intel_hdmi.c 65.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2006 Dave Airlie <airlied@linux.ie>
 * Copyright © 2006-2009 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 *	Jesse Barnes <jesse.barnes@intel.com>
 */

#include <linux/i2c.h>
30
#include <linux/slab.h>
31
#include <linux/delay.h>
32
#include <linux/hdmi.h>
33
#include <drm/drmP.h>
34
#include <drm/drm_atomic_helper.h>
35 36
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
37
#include "intel_drv.h"
38
#include <drm/i915_drm.h>
39 40
#include "i915_drv.h"

41 42
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
43
	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44 45
}

46 47 48
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
49
	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 51 52
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t enabled_bits;

P
Paulo Zanoni 已提交
53
	enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54

55
	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 57 58
	     "HDMI port enabled, expecting disabled\n");
}

59
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
C
Chris Wilson 已提交
60
{
61 62 63
	struct intel_digital_port *intel_dig_port =
		container_of(encoder, struct intel_digital_port, base.base);
	return &intel_dig_port->hdmi;
C
Chris Wilson 已提交
64 65
}

66 67
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
68
	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69 70
}

71
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72
{
73 74
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
75
		return VIDEO_DIP_SELECT_AVI;
76
	case HDMI_INFOFRAME_TYPE_SPD:
77
		return VIDEO_DIP_SELECT_SPD;
78 79
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_SELECT_VENDOR;
80
	default:
81
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82
		return 0;
83 84 85
	}
}

86
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87
{
88 89
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
90
		return VIDEO_DIP_ENABLE_AVI;
91
	case HDMI_INFOFRAME_TYPE_SPD:
92
		return VIDEO_DIP_ENABLE_SPD;
93 94
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VENDOR;
95
	default:
96
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97
		return 0;
98 99 100
	}
}

101
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102
{
103 104
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
105
		return VIDEO_DIP_ENABLE_AVI_HSW;
106
	case HDMI_INFOFRAME_TYPE_SPD:
107
		return VIDEO_DIP_ENABLE_SPD_HSW;
108 109
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VS_HSW;
110
	default:
111
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112 113 114 115
		return 0;
	}
}

116 117 118 119 120
static i915_reg_t
hsw_dip_data_reg(struct drm_i915_private *dev_priv,
		 enum transcoder cpu_transcoder,
		 enum hdmi_infoframe_type type,
		 int i)
121
{
122 123
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
124
		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
125
	case HDMI_INFOFRAME_TYPE_SPD:
126
		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
127
	case HDMI_INFOFRAME_TYPE_VENDOR:
128
		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
129
	default:
130
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
131
		return INVALID_MMIO_REG;
132 133 134
	}
}

135
static void g4x_write_infoframe(struct drm_encoder *encoder,
136
				enum hdmi_infoframe_type type,
137
				const void *frame, ssize_t len)
138
{
139
	const uint32_t *data = frame;
140 141
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
142
	u32 val = I915_READ(VIDEO_DIP_CTL);
143
	int i;
144

145 146
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

147
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
148
	val |= g4x_infoframe_index(type);
149

150
	val &= ~g4x_infoframe_enable(type);
151

152
	I915_WRITE(VIDEO_DIP_CTL, val);
153

154
	mmiowb();
155
	for (i = 0; i < len; i += 4) {
156 157 158
		I915_WRITE(VIDEO_DIP_DATA, *data);
		data++;
	}
159 160 161
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VIDEO_DIP_DATA, 0);
162
	mmiowb();
163

164
	val |= g4x_infoframe_enable(type);
165
	val &= ~VIDEO_DIP_FREQ_MASK;
166
	val |= VIDEO_DIP_FREQ_VSYNC;
167

168
	I915_WRITE(VIDEO_DIP_CTL, val);
169
	POSTING_READ(VIDEO_DIP_CTL);
170 171
}

172 173 174 175
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
176
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
177 178
	u32 val = I915_READ(VIDEO_DIP_CTL);

179 180
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;
181

182 183 184 185 186
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
187 188
}

189
static void ibx_write_infoframe(struct drm_encoder *encoder,
190
				enum hdmi_infoframe_type type,
191
				const void *frame, ssize_t len)
192
{
193
	const uint32_t *data = frame;
194 195
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
196
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
197
	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
198
	u32 val = I915_READ(reg);
199
	int i;
200

201 202
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

203
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
204
	val |= g4x_infoframe_index(type);
205

206
	val &= ~g4x_infoframe_enable(type);
207 208 209

	I915_WRITE(reg, val);

210
	mmiowb();
211 212 213 214
	for (i = 0; i < len; i += 4) {
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
215 216 217
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
218
	mmiowb();
219

220
	val |= g4x_infoframe_enable(type);
221
	val &= ~VIDEO_DIP_FREQ_MASK;
222
	val |= VIDEO_DIP_FREQ_VSYNC;
223 224

	I915_WRITE(reg, val);
225
	POSTING_READ(reg);
226 227
}

228 229 230 231 232
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
233
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
234
	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
235 236
	u32 val = I915_READ(reg);

237 238 239 240 241
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
242

243 244 245
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
246 247
}

248
static void cpt_write_infoframe(struct drm_encoder *encoder,
249
				enum hdmi_infoframe_type type,
250
				const void *frame, ssize_t len)
251
{
252
	const uint32_t *data = frame;
253 254
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
255
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
256
	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
257
	u32 val = I915_READ(reg);
258
	int i;
259

260 261
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

262
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
263
	val |= g4x_infoframe_index(type);
264

265 266
	/* The DIP control register spec says that we need to update the AVI
	 * infoframe without clearing its enable bit */
267 268
	if (type != HDMI_INFOFRAME_TYPE_AVI)
		val &= ~g4x_infoframe_enable(type);
269

270
	I915_WRITE(reg, val);
271

272
	mmiowb();
273
	for (i = 0; i < len; i += 4) {
274 275 276
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
277 278 279
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
280
	mmiowb();
281

282
	val |= g4x_infoframe_enable(type);
283
	val &= ~VIDEO_DIP_FREQ_MASK;
284
	val |= VIDEO_DIP_FREQ_VSYNC;
285

286
	I915_WRITE(reg, val);
287
	POSTING_READ(reg);
288
}
289

290 291 292 293 294
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
295
	u32 val = I915_READ(TVIDEO_DIP_CTL(intel_crtc->pipe));
296

297 298 299 300 301 302
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
303 304
}

305
static void vlv_write_infoframe(struct drm_encoder *encoder,
306
				enum hdmi_infoframe_type type,
307
				const void *frame, ssize_t len)
308
{
309
	const uint32_t *data = frame;
310 311
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
312
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
313
	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
314
	u32 val = I915_READ(reg);
315
	int i;
316

317 318
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

319
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
320
	val |= g4x_infoframe_index(type);
321

322
	val &= ~g4x_infoframe_enable(type);
323

324
	I915_WRITE(reg, val);
325

326
	mmiowb();
327 328 329 330
	for (i = 0; i < len; i += 4) {
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
331 332 333
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
334
	mmiowb();
335

336
	val |= g4x_infoframe_enable(type);
337
	val &= ~VIDEO_DIP_FREQ_MASK;
338
	val |= VIDEO_DIP_FREQ_VSYNC;
339

340
	I915_WRITE(reg, val);
341
	POSTING_READ(reg);
342 343
}

344 345 346 347 348
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
349
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
350
	u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(intel_crtc->pipe));
351

352 353 354 355 356
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
357

358 359 360
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
361 362
}

363
static void hsw_write_infoframe(struct drm_encoder *encoder,
364
				enum hdmi_infoframe_type type,
365
				const void *frame, ssize_t len)
366
{
367
	const uint32_t *data = frame;
368 369 370
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
371
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
372 373
	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
	i915_reg_t data_reg;
374
	int i;
375
	u32 val = I915_READ(ctl_reg);
376

377
	data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
378
	if (i915_mmio_reg_valid(data_reg))
379 380
		return;

381
	val &= ~hsw_infoframe_enable(type);
382 383
	I915_WRITE(ctl_reg, val);

384
	mmiowb();
385
	for (i = 0; i < len; i += 4) {
386 387
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
					    type, i >> 2), *data);
388 389
		data++;
	}
390 391
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
392 393
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
					    type, i >> 2), 0);
394
	mmiowb();
395

396
	val |= hsw_infoframe_enable(type);
397
	I915_WRITE(ctl_reg, val);
398
	POSTING_READ(ctl_reg);
399 400
}

401 402 403 404 405
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
406
	u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder));
407

408 409 410
	return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		      VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		      VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
411 412
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/*
 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 * used for both technologies.
 *
 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 * DW1:       DB3       | DB2 | DB1 | DB0
 * DW2:       DB7       | DB6 | DB5 | DB4
 * DW3: ...
 *
 * (HB is Header Byte, DB is Data Byte)
 *
 * The hdmi pack() functions don't know about that hardware specific hole so we
 * trick them by giving an offset into the buffer and moving back the header
 * bytes by one.
 */
430 431
static void intel_write_infoframe(struct drm_encoder *encoder,
				  union hdmi_infoframe *frame)
432 433
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
434 435
	uint8_t buffer[VIDEO_DIP_DATA_SIZE];
	ssize_t len;
436

437 438 439 440 441 442 443 444 445 446 447
	/* see comment above for the reason for this offset */
	len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
	if (len < 0)
		return;

	/* Insert the 'hole' (see big comment above) at position 3 */
	buffer[0] = buffer[1];
	buffer[1] = buffer[2];
	buffer[2] = buffer[3];
	buffer[3] = 0;
	len++;
448

449
	intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
450 451
}

452
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
453
					 const struct drm_display_mode *adjusted_mode)
454
{
455
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
456
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
457 458
	union hdmi_infoframe frame;
	int ret;
459

460 461 462 463 464 465
	ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
						       adjusted_mode);
	if (ret < 0) {
		DRM_ERROR("couldn't fill AVI infoframe\n");
		return;
	}
P
Paulo Zanoni 已提交
466

467
	if (intel_hdmi->rgb_quant_range_selectable) {
468
		if (intel_crtc->config->limited_color_range)
469 470
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_LIMITED;
471
		else
472 473
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_FULL;
474 475
	}

476
	intel_write_infoframe(encoder, &frame);
477 478
}

479
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
480
{
481 482 483 484 485 486 487 488
	union hdmi_infoframe frame;
	int ret;

	ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
	if (ret < 0) {
		DRM_ERROR("couldn't fill SPD infoframe\n");
		return;
	}
489

490
	frame.spd.sdi = HDMI_SPD_SDI_PC;
491

492
	intel_write_infoframe(encoder, &frame);
493 494
}

495 496
static void
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
497
			      const struct drm_display_mode *adjusted_mode)
498 499 500 501 502 503 504 505 506 507 508 509
{
	union hdmi_infoframe frame;
	int ret;

	ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
							  adjusted_mode);
	if (ret < 0)
		return;

	intel_write_infoframe(encoder, &frame);
}

510
static void g4x_set_infoframes(struct drm_encoder *encoder,
511
			       bool enable,
512
			       const struct drm_display_mode *adjusted_mode)
513
{
514
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
515 516
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
517
	i915_reg_t reg = VIDEO_DIP_CTL;
518
	u32 val = I915_READ(reg);
519
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
520

521 522
	assert_hdmi_port_disabled(intel_hdmi);

523 524 525 526 527 528 529 530 531 532 533
	/* If the registers were not initialized yet, they might be zeroes,
	 * which means we're selecting the AVI DIP and we're setting its
	 * frequency to once. This seems to really confuse the HW and make
	 * things stop working (the register spec says the AVI always needs to
	 * be sent every VSync). So here we avoid writing to the register more
	 * than we need and also explicitly select the AVI DIP and explicitly
	 * set its frequency to every VSync. Avoiding to write it twice seems to
	 * be enough to solve the problem, but being defensive shouldn't hurt us
	 * either. */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

534
	if (!enable) {
535 536
		if (!(val & VIDEO_DIP_ENABLE))
			return;
537 538 539 540 541 542 543
		if (port != (val & VIDEO_DIP_PORT_MASK)) {
			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
		}
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
544
		I915_WRITE(reg, val);
545
		POSTING_READ(reg);
546 547 548
		return;
	}

549 550
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
		if (val & VIDEO_DIP_ENABLE) {
551 552 553
			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
554 555 556 557 558
		}
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

559
	val |= VIDEO_DIP_ENABLE;
560 561
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
562

563
	I915_WRITE(reg, val);
564
	POSTING_READ(reg);
565

566 567
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
568
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_connector *connector;

	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));

	/*
	 * HDMI cloning is only supported on g4x which doesn't
	 * support deep color or GCP infoframes anyway so no
	 * need to worry about multiple HDMI sinks here.
	 */
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
		if (connector->encoder == encoder)
			return connector->display_info.bpc > 8;

	return false;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 *
 * From HDMI specification 1.4a:
 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 *   phase of 0
 */
static bool gcp_default_phase_possible(int pipe_bpp,
				       const struct drm_display_mode *mode)
{
	unsigned int pixels_per_group;

	switch (pipe_bpp) {
	case 30:
		/* 4 pixels in 5 clocks */
		pixels_per_group = 4;
		break;
	case 36:
		/* 2 pixels in 3 clocks */
		pixels_per_group = 2;
		break;
	case 48:
		/* 1 pixel in 2 clocks */
		pixels_per_group = 1;
		break;
	default:
		/* phase information not relevant for 8bpc */
		return false;
	}

	return mode->crtc_hdisplay % pixels_per_group == 0 &&
		mode->crtc_htotal % pixels_per_group == 0 &&
		mode->crtc_hblank_start % pixels_per_group == 0 &&
		mode->crtc_hblank_end % pixels_per_group == 0 &&
		mode->crtc_hsync_start % pixels_per_group == 0 &&
		mode->crtc_hsync_end % pixels_per_group == 0 &&
		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
		 mode->crtc_htotal/2 % pixels_per_group == 0);
}

633 634 635 636
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
{
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
637 638
	i915_reg_t reg;
	u32 val = 0;
639 640 641 642 643 644 645 646 647 648 649 650 651 652

	if (HAS_DDI(dev_priv))
		reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
	else if (IS_VALLEYVIEW(dev_priv))
		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
	else if (HAS_PCH_SPLIT(dev_priv->dev))
		reg = TVIDEO_DIP_GCP(crtc->pipe);
	else
		return false;

	/* Indicate color depth whenever the sink supports deep color */
	if (hdmi_sink_is_deep_color(encoder))
		val |= GCP_COLOR_INDICATION;

653 654 655 656 657
	/* Enable default_phase whenever the display mode is suitably aligned */
	if (gcp_default_phase_possible(crtc->config->pipe_bpp,
				       &crtc->config->base.adjusted_mode))
		val |= GCP_DEFAULT_PHASE_ENABLE;

658 659 660 661 662
	I915_WRITE(reg, val);

	return val != 0;
}

663
static void ibx_set_infoframes(struct drm_encoder *encoder,
664
			       bool enable,
665
			       const struct drm_display_mode *adjusted_mode)
666
{
667 668
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
669 670
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
671
	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
672
	u32 val = I915_READ(reg);
673
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
674

675 676
	assert_hdmi_port_disabled(intel_hdmi);

677 678 679
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

680
	if (!enable) {
681 682
		if (!(val & VIDEO_DIP_ENABLE))
			return;
683 684 685
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
686
		I915_WRITE(reg, val);
687
		POSTING_READ(reg);
688 689 690
		return;
	}

691
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
692 693 694
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
695 696 697 698
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

699
	val |= VIDEO_DIP_ENABLE;
700 701 702
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
703

704 705 706
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

707
	I915_WRITE(reg, val);
708
	POSTING_READ(reg);
709

710 711
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
712
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
713 714 715
}

static void cpt_set_infoframes(struct drm_encoder *encoder,
716
			       bool enable,
717
			       const struct drm_display_mode *adjusted_mode)
718
{
719 720 721
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
722
	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
723 724
	u32 val = I915_READ(reg);

725 726
	assert_hdmi_port_disabled(intel_hdmi);

727 728 729
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

730
	if (!enable) {
731 732
		if (!(val & VIDEO_DIP_ENABLE))
			return;
733 734 735
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
736
		I915_WRITE(reg, val);
737
		POSTING_READ(reg);
738 739 740
		return;
	}

741 742
	/* Set both together, unset both together: see the spec. */
	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
743
	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
744
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
745

746 747 748
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

749
	I915_WRITE(reg, val);
750
	POSTING_READ(reg);
751

752 753
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
754
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
755 756 757
}

static void vlv_set_infoframes(struct drm_encoder *encoder,
758
			       bool enable,
759
			       const struct drm_display_mode *adjusted_mode)
760
{
761
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
762
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
763 764
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
765
	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
766
	u32 val = I915_READ(reg);
767
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
768

769 770
	assert_hdmi_port_disabled(intel_hdmi);

771 772 773
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

774
	if (!enable) {
775 776
		if (!(val & VIDEO_DIP_ENABLE))
			return;
777 778 779
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
780
		I915_WRITE(reg, val);
781
		POSTING_READ(reg);
782 783 784
		return;
	}

785
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
786 787 788
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
789 790 791 792
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

793
	val |= VIDEO_DIP_ENABLE;
794 795 796
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
797

798 799 800
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

801
	I915_WRITE(reg, val);
802
	POSTING_READ(reg);
803

804 805
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
806
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
807 808 809
}

static void hsw_set_infoframes(struct drm_encoder *encoder,
810
			       bool enable,
811
			       const struct drm_display_mode *adjusted_mode)
812
{
813 814 815
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
816
	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
817
	u32 val = I915_READ(reg);
818

819 820
	assert_hdmi_port_disabled(intel_hdmi);

821 822 823 824
	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);

825
	if (!enable) {
826
		I915_WRITE(reg, val);
827
		POSTING_READ(reg);
828 829 830
		return;
	}

831 832 833
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP_HSW;

834
	I915_WRITE(reg, val);
835
	POSTING_READ(reg);
836

837 838
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
839
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
840 841
}

842
static void intel_hdmi_prepare(struct intel_encoder *encoder)
843
{
844
	struct drm_device *dev = encoder->base.dev;
845
	struct drm_i915_private *dev_priv = dev->dev_private;
846 847
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
848
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
849
	u32 hdmi_val;
850

851
	hdmi_val = SDVO_ENCODING_HDMI;
852 853
	if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
		hdmi_val |= HDMI_COLOR_RANGE_16_235;
854
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
855
		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
856
	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
857
		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
858

859
	if (crtc->config->pipe_bpp > 24)
860
		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
861
	else
862
		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
863

864
	if (crtc->config->has_hdmi_sink)
865
		hdmi_val |= HDMI_MODE_SELECT_HDMI;
866

867
	if (HAS_PCH_CPT(dev))
868
		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
869 870
	else if (IS_CHERRYVIEW(dev))
		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
871
	else
872
		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
873

874 875
	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
	POSTING_READ(intel_hdmi->hdmi_reg);
876 877
}

878 879
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
				    enum pipe *pipe)
880
{
881
	struct drm_device *dev = encoder->base.dev;
882
	struct drm_i915_private *dev_priv = dev->dev_private;
883
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
884
	enum intel_display_power_domain power_domain;
885 886
	u32 tmp;

887
	power_domain = intel_display_port_power_domain(encoder);
888
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
889 890
		return false;

891
	tmp = I915_READ(intel_hdmi->hdmi_reg);
892 893 894 895 896 897

	if (!(tmp & SDVO_ENABLE))
		return false;

	if (HAS_PCH_CPT(dev))
		*pipe = PORT_TO_PIPE_CPT(tmp);
898 899
	else if (IS_CHERRYVIEW(dev))
		*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
900 901 902 903 904 905
	else
		*pipe = PORT_TO_PIPE(tmp);

	return true;
}

906
static void intel_hdmi_get_config(struct intel_encoder *encoder,
907
				  struct intel_crtc_state *pipe_config)
908 909
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
910 911
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
912
	u32 tmp, flags = 0;
913
	int dotclock;
914 915 916 917 918 919 920 921 922 923 924 925 926

	tmp = I915_READ(intel_hdmi->hdmi_reg);

	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;

	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

927 928 929
	if (tmp & HDMI_MODE_SELECT_HDMI)
		pipe_config->has_hdmi_sink = true;

930 931 932
	if (intel_hdmi->infoframe_enabled(&encoder->base))
		pipe_config->has_infoframe = true;

933
	if (tmp & SDVO_AUDIO_ENABLE)
934 935
		pipe_config->has_audio = true;

936 937 938 939
	if (!HAS_PCH_SPLIT(dev) &&
	    tmp & HDMI_COLOR_RANGE_16_235)
		pipe_config->limited_color_range = true;

940
	pipe_config->base.adjusted_mode.flags |= flags;
941 942 943 944 945 946

	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

947 948 949
	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

950 951 952
	if (HAS_PCH_SPLIT(dev_priv->dev))
		ironlake_check_encoder_dotclock(pipe_config, dotclock);

953
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
954 955
}

956 957 958 959 960 961 962 963 964 965
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	WARN_ON(!crtc->config->has_hdmi_sink);
	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
			 pipe_name(crtc->pipe));
	intel_audio_codec_enable(encoder);
}

966
static void g4x_enable_hdmi(struct intel_encoder *encoder)
967
{
968
	struct drm_device *dev = encoder->base.dev;
969
	struct drm_i915_private *dev_priv = dev->dev_private;
970
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
971
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
972 973
	u32 temp;

974
	temp = I915_READ(intel_hdmi->hdmi_reg);
975

976 977 978
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
}

static void ibx_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);
996

997 998 999
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
1000

1001 1002 1003 1004 1005 1006
	/*
	 * HW workaround, need to write this twice for issue
	 * that may result in first write getting masked.
	 */
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1007 1008
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1009

1010 1011 1012 1013 1014 1015
	/*
	 * HW workaround, need to toggle enable bit off and on
	 * for 12bpc with pixel repeat.
	 *
	 * FIXME: BSpec says this should be done at the end of
	 * of the modeset sequence, so not sure if this isn't too soon.
1016
	 */
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (crtc->config->pipe_bpp > 24 &&
	    crtc->config->pixel_multiplier > 1) {
		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
		POSTING_READ(intel_hdmi->hdmi_reg);

		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1028 1029
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1030
	}
1031

1032
	if (crtc->config->has_audio)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		intel_enable_hdmi_audio(encoder);
}

static void cpt_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	enum pipe pipe = crtc->pipe;
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);

	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;

	/*
	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
	 *
	 * The procedure for 12bpc is as follows:
	 * 1. disable HDMI clock gating
	 * 2. enable HDMI with 8bpc
	 * 3. enable HDMI with 12bpc
	 * 4. enable HDMI clock gating
	 */

	if (crtc->config->pipe_bpp > 24) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) |
			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);

		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= SDVO_COLOR_FORMAT_8bpc;
1068
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->pipe_bpp > 24) {
		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= HDMI_COLOR_FORMAT_12bpc;

		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) &
			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
	}

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
1087
}
1088

1089 1090
static void vlv_enable_hdmi(struct intel_encoder *encoder)
{
1091 1092 1093 1094 1095 1096 1097
}

static void intel_disable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1098
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1099 1100
	u32 temp;

1101
	temp = I915_READ(intel_hdmi->hdmi_reg);
1102

1103
	temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1104 1105
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1106 1107 1108 1109 1110 1111 1112

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching DP port to be enabled on transcoder A.
	 */
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1113 1114 1115 1116 1117 1118 1119
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		temp &= ~SDVO_PIPE_B_SELECT;
		temp |= SDVO_ENABLE;
		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		temp &= ~SDVO_ENABLE;
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1134 1135 1136 1137

		intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
1138
	}
1139

1140
	intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void g4x_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);

	intel_disable_hdmi(encoder);
}

static void pch_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);
}

static void pch_post_disable_hdmi(struct intel_encoder *encoder)
{
	intel_disable_hdmi(encoder);
}

1166
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1167 1168 1169
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

1170
	if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1171
		return 165000;
1172
	else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1173 1174 1175 1176 1177
		return 300000;
	else
		return 225000;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
		      int clock, bool respect_dvi_limit)
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

	if (clock < 25000)
		return MODE_CLOCK_LOW;
	if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
		return MODE_CLOCK_HIGH;

1189 1190 1191 1192 1193 1194
	/* BXT DPLL can't generate 223-240 MHz */
	if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
		return MODE_CLOCK_RANGE;

	/* CHV DPLL can't generate 216-240 MHz */
	if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1195 1196 1197 1198 1199
		return MODE_CLOCK_RANGE;

	return MODE_OK;
}

1200 1201 1202
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
		      struct drm_display_mode *mode)
1203
{
1204 1205 1206 1207 1208 1209 1210
	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
	enum drm_mode_status status;
	int clock;

	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;
1211

1212
	clock = mode->clock;
1213 1214 1215
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		clock *= 2;

1216 1217
	/* check if we can do 8bpc */
	status = hdmi_port_clock_valid(hdmi, clock, true);
1218

1219 1220 1221
	/* if we can't do 8bpc we may still be able to do 12bpc */
	if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
		status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1222

1223
	return status;
1224 1225
}

1226
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1227
{
1228 1229
	struct drm_device *dev = crtc_state->base.crtc->dev;
	struct drm_atomic_state *state;
1230
	struct intel_encoder *encoder;
1231
	struct drm_connector *connector;
1232
	struct drm_connector_state *connector_state;
1233
	int count = 0, count_hdmi = 0;
1234
	int i;
1235

1236
	if (HAS_GMCH_DISPLAY(dev))
1237 1238
		return false;

1239 1240
	state = crtc_state->base.state;

1241
	for_each_connector_in_state(state, connector, connector_state, i) {
1242 1243 1244 1245 1246
		if (connector_state->crtc != crtc_state->base.crtc)
			continue;

		encoder = to_intel_encoder(connector_state->best_encoder);

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
		count++;
	}

	/*
	 * HDMI 12bpc affects the clocks, so it's only possible
	 * when not cloning with other encoder types.
	 */
	return count_hdmi > 0 && count_hdmi == count;
}

1258
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1259
			       struct intel_crtc_state *pipe_config)
1260
{
1261 1262
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
1263
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1264 1265
	int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
	int clock_12bpc = clock_8bpc * 3 / 2;
1266
	int desired_bpp;
1267

1268 1269
	pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;

1270 1271 1272
	if (pipe_config->has_hdmi_sink)
		pipe_config->has_infoframe = true;

1273 1274
	if (intel_hdmi->color_range_auto) {
		/* See CEA-861-E - 5.1 Default Encoding Parameters */
1275 1276 1277 1278 1279 1280
		pipe_config->limited_color_range =
			pipe_config->has_hdmi_sink &&
			drm_match_cea_mode(adjusted_mode) > 1;
	} else {
		pipe_config->limited_color_range =
			intel_hdmi->limited_color_range;
1281 1282
	}

1283 1284
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
		pipe_config->pixel_multiplier = 2;
1285
		clock_8bpc *= 2;
1286
		clock_12bpc *= 2;
1287 1288
	}

1289 1290 1291
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
		pipe_config->has_pch_encoder = true;

1292 1293 1294
	if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
		pipe_config->has_audio = true;

1295 1296 1297
	/*
	 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
	 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1298 1299
	 * outputs. We also need to check that the higher clock still fits
	 * within limits.
1300
	 */
1301
	if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1302
	    hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1303
	    hdmi_12bpc_possible(pipe_config)) {
1304 1305
		DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
		desired_bpp = 12*3;
1306 1307

		/* Need to adjust the port link by 1.5x for 12bpc. */
1308
		pipe_config->port_clock = clock_12bpc;
1309
	} else {
1310 1311
		DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
		desired_bpp = 8*3;
1312 1313

		pipe_config->port_clock = clock_8bpc;
1314 1315 1316 1317 1318
	}

	if (!pipe_config->bw_constrained) {
		DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
		pipe_config->pipe_bpp = desired_bpp;
1319 1320
	}

1321 1322 1323
	if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
				  false) != MODE_OK) {
		DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1324 1325 1326
		return false;
	}

1327 1328 1329
	/* Set user selected PAR to incoming mode's member */
	adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;

1330 1331 1332
	return true;
}

1333 1334
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
1335
{
1336
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346
	intel_hdmi->has_hdmi_sink = false;
	intel_hdmi->has_audio = false;
	intel_hdmi->rgb_quant_range_selectable = false;

	kfree(to_intel_connector(connector)->detect_edid);
	to_intel_connector(connector)->detect_edid = NULL;
}

static bool
1347
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1348 1349 1350
{
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1351
	struct edid *edid = NULL;
1352
	bool connected = false;
1353

1354 1355
	if (force) {
		intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1356

1357 1358 1359
		edid = drm_get_edid(connector,
				    intel_gmbus_get_adapter(dev_priv,
				    intel_hdmi->ddc_bus));
1360

1361 1362
		intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
	}
1363

1364 1365 1366 1367 1368 1369
	to_intel_connector(connector)->detect_edid = edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
		intel_hdmi->rgb_quant_range_selectable =
			drm_rgb_quant_range_selectable(edid);

		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1370 1371
		if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
			intel_hdmi->has_audio =
1372 1373 1374 1375 1376 1377 1378
				intel_hdmi->force_audio == HDMI_AUDIO_ON;

		if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink =
				drm_detect_hdmi_monitor(edid);

		connected = true;
1379 1380
	}

1381 1382 1383
	return connected;
}

1384 1385
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
1386
{
1387 1388 1389
	enum drm_connector_status status;
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1390 1391
	bool live_status = false;
	unsigned int retry = 3;
1392

1393 1394 1395
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

1396 1397
	intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);

1398 1399 1400 1401 1402 1403 1404 1405 1406
	while (!live_status && --retry) {
		live_status = intel_digital_port_connected(dev_priv,
				hdmi_to_dig_port(intel_hdmi));
		mdelay(10);
	}

	if (!live_status)
		DRM_DEBUG_KMS("Live status not up!");

1407
	intel_hdmi_unset_edid(connector);
1408

1409
	if (intel_hdmi_set_edid(connector, live_status)) {
1410 1411 1412 1413
		struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);

		hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
		status = connector_status_connected;
1414
	} else
1415
		status = connector_status_disconnected;
1416

1417 1418
	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);

1419
	return status;
1420 1421
}

1422 1423
static void
intel_hdmi_force(struct drm_connector *connector)
1424
{
1425
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1426

1427 1428
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
1429

1430
	intel_hdmi_unset_edid(connector);
1431

1432 1433
	if (connector->status != connector_status_connected)
		return;
1434

1435
	intel_hdmi_set_edid(connector, true);
1436 1437
	hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
}
1438

1439 1440 1441 1442 1443 1444 1445
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
	struct edid *edid;

	edid = to_intel_connector(connector)->detect_edid;
	if (edid == NULL)
		return 0;
1446

1447
	return intel_connector_update_modes(connector, edid);
1448 1449
}

1450 1451 1452 1453
static bool
intel_hdmi_detect_audio(struct drm_connector *connector)
{
	bool has_audio = false;
1454
	struct edid *edid;
1455

1456 1457 1458
	edid = to_intel_connector(connector)->detect_edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
		has_audio = drm_detect_monitor_audio(edid);
1459

1460 1461 1462
	return has_audio;
}

1463 1464
static int
intel_hdmi_set_property(struct drm_connector *connector,
1465 1466
			struct drm_property *property,
			uint64_t val)
1467 1468
{
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1469 1470
	struct intel_digital_port *intel_dig_port =
		hdmi_to_dig_port(intel_hdmi);
1471
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1472 1473
	int ret;

1474
	ret = drm_object_property_set_value(&connector->base, property, val);
1475 1476 1477
	if (ret)
		return ret;

1478
	if (property == dev_priv->force_audio_property) {
1479
		enum hdmi_force_audio i = val;
1480 1481 1482
		bool has_audio;

		if (i == intel_hdmi->force_audio)
1483 1484
			return 0;

1485
		intel_hdmi->force_audio = i;
1486

1487
		if (i == HDMI_AUDIO_AUTO)
1488 1489
			has_audio = intel_hdmi_detect_audio(connector);
		else
1490
			has_audio = (i == HDMI_AUDIO_ON);
1491

1492 1493
		if (i == HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink = 0;
1494

1495
		intel_hdmi->has_audio = has_audio;
1496 1497 1498
		goto done;
	}

1499
	if (property == dev_priv->broadcast_rgb_property) {
1500
		bool old_auto = intel_hdmi->color_range_auto;
1501
		bool old_range = intel_hdmi->limited_color_range;
1502

1503 1504 1505 1506 1507 1508
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_hdmi->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_hdmi->color_range_auto = false;
1509
			intel_hdmi->limited_color_range = false;
1510 1511 1512
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_hdmi->color_range_auto = false;
1513
			intel_hdmi->limited_color_range = true;
1514 1515 1516 1517
			break;
		default:
			return -EINVAL;
		}
1518 1519

		if (old_auto == intel_hdmi->color_range_auto &&
1520
		    old_range == intel_hdmi->limited_color_range)
1521 1522
			return 0;

1523 1524 1525
		goto done;
	}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (property == connector->dev->mode_config.aspect_ratio_property) {
		switch (val) {
		case DRM_MODE_PICTURE_ASPECT_NONE:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
			break;
		case DRM_MODE_PICTURE_ASPECT_4_3:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
			break;
		case DRM_MODE_PICTURE_ASPECT_16_9:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
			break;
		default:
			return -EINVAL;
		}
		goto done;
	}

1543 1544 1545
	return -EINVAL;

done:
1546 1547
	if (intel_dig_port->base.base.crtc)
		intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1548 1549 1550 1551

	return 0;
}

1552 1553 1554 1555
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1556
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1557

1558 1559
	intel_hdmi_prepare(encoder);

1560
	intel_hdmi->set_infoframes(&encoder->base,
1561
				   intel_crtc->config->has_hdmi_sink,
1562
				   adjusted_mode);
1563 1564
}

1565
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1566 1567
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1568
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1569 1570 1571 1572
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1573
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1574
	enum dpio_channel port = vlv_dport_to_channel(dport);
1575 1576 1577 1578
	int pipe = intel_crtc->pipe;
	u32 val;

	/* Enable clock channels for this port */
V
Ville Syrjälä 已提交
1579
	mutex_lock(&dev_priv->sb_lock);
1580
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1581 1582 1583 1584 1585 1586
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
1587
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1588 1589

	/* HDMI 1.0V-2dB */
1590 1591 1592 1593 1594 1595 1596 1597
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
	vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1598 1599

	/* Program lane clock */
1600 1601
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
V
Ville Syrjälä 已提交
1602
	mutex_unlock(&dev_priv->sb_lock);
1603

1604
	intel_hdmi->set_infoframes(&encoder->base,
1605
				   intel_crtc->config->has_hdmi_sink,
1606
				   adjusted_mode);
1607

1608
	g4x_enable_hdmi(encoder);
1609

1610
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1611 1612
}

1613
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1614 1615 1616 1617
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1618 1619
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1620
	enum dpio_channel port = vlv_dport_to_channel(dport);
1621
	int pipe = intel_crtc->pipe;
1622

1623 1624
	intel_hdmi_prepare(encoder);

1625
	/* Program Tx lane resets to default */
V
Ville Syrjälä 已提交
1626
	mutex_lock(&dev_priv->sb_lock);
1627
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1628 1629
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
1630
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1631 1632 1633 1634 1635 1636
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
			 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
1637 1638 1639 1640 1641 1642
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
V
Ville Syrjälä 已提交
1643
	mutex_unlock(&dev_priv->sb_lock);
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
				     bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;

1701 1702
	intel_hdmi_prepare(encoder);

1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

1711 1712
	chv_phy_powergate_lanes(encoder, true, 0x0);

V
Ville Syrjälä 已提交
1713
	mutex_lock(&dev_priv->sb_lock);
1714

1715 1716 1717
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

V
Ville Syrjälä 已提交
1766
	mutex_unlock(&dev_priv->sb_lock);
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
1799
	chv_phy_powergate_lanes(encoder, false, 0x0);
1800 1801
}

1802
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1803 1804 1805
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1806 1807
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1808
	enum dpio_channel port = vlv_dport_to_channel(dport);
1809
	int pipe = intel_crtc->pipe;
1810 1811

	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
V
Ville Syrjälä 已提交
1812
	mutex_lock(&dev_priv->sb_lock);
1813 1814
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
V
Ville Syrjälä 已提交
1815
	mutex_unlock(&dev_priv->sb_lock);
1816 1817
}

1818 1819 1820 1821 1822
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

V
Ville Syrjälä 已提交
1823
	mutex_lock(&dev_priv->sb_lock);
1824

1825 1826
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);
1827

V
Ville Syrjälä 已提交
1828
	mutex_unlock(&dev_priv->sb_lock);
1829 1830
}

1831 1832 1833
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1834
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1835 1836 1837 1838
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1839
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1840 1841
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
1842
	int data, i, stagger;
1843 1844
	u32 val;

V
Ville Syrjälä 已提交
1845
	mutex_lock(&dev_priv->sb_lock);
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855
	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

1856
	/* Program Tx latency optimal setting */
1857 1858 1859 1860 1861 1862 1863 1864
	for (i = 0; i < 4; i++) {
		/* Set the upar bit */
		data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(7) |
		       DPIO_TX2_STAGGER_MULT(5));
1897

1898 1899 1900
	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

1901
	/* Clear calc init */
1902 1903
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1904 1905
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1906 1907 1908 1909
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1910 1911
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1912
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);

1924 1925
	/* FIXME: Program the support xxx V-dB */
	/* Use 800mV-0dB */
1926 1927 1928 1929 1930 1931
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}
1932

1933 1934
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1935

1936 1937
		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1938 1939 1940 1941 1942 1943 1944 1945 1946

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

1947 1948
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}
1949

1950 1951 1952 1953 1954 1955
	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
1956 1957 1958 1959 1960
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}
1961 1962

	/* Start swing calculation */
1963 1964 1965 1966 1967 1968 1969
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1970

V
Ville Syrjälä 已提交
1971
	mutex_unlock(&dev_priv->sb_lock);
1972

1973
	intel_hdmi->set_infoframes(&encoder->base,
1974
				   intel_crtc->config->has_hdmi_sink,
1975 1976
				   adjusted_mode);

1977
	g4x_enable_hdmi(encoder);
1978

1979
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1980 1981 1982 1983 1984 1985

	/* Second common lane will stay alive on its own now */
	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
1986 1987
}

1988 1989
static void intel_hdmi_destroy(struct drm_connector *connector)
{
1990
	kfree(to_intel_connector(connector)->detect_edid);
1991
	drm_connector_cleanup(connector);
1992
	kfree(connector);
1993 1994 1995
}

static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1996
	.dpms = drm_atomic_helper_connector_dpms,
1997
	.detect = intel_hdmi_detect,
1998
	.force = intel_hdmi_force,
1999
	.fill_modes = drm_helper_probe_single_connector_modes,
2000
	.set_property = intel_hdmi_set_property,
2001
	.atomic_get_property = intel_connector_atomic_get_property,
2002
	.destroy = intel_hdmi_destroy,
2003
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2004
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
2005 2006 2007 2008 2009
};

static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
	.get_modes = intel_hdmi_get_modes,
	.mode_valid = intel_hdmi_mode_valid,
2010
	.best_encoder = intel_best_encoder,
2011 2012 2013
};

static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
C
Chris Wilson 已提交
2014
	.destroy = intel_encoder_destroy,
2015 2016
};

2017 2018 2019
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
2020
	intel_attach_force_audio_property(connector);
2021
	intel_attach_broadcast_rgb_property(connector);
2022
	intel_hdmi->color_range_auto = true;
2023 2024
	intel_attach_aspect_ratio_property(connector);
	intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2025 2026
}

P
Paulo Zanoni 已提交
2027 2028
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
			       struct intel_connector *intel_connector)
2029
{
2030 2031 2032 2033
	struct drm_connector *connector = &intel_connector->base;
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
2034
	struct drm_i915_private *dev_priv = dev->dev_private;
2035
	enum port port = intel_dig_port->port;
X
Xiong Zhang 已提交
2036
	uint8_t alternate_ddc_pin;
2037

2038
	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2039
			   DRM_MODE_CONNECTOR_HDMIA);
2040 2041
	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);

2042
	connector->interlace_allowed = 1;
2043
	connector->doublescan_allowed = 0;
2044
	connector->stereo_allowed = 1;
2045

2046 2047
	switch (port) {
	case PORT_B:
J
Jani Nikula 已提交
2048 2049 2050 2051
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2052 2053 2054 2055
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
2056
		if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
2057 2058 2059
			intel_encoder->hpd_pin = HPD_PORT_A;
		else
			intel_encoder->hpd_pin = HPD_PORT_B;
2060 2061
		break;
	case PORT_C:
J
Jani Nikula 已提交
2062 2063 2064 2065
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2066
		intel_encoder->hpd_pin = HPD_PORT_C;
2067 2068
		break;
	case PORT_D:
J
Jani Nikula 已提交
2069 2070 2071
		if (WARN_ON(IS_BROXTON(dev_priv)))
			intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
		else if (IS_CHERRYVIEW(dev_priv))
2072
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
2073
		else
2074
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2075
		intel_encoder->hpd_pin = HPD_PORT_D;
2076
		break;
X
Xiong Zhang 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	case PORT_E:
		/* On SKL PORT E doesn't have seperate GMBUS pin
		 *  We rely on VBT to set a proper alternate GMBUS pin. */
		alternate_ddc_pin =
			dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
		switch (alternate_ddc_pin) {
		case DDC_PIN_B:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
			break;
		case DDC_PIN_C:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
			break;
		case DDC_PIN_D:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
			break;
		default:
			MISSING_CASE(alternate_ddc_pin);
		}
		intel_encoder->hpd_pin = HPD_PORT_E;
		break;
2097
	case PORT_A:
2098
		intel_encoder->hpd_pin = HPD_PORT_A;
2099 2100
		/* Internal port only for eDP. */
	default:
2101
		BUG();
2102
	}
2103

2104
	if (IS_VALLEYVIEW(dev)) {
2105
		intel_hdmi->write_infoframe = vlv_write_infoframe;
2106
		intel_hdmi->set_infoframes = vlv_set_infoframes;
2107
		intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2108
	} else if (IS_G4X(dev)) {
2109 2110
		intel_hdmi->write_infoframe = g4x_write_infoframe;
		intel_hdmi->set_infoframes = g4x_set_infoframes;
2111
		intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2112
	} else if (HAS_DDI(dev)) {
2113
		intel_hdmi->write_infoframe = hsw_write_infoframe;
2114
		intel_hdmi->set_infoframes = hsw_set_infoframes;
2115
		intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2116 2117
	} else if (HAS_PCH_IBX(dev)) {
		intel_hdmi->write_infoframe = ibx_write_infoframe;
2118
		intel_hdmi->set_infoframes = ibx_set_infoframes;
2119
		intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2120 2121
	} else {
		intel_hdmi->write_infoframe = cpt_write_infoframe;
2122
		intel_hdmi->set_infoframes = cpt_set_infoframes;
2123
		intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2124
	}
2125

P
Paulo Zanoni 已提交
2126
	if (HAS_DDI(dev))
2127 2128 2129
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;
2130
	intel_connector->unregister = intel_connector_unregister;
2131 2132 2133 2134

	intel_hdmi_add_properties(intel_hdmi, connector);

	intel_connector_attach_encoder(intel_connector, intel_encoder);
2135
	drm_connector_register(connector);
2136
	intel_hdmi->attached_connector = intel_connector;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}

2148 2149
void intel_hdmi_init(struct drm_device *dev,
		     i915_reg_t hdmi_reg, enum port port)
2150 2151 2152 2153 2154
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct intel_connector *intel_connector;

2155
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2156 2157 2158
	if (!intel_dig_port)
		return;

2159
	intel_connector = intel_connector_alloc();
2160 2161 2162 2163 2164 2165 2166 2167 2168
	if (!intel_connector) {
		kfree(intel_dig_port);
		return;
	}

	intel_encoder = &intel_dig_port->base;

	drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
P
Paulo Zanoni 已提交
2169

2170
	intel_encoder->compute_config = intel_hdmi_compute_config;
2171 2172 2173 2174 2175 2176
	if (HAS_PCH_SPLIT(dev)) {
		intel_encoder->disable = pch_disable_hdmi;
		intel_encoder->post_disable = pch_post_disable_hdmi;
	} else {
		intel_encoder->disable = g4x_disable_hdmi;
	}
P
Paulo Zanoni 已提交
2177
	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2178
	intel_encoder->get_config = intel_hdmi_get_config;
2179
	if (IS_CHERRYVIEW(dev)) {
2180
		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2181 2182
		intel_encoder->pre_enable = chv_hdmi_pre_enable;
		intel_encoder->enable = vlv_enable_hdmi;
2183
		intel_encoder->post_disable = chv_hdmi_post_disable;
2184
		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2185
	} else if (IS_VALLEYVIEW(dev)) {
2186 2187
		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2188
		intel_encoder->enable = vlv_enable_hdmi;
2189
		intel_encoder->post_disable = vlv_hdmi_post_disable;
2190
	} else {
2191
		intel_encoder->pre_enable = intel_hdmi_pre_enable;
2192 2193
		if (HAS_PCH_CPT(dev))
			intel_encoder->enable = cpt_enable_hdmi;
2194 2195
		else if (HAS_PCH_IBX(dev))
			intel_encoder->enable = ibx_enable_hdmi;
2196
		else
2197
			intel_encoder->enable = g4x_enable_hdmi;
2198
	}
2199

2200
	intel_encoder->type = INTEL_OUTPUT_HDMI;
2201 2202 2203 2204 2205 2206 2207 2208
	if (IS_CHERRYVIEW(dev)) {
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
2209
	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2210 2211 2212 2213 2214 2215 2216
	/*
	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
	 * to work on real hardware. And since g4x can send infoframes to
	 * only one port anyway, nothing is lost by allowing it.
	 */
	if (IS_G4X(dev))
		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2217

2218
	intel_dig_port->port = port;
2219
	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2220
	intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
2221

2222
	intel_hdmi_init_connector(intel_dig_port, intel_connector);
2223
}