_use_performance,
1095 1096 1097
	},
};

1098
static const struct cpu_defaults bxt_params = {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1118 1119 1120
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1121
	int max_perf_adj;
1122
	int min_perf;
1123

1124
	if (limits->no_turbo || limits->turbo_disabled)
1125 1126
		max_perf = cpu->pstate.max_pstate;

1127 1128 1129 1130 1131
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1132
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1133 1134
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1135

1136
	min_perf = fp_toint(max_perf * limits->min_perf);
1137
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1138 1139
}

1140 1141 1142 1143
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

1144 1145
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1146 1147 1148 1149 1150 1151 1152
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1153 1154 1155 1156
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1157 1158
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1159
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1160
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1161
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1162

1163 1164
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1165 1166

	intel_pstate_set_min_pstate(cpu);
1167 1168
}

1169
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1170
{
1171
	struct sample *sample = &cpu->sample;
1172

1173
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1174 1175
}

1176
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1177 1178
{
	u64 aperf, mperf;
1179
	unsigned long flags;
1180
	u64 tsc;
1181

1182
	local_irq_save(flags);
1183 1184
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1185
	tsc = rdtsc();
1186
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1187
		local_irq_restore(flags);
1188
		return false;
1189
	}
1190
	local_irq_restore(flags);
1191

1192
	cpu->last_sample_time = cpu->sample.time;
1193
	cpu->sample.time = time;
1194 1195
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1196
	cpu->sample.tsc =  tsc;
1197 1198
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1199
	cpu->sample.tsc -= cpu->prev_tsc;
1200

1201 1202
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1203
	cpu->prev_tsc = tsc;
1204 1205 1206 1207 1208 1209 1210 1211
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1212 1213
}

1214 1215
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1216 1217
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1218 1219
}

1220 1221
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1222 1223
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1224 1225
}

1226 1227 1228
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1229
	int32_t busy_frac, boost;
1230
	int target, avg_pstate;
1231

1232
	busy_frac = div_fp(sample->mperf, sample->tsc);
1233

1234 1235
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1236

1237 1238
	if (busy_frac < boost)
		busy_frac = boost;
1239

1240
	sample->busy_scaled = busy_frac * 100;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1261 1262
}

1263
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264
{
1265
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266
	u64 duration_ns;
1267

1268
	/*
1269 1270 1271 1272 1273
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1274
	 */
1275 1276
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1277
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1278
			       div_fp(100 * max_pstate, current_pstate));
1279

1280
	/*
1281 1282 1283
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1284
	 * enough period of time to adjust our performance metric.
1285
	 */
1286
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1287
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1288
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1289
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1290 1291 1292
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1293
			perf_scaled = 0;
1294 1295
	}

1296 1297
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1298 1299
}

1300 1301 1302 1303 1304 1305 1306 1307
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1308
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1309 1310 1311
	if (pstate == cpu->pstate.current_pstate)
		return;

1312
	cpu->pstate.current_pstate = pstate;
1313 1314 1315
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1316 1317
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1318
	int from, target_pstate;
1319 1320 1321
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1322

1323
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1324

1325
	intel_pstate_update_pstate(cpu, target_pstate);
1326 1327

	sample = &cpu->sample;
1328
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1329
		fp_toint(sample->busy_scaled),
1330 1331 1332 1333 1334
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1335 1336
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1337 1338
}

1339
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1340
				     unsigned int flags)
1341
{
1342
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1343 1344
	u64 delta_ns;

1345
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1356

1357
	delta_ns = time - cpu->sample.time;
1358
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1359 1360
		bool sample_taken = intel_pstate_sample(cpu, time);

1361
		if (sample_taken) {
1362
			intel_pstate_calc_avg_perf(cpu);
1363 1364 1365
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1366
	}
1367 1368 1369
}

#define ICPU(model, policy) \
1370 1371
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1372 1373

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1391
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1392 1393 1394 1395
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1396
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1397
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1398 1399
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1400 1401 1402
	{}
};

1403 1404 1405 1406
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1407 1408 1409
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1410 1411 1412 1413 1414 1415
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1416

1417
	if (hwp_active) {
1418
		intel_pstate_hwp_enable(cpu);
1419 1420 1421
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1422

1423
	intel_pstate_get_cpu_pstates(cpu);
1424

1425 1426
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1427
	pr_debug("controlling: cpu %d\n", cpunum);
1428 1429 1430 1431 1432 1433

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1434
	struct cpudata *cpu = all_cpu_data[cpu_num];
1435

1436
	return cpu ? get_avg_frequency(cpu) : 0;
1437 1438
}

1439
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1440
{
1441 1442
	struct cpudata *cpu = all_cpu_data[cpu_num];

1443 1444 1445
	if (cpu->update_util_set)
		return;

1446 1447
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1448 1449
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1450
	cpu->update_util_set = true;
1451 1452 1453 1454
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1455 1456 1457 1458 1459
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1460
	cpufreq_remove_update_util_hook(cpu);
1461
	cpu_data->update_util_set = false;
1462 1463 1464
	synchronize_sched();
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1479 1480
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1481 1482
	struct cpudata *cpu;

1483 1484 1485
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1486 1487 1488
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1489
	cpu = all_cpu_data[0];
1490 1491 1492 1493 1494
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1495 1496
	}

1497
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1498
		limits = &performance_limits;
1499
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1500
			pr_debug("set performance\n");
1501 1502 1503 1504
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1505
		pr_debug("set powersave\n");
1506
		limits = &powersave_limits;
1507
	}
D
Dirk Brandewie 已提交
1508

1509 1510
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1511 1512
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1513
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1514 1515

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1516 1517 1518 1519 1520 1521 1522 1523
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1524 1525

	/* Make sure min_perf_pct <= max_perf_pct */
1526
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1527

1528 1529
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1530
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1531

1532 1533 1534
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1535
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1536

1537 1538 1539 1540 1541
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1542
	cpufreq_verify_within_cpu_limits(policy);
1543

1544
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1545
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1546 1547 1548 1549 1550
		return -EINVAL;

	return 0;
}

1551
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1552
{
1553 1554
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1555

J
Joe Perches 已提交
1556
	pr_debug("CPU %d exiting\n", cpu_num);
1557

1558
	intel_pstate_clear_update_util_hook(cpu_num);
1559

D
Dirk Brandewie 已提交
1560 1561 1562
	if (hwp_active)
		return;

1563
	intel_pstate_set_min_pstate(cpu);
1564 1565
}

1566
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1567 1568
{
	struct cpudata *cpu;
1569
	int rc;
1570 1571 1572 1573 1574 1575 1576

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1577
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1578 1579 1580 1581
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1582 1583
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1584 1585

	/* cpuinfo and default policy values */
1586
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1587 1588 1589 1590 1591
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1592
	intel_pstate_init_acpi_perf_limits(policy);
1593 1594 1595 1596 1597 1598
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1599 1600 1601 1602 1603 1604 1605
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1606 1607 1608 1609
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1610
	.resume		= intel_pstate_hwp_set_policy,
1611 1612
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1613
	.exit		= intel_pstate_cpu_exit,
1614
	.stop_cpu	= intel_pstate_stop_cpu,
1615 1616 1617
	.name		= "intel_pstate",
};

1618 1619 1620
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1621
static unsigned int force_load __initdata;
1622

1623
static int __init intel_pstate_msrs_not_valid(void)
1624
{
1625
	if (!pstate_funcs.get_max() ||
1626 1627
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1628 1629 1630 1631
		return -ENODEV;

	return 0;
}
1632

1633
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1634 1635
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1636
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1637 1638 1639 1640 1641 1642 1643
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1644
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1645 1646
{
	pstate_funcs.get_max   = funcs->get_max;
1647
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1648 1649
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1650
	pstate_funcs.get_scaling = funcs->get_scaling;
1651
	pstate_funcs.get_val   = funcs->get_val;
1652
	pstate_funcs.get_vid   = funcs->get_vid;
1653 1654
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1655 1656
}

1657
#ifdef CONFIG_ACPI
1658

1659
static bool __init intel_pstate_no_acpi_pss(void)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1688
static bool __init intel_pstate_has_acpi_ppc(void)
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1708 1709 1710 1711
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1712
	int  oem_pwr_table;
1713 1714 1715
};

/* Hardware vendor-specific info that has its own power management modes */
1716
static struct hw_vendor_info vendor_info[] __initdata = {
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1728 1729 1730 1731
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1732 1733 1734
	{0, "", ""},
};

1735
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1736 1737 1738
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1748

1749 1750
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1751 1752 1753
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1754
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1755 1756 1757 1758 1759 1760
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1761 1762
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1763
			}
1764 1765 1766 1767 1768 1769
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1770
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1771 1772
#endif /* CONFIG_ACPI */

1773 1774 1775 1776 1777
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1778 1779
static int __init intel_pstate_init(void)
{
1780
	int cpu, rc = 0;
1781
	const struct x86_cpu_id *id;
1782
	struct cpu_defaults *cpu_def;
1783

1784 1785 1786
	if (no_load)
		return -ENODEV;

1787 1788 1789 1790 1791 1792
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1793 1794 1795 1796
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1797
	cpu_def = (struct cpu_defaults *)id->driver_data;
1798

1799 1800
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1801

1802 1803 1804
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1805 1806 1807 1808 1809 1810 1811 1812
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1813
	pr_info("Intel P-state driver initializing\n");
1814

1815
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1816 1817 1818
	if (!all_cpu_data)
		return -ENOMEM;

1819 1820 1821
	if (!hwp_active && hwp_only)
		goto out;

1822 1823 1824 1825 1826 1827
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1828

1829
	if (hwp_active)
J
Joe Perches 已提交
1830
		pr_info("HWP enabled\n");
1831

1832 1833
	return rc;
out:
1834 1835 1836
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1837
			intel_pstate_clear_update_util_hook(cpu);
1838 1839 1840 1841 1842 1843
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1844 1845 1846 1847
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1848 1849 1850 1851 1852 1853 1854
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1855
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1856
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1857
		no_hwp = 1;
1858
	}
1859 1860
	if (!strcmp(str, "force"))
		force_load = 1;
1861 1862
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1863 1864 1865 1866 1867 1868

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1869 1870 1871 1872
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1873 1874 1875
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");