core.c 183.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148
static atomic_t nr_freq_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
187 188
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230 231 232 233 234 235
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
596 597 598 599
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
600 601 602 603

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

604
	/* must be done before we fput() the file */
605 606 607 608 609
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
610

S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
808
	int timer;
809 810 811 812 813

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

814 815 816 817 818 819 820 821 822
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
845
void perf_pmu_disable(struct pmu *pmu)
846
{
P
Peter Zijlstra 已提交
847 848 849
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
850 851
}

P
Peter Zijlstra 已提交
852
void perf_pmu_enable(struct pmu *pmu)
853
{
P
Peter Zijlstra 已提交
854 855 856
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
857 858
}

859 860 861 862 863 864 865
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
866
static void perf_pmu_rotate_start(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869
	struct list_head *head = &__get_cpu_var(rotation_list);
870

871
	WARN_ON(!irqs_disabled());
872

873
	if (list_empty(&cpuctx->rotation_list))
874
		list_add(&cpuctx->rotation_list, head);
875 876
}

877
static void get_ctx(struct perf_event_context *ctx)
878
{
879
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 881
}

882
static void put_ctx(struct perf_event_context *ctx)
883
{
884 885 886
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
887 888
		if (ctx->task)
			put_task_struct(ctx->task);
889
		kfree_rcu(ctx, rcu_head);
890
	}
891 892
}

893
static void unclone_ctx(struct perf_event_context *ctx)
894 895 896 897 898 899 900
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

923
/*
924
 * If we inherit events we want to return the parent event id
925 926
 * to userspace.
 */
927
static u64 primary_event_id(struct perf_event *event)
928
{
929
	u64 id = event->id;
930

931 932
	if (event->parent)
		id = event->parent->id;
933 934 935 936

	return id;
}

937
/*
938
 * Get the perf_event_context for a task and lock it.
939 940 941
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
942
static struct perf_event_context *
P
Peter Zijlstra 已提交
943
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
944
{
945
	struct perf_event_context *ctx;
946

P
Peter Zijlstra 已提交
947
retry:
948 949 950 951 952 953 954 955 956 957 958
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
959
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
960 961 962 963
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
964
		 * perf_event_task_sched_out, though the
965 966 967 968 969 970
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
971
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
972
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
974 975
			rcu_read_unlock();
			preempt_enable();
976 977
			goto retry;
		}
978 979

		if (!atomic_inc_not_zero(&ctx->refcount)) {
980
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
981 982
			ctx = NULL;
		}
983 984
	}
	rcu_read_unlock();
985
	preempt_enable();
986 987 988 989 990 991 992 993
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
994 995
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
996
{
997
	struct perf_event_context *ctx;
998 999
	unsigned long flags;

P
Peter Zijlstra 已提交
1000
	ctx = perf_lock_task_context(task, ctxn, &flags);
1001 1002
	if (ctx) {
		++ctx->pin_count;
1003
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1004 1005 1006 1007
	}
	return ctx;
}

1008
static void perf_unpin_context(struct perf_event_context *ctx)
1009 1010 1011
{
	unsigned long flags;

1012
	raw_spin_lock_irqsave(&ctx->lock, flags);
1013
	--ctx->pin_count;
1014
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1028 1029 1030
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1031 1032 1033 1034

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1035 1036 1037
	return ctx ? ctx->time : 0;
}

1038 1039
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1040
 * The caller of this function needs to hold the ctx->lock.
1041 1042 1043 1044 1045 1046 1047 1048 1049
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1061
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1062 1063
	else if (ctx->is_active)
		run_end = ctx->time;
1064 1065 1066 1067
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1068 1069 1070 1071

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1072
		run_end = perf_event_time(event);
1073 1074

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1075

1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1099
/*
1100
 * Add a event from the lists for its context.
1101 1102
 * Must be called with ctx->mutex and ctx->lock held.
 */
1103
static void
1104
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1105
{
1106 1107
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1108 1109

	/*
1110 1111 1112
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1113
	 */
1114
	if (event->group_leader == event) {
1115 1116
		struct list_head *list;

1117 1118 1119
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1120 1121
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1122
	}
P
Peter Zijlstra 已提交
1123

1124
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1125 1126
		ctx->nr_cgroups++;

1127 1128 1129
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1130
	list_add_rcu(&event->event_entry, &ctx->event_list);
1131
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1132
		perf_pmu_rotate_start(ctx->pmu);
1133 1134
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1135
		ctx->nr_stat++;
1136 1137
}

J
Jiri Olsa 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1186 1187 1188 1189 1190 1191
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1192 1193 1194
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1195 1196 1197
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1198 1199 1200
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1201 1202 1203 1204 1205 1206 1207 1208 1209
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1225
	event->id_header_size = size;
1226 1227
}

1228 1229
static void perf_group_attach(struct perf_event *event)
{
1230
	struct perf_event *group_leader = event->group_leader, *pos;
1231

P
Peter Zijlstra 已提交
1232 1233 1234 1235 1236 1237
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1249 1250 1251 1252 1253

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1254 1255
}

1256
/*
1257
 * Remove a event from the lists for its context.
1258
 * Must be called with ctx->mutex and ctx->lock held.
1259
 */
1260
static void
1261
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1262
{
1263
	struct perf_cpu_context *cpuctx;
1264 1265 1266 1267
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1268
		return;
1269 1270 1271

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1272
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1273
		ctx->nr_cgroups--;
1274 1275 1276 1277 1278 1279 1280 1281 1282
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1283

1284 1285 1286
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1287 1288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1289
		ctx->nr_stat--;
1290

1291
	list_del_rcu(&event->event_entry);
1292

1293 1294
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1295

1296
	update_group_times(event);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1307 1308
}

1309
static void perf_group_detach(struct perf_event *event)
1310 1311
{
	struct perf_event *sibling, *tmp;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1328
		goto out;
1329 1330 1331 1332
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1333

1334
	/*
1335 1336
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1337
	 * to whatever list we are on.
1338
	 */
1339
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1340 1341
		if (list)
			list_move_tail(&sibling->group_entry, list);
1342
		sibling->group_leader = sibling;
1343 1344 1345

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1346
	}
1347 1348 1349 1350 1351 1352

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1353 1354
}

1355 1356 1357
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1358 1359
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1360 1361
}

1362 1363
static void
event_sched_out(struct perf_event *event,
1364
		  struct perf_cpu_context *cpuctx,
1365
		  struct perf_event_context *ctx)
1366
{
1367
	u64 tstamp = perf_event_time(event);
1368 1369 1370 1371 1372 1373 1374 1375 1376
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1377
		delta = tstamp - event->tstamp_stopped;
1378
		event->tstamp_running += delta;
1379
		event->tstamp_stopped = tstamp;
1380 1381
	}

1382
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1383
		return;
1384

1385 1386 1387 1388
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1389
	}
1390
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1391
	event->pmu->del(event, 0);
1392
	event->oncpu = -1;
1393

1394
	if (!is_software_event(event))
1395 1396
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1397 1398
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1399
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1400 1401 1402
		cpuctx->exclusive = 0;
}

1403
static void
1404
group_sched_out(struct perf_event *group_event,
1405
		struct perf_cpu_context *cpuctx,
1406
		struct perf_event_context *ctx)
1407
{
1408
	struct perf_event *event;
1409
	int state = group_event->state;
1410

1411
	event_sched_out(group_event, cpuctx, ctx);
1412 1413 1414 1415

	/*
	 * Schedule out siblings (if any):
	 */
1416 1417
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1418

1419
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1420 1421 1422
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1423
/*
1424
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1425
 *
1426
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1427 1428
 * remove it from the context list.
 */
1429
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1430
{
1431 1432
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1433
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1434

1435
	raw_spin_lock(&ctx->lock);
1436 1437
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1438 1439 1440 1441
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1442
	raw_spin_unlock(&ctx->lock);
1443 1444

	return 0;
T
Thomas Gleixner 已提交
1445 1446 1447 1448
}


/*
1449
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1450
 *
1451
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1452
 * call when the task is on a CPU.
1453
 *
1454 1455
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1456 1457
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1458
 * When called from perf_event_exit_task, it's OK because the
1459
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1460
 */
1461
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1462
{
1463
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1464 1465
	struct task_struct *task = ctx->task;

1466 1467
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1468 1469
	if (!task) {
		/*
1470
		 * Per cpu events are removed via an smp call and
1471
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1472
		 */
1473
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1474 1475 1476 1477
		return;
	}

retry:
1478 1479
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1480

1481
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1482
	/*
1483 1484
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1485
	 */
1486
	if (ctx->is_active) {
1487
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1488 1489 1490 1491
		goto retry;
	}

	/*
1492 1493
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1494
	 */
1495
	list_del_event(event, ctx);
1496
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1497 1498
}

1499
/*
1500
 * Cross CPU call to disable a performance event
1501
 */
1502
int __perf_event_disable(void *info)
1503
{
1504 1505
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1506
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1507 1508

	/*
1509 1510
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1511 1512 1513
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1514
	 */
1515
	if (ctx->task && cpuctx->task_ctx != ctx)
1516
		return -EINVAL;
1517

1518
	raw_spin_lock(&ctx->lock);
1519 1520

	/*
1521
	 * If the event is on, turn it off.
1522 1523
	 * If it is in error state, leave it in error state.
	 */
1524
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1525
		update_context_time(ctx);
S
Stephane Eranian 已提交
1526
		update_cgrp_time_from_event(event);
1527 1528 1529
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1530
		else
1531 1532
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1533 1534
	}

1535
	raw_spin_unlock(&ctx->lock);
1536 1537

	return 0;
1538 1539 1540
}

/*
1541
 * Disable a event.
1542
 *
1543 1544
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1545
 * remains valid.  This condition is satisifed when called through
1546 1547 1548 1549
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1550
 * is the current context on this CPU and preemption is disabled,
1551
 * hence we can't get into perf_event_task_sched_out for this context.
1552
 */
1553
void perf_event_disable(struct perf_event *event)
1554
{
1555
	struct perf_event_context *ctx = event->ctx;
1556 1557 1558 1559
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1560
		 * Disable the event on the cpu that it's on
1561
		 */
1562
		cpu_function_call(event->cpu, __perf_event_disable, event);
1563 1564 1565
		return;
	}

P
Peter Zijlstra 已提交
1566
retry:
1567 1568
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1569

1570
	raw_spin_lock_irq(&ctx->lock);
1571
	/*
1572
	 * If the event is still active, we need to retry the cross-call.
1573
	 */
1574
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1575
		raw_spin_unlock_irq(&ctx->lock);
1576 1577 1578 1579 1580
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1581 1582 1583 1584 1585 1586 1587
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1588 1589 1590
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1591
	}
1592
	raw_spin_unlock_irq(&ctx->lock);
1593
}
1594
EXPORT_SYMBOL_GPL(perf_event_disable);
1595

S
Stephane Eranian 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1631 1632 1633 1634
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1635
static int
1636
event_sched_in(struct perf_event *event,
1637
		 struct perf_cpu_context *cpuctx,
1638
		 struct perf_event_context *ctx)
1639
{
1640 1641
	u64 tstamp = perf_event_time(event);

1642
	if (event->state <= PERF_EVENT_STATE_OFF)
1643 1644
		return 0;

1645
	event->state = PERF_EVENT_STATE_ACTIVE;
1646
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1658 1659 1660 1661 1662
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1663
	if (event->pmu->add(event, PERF_EF_START)) {
1664 1665
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1666 1667 1668
		return -EAGAIN;
	}

1669
	event->tstamp_running += tstamp - event->tstamp_stopped;
1670

S
Stephane Eranian 已提交
1671
	perf_set_shadow_time(event, ctx, tstamp);
1672

1673
	if (!is_software_event(event))
1674
		cpuctx->active_oncpu++;
1675
	ctx->nr_active++;
1676 1677
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1678

1679
	if (event->attr.exclusive)
1680 1681
		cpuctx->exclusive = 1;

1682 1683 1684
	return 0;
}

1685
static int
1686
group_sched_in(struct perf_event *group_event,
1687
	       struct perf_cpu_context *cpuctx,
1688
	       struct perf_event_context *ctx)
1689
{
1690
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1691
	struct pmu *pmu = group_event->pmu;
1692 1693
	u64 now = ctx->time;
	bool simulate = false;
1694

1695
	if (group_event->state == PERF_EVENT_STATE_OFF)
1696 1697
		return 0;

P
Peter Zijlstra 已提交
1698
	pmu->start_txn(pmu);
1699

1700
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1701
		pmu->cancel_txn(pmu);
1702
		perf_cpu_hrtimer_restart(cpuctx);
1703
		return -EAGAIN;
1704
	}
1705 1706 1707 1708

	/*
	 * Schedule in siblings as one group (if any):
	 */
1709
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1710
		if (event_sched_in(event, cpuctx, ctx)) {
1711
			partial_group = event;
1712 1713 1714 1715
			goto group_error;
		}
	}

1716
	if (!pmu->commit_txn(pmu))
1717
		return 0;
1718

1719 1720 1721 1722
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1733
	 */
1734 1735
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1736 1737 1738 1739 1740 1741 1742 1743
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1744
	}
1745
	event_sched_out(group_event, cpuctx, ctx);
1746

P
Peter Zijlstra 已提交
1747
	pmu->cancel_txn(pmu);
1748

1749 1750
	perf_cpu_hrtimer_restart(cpuctx);

1751 1752 1753
	return -EAGAIN;
}

1754
/*
1755
 * Work out whether we can put this event group on the CPU now.
1756
 */
1757
static int group_can_go_on(struct perf_event *event,
1758 1759 1760 1761
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1762
	 * Groups consisting entirely of software events can always go on.
1763
	 */
1764
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1765 1766 1767
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1768
	 * events can go on.
1769 1770 1771 1772 1773
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1774
	 * events on the CPU, it can't go on.
1775
	 */
1776
	if (event->attr.exclusive && cpuctx->active_oncpu)
1777 1778 1779 1780 1781 1782 1783 1784
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1785 1786
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1787
{
1788 1789
	u64 tstamp = perf_event_time(event);

1790
	list_add_event(event, ctx);
1791
	perf_group_attach(event);
1792 1793 1794
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1795 1796
}

1797 1798 1799 1800 1801 1802
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1816
/*
1817
 * Cross CPU call to install and enable a performance event
1818 1819
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1820
 */
1821
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1822
{
1823 1824
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1825
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1826 1827 1828
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1829
	perf_ctx_lock(cpuctx, task_ctx);
1830
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1831 1832

	/*
1833
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1834
	 */
1835
	if (task_ctx)
1836
		task_ctx_sched_out(task_ctx);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1851 1852
		task = task_ctx->task;
	}
1853

1854
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1855

1856
	update_context_time(ctx);
S
Stephane Eranian 已提交
1857 1858 1859 1860 1861 1862
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1863

1864
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1865

1866
	/*
1867
	 * Schedule everything back in
1868
	 */
1869
	perf_event_sched_in(cpuctx, task_ctx, task);
1870 1871 1872

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1873 1874

	return 0;
T
Thomas Gleixner 已提交
1875 1876 1877
}

/*
1878
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1879
 *
1880 1881
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1882
 *
1883
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1884 1885 1886 1887
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1888 1889
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1890 1891 1892 1893
			int cpu)
{
	struct task_struct *task = ctx->task;

1894 1895
	lockdep_assert_held(&ctx->mutex);

1896
	event->ctx = ctx;
1897 1898
	if (event->cpu != -1)
		event->cpu = cpu;
1899

T
Thomas Gleixner 已提交
1900 1901
	if (!task) {
		/*
1902
		 * Per cpu events are installed via an smp call and
1903
		 * the install is always successful.
T
Thomas Gleixner 已提交
1904
		 */
1905
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1906 1907 1908 1909
		return;
	}

retry:
1910 1911
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1912

1913
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1914
	/*
1915 1916
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1917
	 */
1918
	if (ctx->is_active) {
1919
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1920 1921 1922 1923
		goto retry;
	}

	/*
1924 1925
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1926
	 */
1927
	add_event_to_ctx(event, ctx);
1928
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1929 1930
}

1931
/*
1932
 * Put a event into inactive state and update time fields.
1933 1934 1935 1936 1937 1938
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1939
static void __perf_event_mark_enabled(struct perf_event *event)
1940
{
1941
	struct perf_event *sub;
1942
	u64 tstamp = perf_event_time(event);
1943

1944
	event->state = PERF_EVENT_STATE_INACTIVE;
1945
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1946
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1947 1948
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	}
1950 1951
}

1952
/*
1953
 * Cross CPU call to enable a performance event
1954
 */
1955
static int __perf_event_enable(void *info)
1956
{
1957 1958 1959
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1960
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1961
	int err;
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1973
		return -EINVAL;
1974

1975
	raw_spin_lock(&ctx->lock);
1976
	update_context_time(ctx);
1977

1978
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1979
		goto unlock;
S
Stephane Eranian 已提交
1980 1981 1982 1983

	/*
	 * set current task's cgroup time reference point
	 */
1984
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1985

1986
	__perf_event_mark_enabled(event);
1987

S
Stephane Eranian 已提交
1988 1989 1990
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1991
		goto unlock;
S
Stephane Eranian 已提交
1992
	}
1993

1994
	/*
1995
	 * If the event is in a group and isn't the group leader,
1996
	 * then don't put it on unless the group is on.
1997
	 */
1998
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1999
		goto unlock;
2000

2001
	if (!group_can_go_on(event, cpuctx, 1)) {
2002
		err = -EEXIST;
2003
	} else {
2004
		if (event == leader)
2005
			err = group_sched_in(event, cpuctx, ctx);
2006
		else
2007
			err = event_sched_in(event, cpuctx, ctx);
2008
	}
2009 2010 2011

	if (err) {
		/*
2012
		 * If this event can't go on and it's part of a
2013 2014
		 * group, then the whole group has to come off.
		 */
2015
		if (leader != event) {
2016
			group_sched_out(leader, cpuctx, ctx);
2017 2018
			perf_cpu_hrtimer_restart(cpuctx);
		}
2019
		if (leader->attr.pinned) {
2020
			update_group_times(leader);
2021
			leader->state = PERF_EVENT_STATE_ERROR;
2022
		}
2023 2024
	}

P
Peter Zijlstra 已提交
2025
unlock:
2026
	raw_spin_unlock(&ctx->lock);
2027 2028

	return 0;
2029 2030 2031
}

/*
2032
 * Enable a event.
2033
 *
2034 2035
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2036
 * remains valid.  This condition is satisfied when called through
2037 2038
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2039
 */
2040
void perf_event_enable(struct perf_event *event)
2041
{
2042
	struct perf_event_context *ctx = event->ctx;
2043 2044 2045 2046
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2047
		 * Enable the event on the cpu that it's on
2048
		 */
2049
		cpu_function_call(event->cpu, __perf_event_enable, event);
2050 2051 2052
		return;
	}

2053
	raw_spin_lock_irq(&ctx->lock);
2054
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2055 2056 2057
		goto out;

	/*
2058 2059
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2060 2061 2062 2063
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2064 2065
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2066

P
Peter Zijlstra 已提交
2067
retry:
2068
	if (!ctx->is_active) {
2069
		__perf_event_mark_enabled(event);
2070 2071 2072
		goto out;
	}

2073
	raw_spin_unlock_irq(&ctx->lock);
2074 2075 2076

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2077

2078
	raw_spin_lock_irq(&ctx->lock);
2079 2080

	/*
2081
	 * If the context is active and the event is still off,
2082 2083
	 * we need to retry the cross-call.
	 */
2084 2085 2086 2087 2088 2089
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2090
		goto retry;
2091
	}
2092

P
Peter Zijlstra 已提交
2093
out:
2094
	raw_spin_unlock_irq(&ctx->lock);
2095
}
2096
EXPORT_SYMBOL_GPL(perf_event_enable);
2097

2098
int perf_event_refresh(struct perf_event *event, int refresh)
2099
{
2100
	/*
2101
	 * not supported on inherited events
2102
	 */
2103
	if (event->attr.inherit || !is_sampling_event(event))
2104 2105
		return -EINVAL;

2106 2107
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2108 2109

	return 0;
2110
}
2111
EXPORT_SYMBOL_GPL(perf_event_refresh);
2112

2113 2114 2115
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2116
{
2117
	struct perf_event *event;
2118
	int is_active = ctx->is_active;
2119

2120
	ctx->is_active &= ~event_type;
2121
	if (likely(!ctx->nr_events))
2122 2123
		return;

2124
	update_context_time(ctx);
S
Stephane Eranian 已提交
2125
	update_cgrp_time_from_cpuctx(cpuctx);
2126
	if (!ctx->nr_active)
2127
		return;
2128

P
Peter Zijlstra 已提交
2129
	perf_pmu_disable(ctx->pmu);
2130
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2131 2132
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2133
	}
2134

2135
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2136
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2137
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2138
	}
P
Peter Zijlstra 已提交
2139
	perf_pmu_enable(ctx->pmu);
2140 2141
}

2142 2143 2144
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2145 2146 2147 2148
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2149
 * in them directly with an fd; we can only enable/disable all
2150
 * events via prctl, or enable/disable all events in a family
2151 2152
 * via ioctl, which will have the same effect on both contexts.
 */
2153 2154
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2155 2156
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2157
		&& ctx1->parent_gen == ctx2->parent_gen
2158
		&& !ctx1->pin_count && !ctx2->pin_count;
2159 2160
}

2161 2162
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2163 2164 2165
{
	u64 value;

2166
	if (!event->attr.inherit_stat)
2167 2168 2169
		return;

	/*
2170
	 * Update the event value, we cannot use perf_event_read()
2171 2172
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2173
	 * we know the event must be on the current CPU, therefore we
2174 2175
	 * don't need to use it.
	 */
2176 2177
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2178 2179
		event->pmu->read(event);
		/* fall-through */
2180

2181 2182
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2183 2184 2185 2186 2187 2188 2189
		break;

	default:
		break;
	}

	/*
2190
	 * In order to keep per-task stats reliable we need to flip the event
2191 2192
	 * values when we flip the contexts.
	 */
2193 2194 2195
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2196

2197 2198
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2199

2200
	/*
2201
	 * Since we swizzled the values, update the user visible data too.
2202
	 */
2203 2204
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2205 2206 2207 2208 2209
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2210 2211
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2212
{
2213
	struct perf_event *event, *next_event;
2214 2215 2216 2217

	if (!ctx->nr_stat)
		return;

2218 2219
	update_context_time(ctx);

2220 2221
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2222

2223 2224
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2225

2226 2227
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2228

2229
		__perf_event_sync_stat(event, next_event);
2230

2231 2232
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2233 2234 2235
	}
}

2236 2237
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2238
{
P
Peter Zijlstra 已提交
2239
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2240 2241
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2242
	struct perf_cpu_context *cpuctx;
2243
	int do_switch = 1;
T
Thomas Gleixner 已提交
2244

P
Peter Zijlstra 已提交
2245 2246
	if (likely(!ctx))
		return;
2247

P
Peter Zijlstra 已提交
2248 2249
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2250 2251
		return;

2252 2253
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2254
	next_ctx = next->perf_event_ctxp[ctxn];
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2266 2267
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2268
		if (context_equiv(ctx, next_ctx)) {
2269 2270
			/*
			 * XXX do we need a memory barrier of sorts
2271
			 * wrt to rcu_dereference() of perf_event_ctxp
2272
			 */
P
Peter Zijlstra 已提交
2273 2274
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2275 2276 2277
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2278

2279
			perf_event_sync_stat(ctx, next_ctx);
2280
		}
2281 2282
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2283
	}
2284
	rcu_read_unlock();
2285

2286
	if (do_switch) {
2287
		raw_spin_lock(&ctx->lock);
2288
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2289
		cpuctx->task_ctx = NULL;
2290
		raw_spin_unlock(&ctx->lock);
2291
	}
T
Thomas Gleixner 已提交
2292 2293
}

P
Peter Zijlstra 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2308 2309
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2310 2311 2312 2313 2314
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2315 2316 2317 2318 2319 2320 2321

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2322
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2323 2324
}

2325
static void task_ctx_sched_out(struct perf_event_context *ctx)
2326
{
P
Peter Zijlstra 已提交
2327
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2328

2329 2330
	if (!cpuctx->task_ctx)
		return;
2331 2332 2333 2334

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2335
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2336 2337 2338
	cpuctx->task_ctx = NULL;
}

2339 2340 2341 2342 2343 2344 2345
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2346 2347
}

2348
static void
2349
ctx_pinned_sched_in(struct perf_event_context *ctx,
2350
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2351
{
2352
	struct perf_event *event;
T
Thomas Gleixner 已提交
2353

2354 2355
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2356
			continue;
2357
		if (!event_filter_match(event))
2358 2359
			continue;

S
Stephane Eranian 已提交
2360 2361 2362 2363
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2364
		if (group_can_go_on(event, cpuctx, 1))
2365
			group_sched_in(event, cpuctx, ctx);
2366 2367 2368 2369 2370

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2371 2372 2373
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2374
		}
2375
	}
2376 2377 2378 2379
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2380
		      struct perf_cpu_context *cpuctx)
2381 2382 2383
{
	struct perf_event *event;
	int can_add_hw = 1;
2384

2385 2386 2387
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2388
			continue;
2389 2390
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2391
		 * of events:
2392
		 */
2393
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2394 2395
			continue;

S
Stephane Eranian 已提交
2396 2397 2398 2399
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2400
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2401
			if (group_sched_in(event, cpuctx, ctx))
2402
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2403
		}
T
Thomas Gleixner 已提交
2404
	}
2405 2406 2407 2408 2409
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2410 2411
	     enum event_type_t event_type,
	     struct task_struct *task)
2412
{
S
Stephane Eranian 已提交
2413
	u64 now;
2414
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2415

2416
	ctx->is_active |= event_type;
2417
	if (likely(!ctx->nr_events))
2418
		return;
2419

S
Stephane Eranian 已提交
2420 2421
	now = perf_clock();
	ctx->timestamp = now;
2422
	perf_cgroup_set_timestamp(task, ctx);
2423 2424 2425 2426
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2427
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2428
		ctx_pinned_sched_in(ctx, cpuctx);
2429 2430

	/* Then walk through the lower prio flexible groups */
2431
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2432
		ctx_flexible_sched_in(ctx, cpuctx);
2433 2434
}

2435
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2436 2437
			     enum event_type_t event_type,
			     struct task_struct *task)
2438 2439 2440
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2441
	ctx_sched_in(ctx, cpuctx, event_type, task);
2442 2443
}

S
Stephane Eranian 已提交
2444 2445
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2446
{
P
Peter Zijlstra 已提交
2447
	struct perf_cpu_context *cpuctx;
2448

P
Peter Zijlstra 已提交
2449
	cpuctx = __get_cpu_context(ctx);
2450 2451 2452
	if (cpuctx->task_ctx == ctx)
		return;

2453
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2454
	perf_pmu_disable(ctx->pmu);
2455 2456 2457 2458 2459 2460 2461
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2462 2463
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2464

2465 2466
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2467 2468 2469
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2470 2471 2472 2473
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2474
	perf_pmu_rotate_start(ctx->pmu);
2475 2476
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2548 2549
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2559
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2560
	}
S
Stephane Eranian 已提交
2561 2562 2563 2564 2565 2566
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2567
		perf_cgroup_sched_in(prev, task);
2568 2569 2570 2571

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2572 2573
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2601
#define REDUCE_FLS(a, b)		\
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2641 2642 2643
	if (!divisor)
		return dividend;

2644 2645 2646
	return div64_u64(dividend, divisor);
}

2647 2648 2649
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2650
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2651
{
2652
	struct hw_perf_event *hwc = &event->hw;
2653
	s64 period, sample_period;
2654 2655
	s64 delta;

2656
	period = perf_calculate_period(event, nsec, count);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2667

2668
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2669 2670 2671
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2672
		local64_set(&hwc->period_left, 0);
2673 2674 2675

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2676
	}
2677 2678
}

2679 2680 2681 2682 2683 2684 2685
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2686
{
2687 2688
	struct perf_event *event;
	struct hw_perf_event *hwc;
2689
	u64 now, period = TICK_NSEC;
2690
	s64 delta;
2691

2692 2693 2694 2695 2696 2697
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2698 2699
		return;

2700
	raw_spin_lock(&ctx->lock);
2701
	perf_pmu_disable(ctx->pmu);
2702

2703
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2704
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2705 2706
			continue;

2707
		if (!event_filter_match(event))
2708 2709
			continue;

2710
		hwc = &event->hw;
2711

2712 2713
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2714
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2715
			event->pmu->start(event, 0);
2716 2717
		}

2718
		if (!event->attr.freq || !event->attr.sample_freq)
2719 2720
			continue;

2721 2722 2723 2724 2725
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2726
		now = local64_read(&event->count);
2727 2728
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2729

2730 2731 2732
		/*
		 * restart the event
		 * reload only if value has changed
2733 2734 2735
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2736
		 */
2737
		if (delta > 0)
2738
			perf_adjust_period(event, period, delta, false);
2739 2740

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2741
	}
2742

2743
	perf_pmu_enable(ctx->pmu);
2744
	raw_spin_unlock(&ctx->lock);
2745 2746
}

2747
/*
2748
 * Round-robin a context's events:
2749
 */
2750
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2751
{
2752 2753 2754 2755 2756 2757
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2758 2759
}

2760
/*
2761 2762 2763
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2764
 */
2765
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2766
{
P
Peter Zijlstra 已提交
2767
	struct perf_event_context *ctx = NULL;
2768
	int rotate = 0, remove = 1;
2769

2770
	if (cpuctx->ctx.nr_events) {
2771
		remove = 0;
2772 2773 2774
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2775

P
Peter Zijlstra 已提交
2776
	ctx = cpuctx->task_ctx;
2777
	if (ctx && ctx->nr_events) {
2778
		remove = 0;
2779 2780 2781
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2782

2783
	if (!rotate)
2784 2785
		goto done;

2786
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2787
	perf_pmu_disable(cpuctx->ctx.pmu);
2788

2789 2790 2791
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2792

2793 2794 2795
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2796

2797
	perf_event_sched_in(cpuctx, ctx, current);
2798

2799 2800
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2801
done:
2802 2803
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2804 2805

	return rotate;
2806 2807
}

2808 2809 2810
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2811
	if (atomic_read(&nr_freq_events) ||
2812
	    __this_cpu_read(perf_throttled_count))
2813
		return false;
2814 2815
	else
		return true;
2816 2817 2818
}
#endif

2819 2820 2821 2822
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2823 2824
	struct perf_event_context *ctx;
	int throttled;
2825

2826 2827
	WARN_ON(!irqs_disabled());

2828 2829 2830
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2831
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2832 2833 2834 2835 2836 2837
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2838
	}
T
Thomas Gleixner 已提交
2839 2840
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2851
	__perf_event_mark_enabled(event);
2852 2853 2854 2855

	return 1;
}

2856
/*
2857
 * Enable all of a task's events that have been marked enable-on-exec.
2858 2859
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2860
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2861
{
2862
	struct perf_event *event;
2863 2864
	unsigned long flags;
	int enabled = 0;
2865
	int ret;
2866 2867

	local_irq_save(flags);
2868
	if (!ctx || !ctx->nr_events)
2869 2870
		goto out;

2871 2872 2873 2874 2875 2876 2877
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2878
	perf_cgroup_sched_out(current, NULL);
2879

2880
	raw_spin_lock(&ctx->lock);
2881
	task_ctx_sched_out(ctx);
2882

2883
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2884 2885 2886
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2887 2888 2889
	}

	/*
2890
	 * Unclone this context if we enabled any event.
2891
	 */
2892 2893
	if (enabled)
		unclone_ctx(ctx);
2894

2895
	raw_spin_unlock(&ctx->lock);
2896

2897 2898 2899
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2900
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2901
out:
2902 2903 2904
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2905
/*
2906
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2907
 */
2908
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2909
{
2910 2911
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2912
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2913

2914 2915 2916 2917
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2918 2919
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2920 2921 2922 2923
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2924
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2925
	if (ctx->is_active) {
2926
		update_context_time(ctx);
S
Stephane Eranian 已提交
2927 2928
		update_cgrp_time_from_event(event);
	}
2929
	update_event_times(event);
2930 2931
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2932
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2933 2934
}

P
Peter Zijlstra 已提交
2935 2936
static inline u64 perf_event_count(struct perf_event *event)
{
2937
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2938 2939
}

2940
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2941 2942
{
	/*
2943 2944
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2945
	 */
2946 2947 2948 2949
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2950 2951 2952
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2953
		raw_spin_lock_irqsave(&ctx->lock, flags);
2954 2955 2956 2957 2958
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2959
		if (ctx->is_active) {
2960
			update_context_time(ctx);
S
Stephane Eranian 已提交
2961 2962
			update_cgrp_time_from_event(event);
		}
2963
		update_event_times(event);
2964
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2965 2966
	}

P
Peter Zijlstra 已提交
2967
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2968 2969
}

2970
/*
2971
 * Initialize the perf_event context in a task_struct:
2972
 */
2973
static void __perf_event_init_context(struct perf_event_context *ctx)
2974
{
2975
	raw_spin_lock_init(&ctx->lock);
2976
	mutex_init(&ctx->mutex);
2977 2978
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2979 2980
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2996
	}
2997 2998 2999
	ctx->pmu = pmu;

	return ctx;
3000 3001
}

3002 3003 3004 3005 3006
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3007 3008

	rcu_read_lock();
3009
	if (!vpid)
T
Thomas Gleixner 已提交
3010 3011
		task = current;
	else
3012
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3013 3014 3015 3016 3017 3018 3019 3020
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3021 3022 3023 3024
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3025 3026 3027 3028 3029 3030 3031
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3032 3033 3034
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3035
static struct perf_event_context *
M
Matt Helsley 已提交
3036
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3037
{
3038
	struct perf_event_context *ctx;
3039
	struct perf_cpu_context *cpuctx;
3040
	unsigned long flags;
P
Peter Zijlstra 已提交
3041
	int ctxn, err;
T
Thomas Gleixner 已提交
3042

3043
	if (!task) {
3044
		/* Must be root to operate on a CPU event: */
3045
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3046 3047 3048
			return ERR_PTR(-EACCES);

		/*
3049
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3050 3051 3052
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3053
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3054 3055
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3056
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3057
		ctx = &cpuctx->ctx;
3058
		get_ctx(ctx);
3059
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3060 3061 3062 3063

		return ctx;
	}

P
Peter Zijlstra 已提交
3064 3065 3066 3067 3068
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3069
retry:
P
Peter Zijlstra 已提交
3070
	ctx = perf_lock_task_context(task, ctxn, &flags);
3071
	if (ctx) {
3072
		unclone_ctx(ctx);
3073
		++ctx->pin_count;
3074
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3075
	} else {
3076
		ctx = alloc_perf_context(pmu, task);
3077 3078 3079
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3091
		else {
3092
			get_ctx(ctx);
3093
			++ctx->pin_count;
3094
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3095
		}
3096 3097 3098
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3099
			put_ctx(ctx);
3100 3101 3102 3103

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3104 3105 3106
		}
	}

T
Thomas Gleixner 已提交
3107
	return ctx;
3108

P
Peter Zijlstra 已提交
3109
errout:
3110
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3111 3112
}

L
Li Zefan 已提交
3113 3114
static void perf_event_free_filter(struct perf_event *event);

3115
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3116
{
3117
	struct perf_event *event;
P
Peter Zijlstra 已提交
3118

3119 3120 3121
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3122
	perf_event_free_filter(event);
3123
	kfree(event);
P
Peter Zijlstra 已提交
3124 3125
}

3126
static void ring_buffer_put(struct ring_buffer *rb);
3127
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}

static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3155 3156
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3157 3158 3159 3160 3161 3162 3163 3164
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
static void __free_event(struct perf_event *event)
{
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3180
static void free_event(struct perf_event *event)
3181
{
3182
	irq_work_sync(&event->pending);
3183

3184
	unaccount_event(event);
3185

3186
	if (event->rb) {
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3203 3204
	}

S
Stephane Eranian 已提交
3205 3206 3207
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3208

3209
	__free_event(event);
3210 3211
}

3212
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3213
{
3214
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3215

3216
	WARN_ON_ONCE(ctx->parent_ctx);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3230
	raw_spin_lock_irq(&ctx->lock);
3231
	perf_group_detach(event);
3232
	raw_spin_unlock_irq(&ctx->lock);
3233
	perf_remove_from_context(event);
3234
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3235

3236
	free_event(event);
T
Thomas Gleixner 已提交
3237 3238 3239

	return 0;
}
3240
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3241

3242 3243 3244
/*
 * Called when the last reference to the file is gone.
 */
3245
static void put_event(struct perf_event *event)
3246
{
P
Peter Zijlstra 已提交
3247
	struct task_struct *owner;
3248

3249 3250
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3251

P
Peter Zijlstra 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3285 3286 3287 3288 3289 3290 3291
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3292 3293
}

3294
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3295
{
3296
	struct perf_event *child;
3297 3298
	u64 total = 0;

3299 3300 3301
	*enabled = 0;
	*running = 0;

3302
	mutex_lock(&event->child_mutex);
3303
	total += perf_event_read(event);
3304 3305 3306 3307 3308 3309
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3310
		total += perf_event_read(child);
3311 3312 3313
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3314
	mutex_unlock(&event->child_mutex);
3315 3316 3317

	return total;
}
3318
EXPORT_SYMBOL_GPL(perf_event_read_value);
3319

3320
static int perf_event_read_group(struct perf_event *event,
3321 3322
				   u64 read_format, char __user *buf)
{
3323
	struct perf_event *leader = event->group_leader, *sub;
3324 3325
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3326
	u64 values[5];
3327
	u64 count, enabled, running;
3328

3329
	mutex_lock(&ctx->mutex);
3330
	count = perf_event_read_value(leader, &enabled, &running);
3331 3332

	values[n++] = 1 + leader->nr_siblings;
3333 3334 3335 3336
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3337 3338 3339
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3340 3341 3342 3343

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3344
		goto unlock;
3345

3346
	ret = size;
3347

3348
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3349
		n = 0;
3350

3351
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3352 3353 3354 3355 3356
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3357
		if (copy_to_user(buf + ret, values, size)) {
3358 3359 3360
			ret = -EFAULT;
			goto unlock;
		}
3361 3362

		ret += size;
3363
	}
3364 3365
unlock:
	mutex_unlock(&ctx->mutex);
3366

3367
	return ret;
3368 3369
}

3370
static int perf_event_read_one(struct perf_event *event,
3371 3372
				 u64 read_format, char __user *buf)
{
3373
	u64 enabled, running;
3374 3375 3376
	u64 values[4];
	int n = 0;

3377 3378 3379 3380 3381
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3382
	if (read_format & PERF_FORMAT_ID)
3383
		values[n++] = primary_event_id(event);
3384 3385 3386 3387 3388 3389 3390

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3391
/*
3392
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3393 3394
 */
static ssize_t
3395
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3396
{
3397
	u64 read_format = event->attr.read_format;
3398
	int ret;
T
Thomas Gleixner 已提交
3399

3400
	/*
3401
	 * Return end-of-file for a read on a event that is in
3402 3403 3404
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3405
	if (event->state == PERF_EVENT_STATE_ERROR)
3406 3407
		return 0;

3408
	if (count < event->read_size)
3409 3410
		return -ENOSPC;

3411
	WARN_ON_ONCE(event->ctx->parent_ctx);
3412
	if (read_format & PERF_FORMAT_GROUP)
3413
		ret = perf_event_read_group(event, read_format, buf);
3414
	else
3415
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3416

3417
	return ret;
T
Thomas Gleixner 已提交
3418 3419 3420 3421 3422
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3423
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3424

3425
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3426 3427 3428 3429
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3430
	struct perf_event *event = file->private_data;
3431
	struct ring_buffer *rb;
3432
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3433

3434
	/*
3435 3436
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3437 3438
	 */
	mutex_lock(&event->mmap_mutex);
3439 3440
	rb = event->rb;
	if (rb)
3441
		events = atomic_xchg(&rb->poll, 0);
3442 3443
	mutex_unlock(&event->mmap_mutex);

3444
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3445 3446 3447 3448

	return events;
}

3449
static void perf_event_reset(struct perf_event *event)
3450
{
3451
	(void)perf_event_read(event);
3452
	local64_set(&event->count, 0);
3453
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3454 3455
}

3456
/*
3457 3458 3459 3460
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3461
 */
3462 3463
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3464
{
3465
	struct perf_event *child;
P
Peter Zijlstra 已提交
3466

3467 3468 3469 3470
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3471
		func(child);
3472
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3473 3474
}

3475 3476
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3477
{
3478 3479
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3480

3481 3482
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3483
	event = event->group_leader;
3484

3485 3486
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3487
		perf_event_for_each_child(sibling, func);
3488
	mutex_unlock(&ctx->mutex);
3489 3490
}

3491
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3492
{
3493
	struct perf_event_context *ctx = event->ctx;
3494 3495 3496
	int ret = 0;
	u64 value;

3497
	if (!is_sampling_event(event))
3498 3499
		return -EINVAL;

3500
	if (copy_from_user(&value, arg, sizeof(value)))
3501 3502 3503 3504 3505
		return -EFAULT;

	if (!value)
		return -EINVAL;

3506
	raw_spin_lock_irq(&ctx->lock);
3507 3508
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3509 3510 3511 3512
			ret = -EINVAL;
			goto unlock;
		}

3513
		event->attr.sample_freq = value;
3514
	} else {
3515 3516
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3517 3518
	}
unlock:
3519
	raw_spin_unlock_irq(&ctx->lock);
3520 3521 3522 3523

	return ret;
}

3524 3525
static const struct file_operations perf_fops;

3526
static inline int perf_fget_light(int fd, struct fd *p)
3527
{
3528 3529 3530
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3531

3532 3533 3534
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3535
	}
3536 3537
	*p = f;
	return 0;
3538 3539 3540 3541
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3542
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3543

3544 3545
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3546 3547
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3548
	u32 flags = arg;
3549 3550

	switch (cmd) {
3551 3552
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3553
		break;
3554 3555
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3556
		break;
3557 3558
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3559
		break;
P
Peter Zijlstra 已提交
3560

3561 3562
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3563

3564 3565
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3566

3567 3568 3569 3570 3571 3572 3573 3574 3575
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3576
	case PERF_EVENT_IOC_SET_OUTPUT:
3577 3578 3579
	{
		int ret;
		if (arg != -1) {
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3590 3591 3592
		}
		return ret;
	}
3593

L
Li Zefan 已提交
3594 3595 3596
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3597
	default:
P
Peter Zijlstra 已提交
3598
		return -ENOTTY;
3599
	}
P
Peter Zijlstra 已提交
3600 3601

	if (flags & PERF_IOC_FLAG_GROUP)
3602
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3603
	else
3604
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3605 3606

	return 0;
3607 3608
}

3609
int perf_event_task_enable(void)
3610
{
3611
	struct perf_event *event;
3612

3613 3614 3615 3616
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3617 3618 3619 3620

	return 0;
}

3621
int perf_event_task_disable(void)
3622
{
3623
	struct perf_event *event;
3624

3625 3626 3627 3628
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3629 3630 3631 3632

	return 0;
}

3633
static int perf_event_index(struct perf_event *event)
3634
{
P
Peter Zijlstra 已提交
3635 3636 3637
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3638
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3639 3640
		return 0;

3641
	return event->pmu->event_idx(event);
3642 3643
}

3644
static void calc_timer_values(struct perf_event *event,
3645
				u64 *now,
3646 3647
				u64 *enabled,
				u64 *running)
3648
{
3649
	u64 ctx_time;
3650

3651 3652
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3653 3654 3655 3656
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3657
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3658 3659 3660
{
}

3661 3662 3663 3664 3665
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3666
void perf_event_update_userpage(struct perf_event *event)
3667
{
3668
	struct perf_event_mmap_page *userpg;
3669
	struct ring_buffer *rb;
3670
	u64 enabled, running, now;
3671 3672

	rcu_read_lock();
3673 3674 3675 3676
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3686
	calc_timer_values(event, &now, &enabled, &running);
3687

3688
	userpg = rb->user_page;
3689 3690 3691 3692 3693
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3694
	++userpg->lock;
3695
	barrier();
3696
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3697
	userpg->offset = perf_event_count(event);
3698
	if (userpg->index)
3699
		userpg->offset -= local64_read(&event->hw.prev_count);
3700

3701
	userpg->time_enabled = enabled +
3702
			atomic64_read(&event->child_total_time_enabled);
3703

3704
	userpg->time_running = running +
3705
			atomic64_read(&event->child_total_time_running);
3706

3707
	arch_perf_update_userpage(userpg, now);
3708

3709
	barrier();
3710
	++userpg->lock;
3711
	preempt_enable();
3712
unlock:
3713
	rcu_read_unlock();
3714 3715
}

3716 3717 3718
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3719
	struct ring_buffer *rb;
3720 3721 3722 3723 3724 3725 3726 3727 3728
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3729 3730
	rb = rcu_dereference(event->rb);
	if (!rb)
3731 3732 3733 3734 3735
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3736
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3751 3752 3753 3754 3755 3756 3757 3758 3759
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3760 3761
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3762 3763 3764
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3765
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3784 3785 3786 3787
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3788 3789 3790
	rcu_read_unlock();
}

3791
static void rb_free_rcu(struct rcu_head *rcu_head)
3792
{
3793
	struct ring_buffer *rb;
3794

3795 3796
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3797 3798
}

3799
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3800
{
3801
	struct ring_buffer *rb;
3802

3803
	rcu_read_lock();
3804 3805 3806 3807
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3808 3809 3810
	}
	rcu_read_unlock();

3811
	return rb;
3812 3813
}

3814
static void ring_buffer_put(struct ring_buffer *rb)
3815
{
3816
	if (!atomic_dec_and_test(&rb->refcount))
3817
		return;
3818

3819
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3820

3821
	call_rcu(&rb->rcu_head, rb_free_rcu);
3822 3823 3824 3825
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3826
	struct perf_event *event = vma->vm_file->private_data;
3827

3828
	atomic_inc(&event->mmap_count);
3829
	atomic_inc(&event->rb->mmap_count);
3830 3831
}

3832 3833 3834 3835 3836 3837 3838 3839
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3840 3841
static void perf_mmap_close(struct vm_area_struct *vma)
{
3842
	struct perf_event *event = vma->vm_file->private_data;
3843

3844 3845 3846 3847
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3848

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3864

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3881

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3897
		}
3898
		mutex_unlock(&event->mmap_mutex);
3899
		put_event(event);
3900

3901 3902 3903 3904 3905
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3906
	}
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3923 3924
}

3925
static const struct vm_operations_struct perf_mmap_vmops = {
3926 3927 3928 3929
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3930 3931 3932 3933
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3934
	struct perf_event *event = file->private_data;
3935
	unsigned long user_locked, user_lock_limit;
3936
	struct user_struct *user = current_user();
3937
	unsigned long locked, lock_limit;
3938
	struct ring_buffer *rb;
3939 3940
	unsigned long vma_size;
	unsigned long nr_pages;
3941
	long user_extra, extra;
3942
	int ret = 0, flags = 0;
3943

3944 3945 3946
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3947
	 * same rb.
3948 3949 3950 3951
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3952
	if (!(vma->vm_flags & VM_SHARED))
3953
		return -EINVAL;
3954 3955 3956 3957

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3958
	/*
3959
	 * If we have rb pages ensure they're a power-of-two number, so we
3960 3961 3962
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3963 3964
		return -EINVAL;

3965
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3966 3967
		return -EINVAL;

3968 3969
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3970

3971
	WARN_ON_ONCE(event->ctx->parent_ctx);
3972
again:
3973
	mutex_lock(&event->mmap_mutex);
3974
	if (event->rb) {
3975
		if (event->rb->nr_pages != nr_pages) {
3976
			ret = -EINVAL;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3990 3991 3992
		goto unlock;
	}

3993
	user_extra = nr_pages + 1;
3994
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3995 3996 3997 3998 3999 4000

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4001
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4002

4003 4004 4005
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4006

4007
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4008
	lock_limit >>= PAGE_SHIFT;
4009
	locked = vma->vm_mm->pinned_vm + extra;
4010

4011 4012
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4013 4014 4015
		ret = -EPERM;
		goto unlock;
	}
4016

4017
	WARN_ON(event->rb);
4018

4019
	if (vma->vm_flags & VM_WRITE)
4020
		flags |= RING_BUFFER_WRITABLE;
4021

4022 4023 4024 4025
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4026
	if (!rb) {
4027
		ret = -ENOMEM;
4028
		goto unlock;
4029
	}
P
Peter Zijlstra 已提交
4030

4031
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4032 4033
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4034

4035
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4036 4037
	vma->vm_mm->pinned_vm += extra;

4038
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4039
	rcu_assign_pointer(event->rb, rb);
4040

4041 4042
	perf_event_update_userpage(event);

4043
unlock:
4044 4045
	if (!ret)
		atomic_inc(&event->mmap_count);
4046
	mutex_unlock(&event->mmap_mutex);
4047

4048 4049 4050 4051
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4052
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4053
	vma->vm_ops = &perf_mmap_vmops;
4054 4055

	return ret;
4056 4057
}

P
Peter Zijlstra 已提交
4058 4059
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4060
	struct inode *inode = file_inode(filp);
4061
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4062 4063 4064
	int retval;

	mutex_lock(&inode->i_mutex);
4065
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4066 4067 4068 4069 4070 4071 4072 4073
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4074
static const struct file_operations perf_fops = {
4075
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4076 4077 4078
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4079 4080
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4081
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4082
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4083 4084
};

4085
/*
4086
 * Perf event wakeup
4087 4088 4089 4090 4091
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4092
void perf_event_wakeup(struct perf_event *event)
4093
{
4094
	ring_buffer_wakeup(event);
4095

4096 4097 4098
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4099
	}
4100 4101
}

4102
static void perf_pending_event(struct irq_work *entry)
4103
{
4104 4105
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4106

4107 4108 4109
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4110 4111
	}

4112 4113 4114
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4115 4116 4117
	}
}

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4265 4266 4267
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4295 4296 4297
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4324 4325 4326
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4327 4328 4329 4330 4331
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4332
static void perf_output_read_one(struct perf_output_handle *handle,
4333 4334
				 struct perf_event *event,
				 u64 enabled, u64 running)
4335
{
4336
	u64 read_format = event->attr.read_format;
4337 4338 4339
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4340
	values[n++] = perf_event_count(event);
4341
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4342
		values[n++] = enabled +
4343
			atomic64_read(&event->child_total_time_enabled);
4344 4345
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4346
		values[n++] = running +
4347
			atomic64_read(&event->child_total_time_running);
4348 4349
	}
	if (read_format & PERF_FORMAT_ID)
4350
		values[n++] = primary_event_id(event);
4351

4352
	__output_copy(handle, values, n * sizeof(u64));
4353 4354 4355
}

/*
4356
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4357 4358
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4359 4360
			    struct perf_event *event,
			    u64 enabled, u64 running)
4361
{
4362 4363
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4364 4365 4366 4367 4368 4369
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4370
		values[n++] = enabled;
4371 4372

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4373
		values[n++] = running;
4374

4375
	if (leader != event)
4376 4377
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4378
	values[n++] = perf_event_count(leader);
4379
	if (read_format & PERF_FORMAT_ID)
4380
		values[n++] = primary_event_id(leader);
4381

4382
	__output_copy(handle, values, n * sizeof(u64));
4383

4384
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4385 4386
		n = 0;

4387 4388
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4389 4390
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4391
		values[n++] = perf_event_count(sub);
4392
		if (read_format & PERF_FORMAT_ID)
4393
			values[n++] = primary_event_id(sub);
4394

4395
		__output_copy(handle, values, n * sizeof(u64));
4396 4397 4398
	}
}

4399 4400 4401
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4402
static void perf_output_read(struct perf_output_handle *handle,
4403
			     struct perf_event *event)
4404
{
4405
	u64 enabled = 0, running = 0, now;
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4417
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4418
		calc_timer_values(event, &now, &enabled, &running);
4419

4420
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4421
		perf_output_read_group(handle, event, enabled, running);
4422
	else
4423
		perf_output_read_one(handle, event, enabled, running);
4424 4425
}

4426 4427 4428
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4429
			struct perf_event *event)
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4460
		perf_output_read(handle, event);
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4471
			__output_copy(handle, data->callchain, size);
4472 4473 4474 4475 4476 4477 4478 4479 4480
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4481 4482
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4494

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4529

4530
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4531 4532 4533
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4534
	}
A
Andi Kleen 已提交
4535 4536 4537

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4538 4539 4540

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4555 4556 4557 4558
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4559
			 struct perf_event *event,
4560
			 struct pt_regs *regs)
4561
{
4562
	u64 sample_type = event->attr.sample_type;
4563

4564
	header->type = PERF_RECORD_SAMPLE;
4565
	header->size = sizeof(*header) + event->header_size;
4566 4567 4568

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4569

4570
	__perf_event_header__init_id(header, data, event);
4571

4572
	if (sample_type & PERF_SAMPLE_IP)
4573 4574
		data->ip = perf_instruction_pointer(regs);

4575
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4576
		int size = 1;
4577

4578
		data->callchain = perf_callchain(event, regs);
4579 4580 4581 4582 4583

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4584 4585
	}

4586
	if (sample_type & PERF_SAMPLE_RAW) {
4587 4588 4589 4590 4591 4592 4593 4594
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4595
		header->size += size;
4596
	}
4597 4598 4599 4600 4601 4602 4603 4604 4605

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4649
}
4650

4651
static void perf_event_output(struct perf_event *event,
4652 4653 4654 4655 4656
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4657

4658 4659 4660
	/* protect the callchain buffers */
	rcu_read_lock();

4661
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4662

4663
	if (perf_output_begin(&handle, event, header.size))
4664
		goto exit;
4665

4666
	perf_output_sample(&handle, &header, data, event);
4667

4668
	perf_output_end(&handle);
4669 4670 4671

exit:
	rcu_read_unlock();
4672 4673
}

4674
/*
4675
 * read event_id
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4686
perf_event_read_event(struct perf_event *event,
4687 4688 4689
			struct task_struct *task)
{
	struct perf_output_handle handle;
4690
	struct perf_sample_data sample;
4691
	struct perf_read_event read_event = {
4692
		.header = {
4693
			.type = PERF_RECORD_READ,
4694
			.misc = 0,
4695
			.size = sizeof(read_event) + event->read_size,
4696
		},
4697 4698
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4699
	};
4700
	int ret;
4701

4702
	perf_event_header__init_id(&read_event.header, &sample, event);
4703
	ret = perf_output_begin(&handle, event, read_event.header.size);
4704 4705 4706
	if (ret)
		return;

4707
	perf_output_put(&handle, read_event);
4708
	perf_output_read(&handle, event);
4709
	perf_event__output_id_sample(event, &handle, &sample);
4710

4711 4712 4713
	perf_output_end(&handle);
}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4728
		output(event, data);
4729 4730 4731 4732
	}
}

static void
4733
perf_event_aux(perf_event_aux_output_cb output, void *data,
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4746
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4747 4748 4749 4750 4751 4752 4753
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4754
			perf_event_aux_ctx(ctx, output, data);
4755 4756 4757 4758 4759 4760
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4761
		perf_event_aux_ctx(task_ctx, output, data);
4762 4763 4764 4765 4766
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4767
/*
P
Peter Zijlstra 已提交
4768 4769
 * task tracking -- fork/exit
 *
4770
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4771 4772
 */

P
Peter Zijlstra 已提交
4773
struct perf_task_event {
4774
	struct task_struct		*task;
4775
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4776 4777 4778 4779 4780 4781

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4782 4783
		u32				tid;
		u32				ptid;
4784
		u64				time;
4785
	} event_id;
P
Peter Zijlstra 已提交
4786 4787
};

4788 4789 4790 4791 4792 4793
static int perf_event_task_match(struct perf_event *event)
{
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
}

4794
static void perf_event_task_output(struct perf_event *event,
4795
				   void *data)
P
Peter Zijlstra 已提交
4796
{
4797
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4798
	struct perf_output_handle handle;
4799
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4800
	struct task_struct *task = task_event->task;
4801
	int ret, size = task_event->event_id.header.size;
4802

4803 4804 4805
	if (!perf_event_task_match(event))
		return;

4806
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4807

4808
	ret = perf_output_begin(&handle, event,
4809
				task_event->event_id.header.size);
4810
	if (ret)
4811
		goto out;
P
Peter Zijlstra 已提交
4812

4813 4814
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4815

4816 4817
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4818

4819
	perf_output_put(&handle, task_event->event_id);
4820

4821 4822
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4823
	perf_output_end(&handle);
4824 4825
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4826 4827
}

4828 4829
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4830
			      int new)
P
Peter Zijlstra 已提交
4831
{
P
Peter Zijlstra 已提交
4832
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4833

4834 4835 4836
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4837 4838
		return;

P
Peter Zijlstra 已提交
4839
	task_event = (struct perf_task_event){
4840 4841
		.task	  = task,
		.task_ctx = task_ctx,
4842
		.event_id    = {
P
Peter Zijlstra 已提交
4843
			.header = {
4844
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4845
				.misc = 0,
4846
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4847
			},
4848 4849
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4850 4851
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4852
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4853 4854 4855
		},
	};

4856
	perf_event_aux(perf_event_task_output,
4857 4858
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4859 4860
}

4861
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4862
{
4863
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4864 4865
}

4866 4867 4868 4869 4870
/*
 * comm tracking
 */

struct perf_comm_event {
4871 4872
	struct task_struct	*task;
	char			*comm;
4873 4874 4875 4876 4877 4878 4879
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4880
	} event_id;
4881 4882
};

4883 4884 4885 4886 4887
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4888
static void perf_event_comm_output(struct perf_event *event,
4889
				   void *data)
4890
{
4891
	struct perf_comm_event *comm_event = data;
4892
	struct perf_output_handle handle;
4893
	struct perf_sample_data sample;
4894
	int size = comm_event->event_id.header.size;
4895 4896
	int ret;

4897 4898 4899
	if (!perf_event_comm_match(event))
		return;

4900 4901
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4902
				comm_event->event_id.header.size);
4903 4904

	if (ret)
4905
		goto out;
4906

4907 4908
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4909

4910
	perf_output_put(&handle, comm_event->event_id);
4911
	__output_copy(&handle, comm_event->comm,
4912
				   comm_event->comm_size);
4913 4914 4915

	perf_event__output_id_sample(event, &handle, &sample);

4916
	perf_output_end(&handle);
4917 4918
out:
	comm_event->event_id.header.size = size;
4919 4920
}

4921
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4922
{
4923
	char comm[TASK_COMM_LEN];
4924 4925
	unsigned int size;

4926
	memset(comm, 0, sizeof(comm));
4927
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4928
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4929 4930 4931 4932

	comm_event->comm = comm;
	comm_event->comm_size = size;

4933
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4934

4935
	perf_event_aux(perf_event_comm_output,
4936 4937
		       comm_event,
		       NULL);
4938 4939
}

4940
void perf_event_comm(struct task_struct *task)
4941
{
4942
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4943 4944
	struct perf_event_context *ctx;
	int ctxn;
4945

4946
	rcu_read_lock();
P
Peter Zijlstra 已提交
4947 4948 4949 4950
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4951

P
Peter Zijlstra 已提交
4952 4953
		perf_event_enable_on_exec(ctx);
	}
4954
	rcu_read_unlock();
4955

4956
	if (!atomic_read(&nr_comm_events))
4957
		return;
4958

4959
	comm_event = (struct perf_comm_event){
4960
		.task	= task,
4961 4962
		/* .comm      */
		/* .comm_size */
4963
		.event_id  = {
4964
			.header = {
4965
				.type = PERF_RECORD_COMM,
4966 4967 4968 4969 4970
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4971 4972 4973
		},
	};

4974
	perf_event_comm_event(&comm_event);
4975 4976
}

4977 4978 4979 4980 4981
/*
 * mmap tracking
 */

struct perf_mmap_event {
4982 4983 4984 4985
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4986 4987 4988 4989 4990 4991 4992 4993 4994

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4995
	} event_id;
4996 4997
};

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
}

5009
static void perf_event_mmap_output(struct perf_event *event,
5010
				   void *data)
5011
{
5012
	struct perf_mmap_event *mmap_event = data;
5013
	struct perf_output_handle handle;
5014
	struct perf_sample_data sample;
5015
	int size = mmap_event->event_id.header.size;
5016
	int ret;
5017

5018 5019 5020
	if (!perf_event_mmap_match(event, data))
		return;

5021 5022
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5023
				mmap_event->event_id.header.size);
5024
	if (ret)
5025
		goto out;
5026

5027 5028
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5029

5030
	perf_output_put(&handle, mmap_event->event_id);
5031
	__output_copy(&handle, mmap_event->file_name,
5032
				   mmap_event->file_size);
5033 5034 5035

	perf_event__output_id_sample(event, &handle, &sample);

5036
	perf_output_end(&handle);
5037 5038
out:
	mmap_event->event_id.header.size = size;
5039 5040
}

5041
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5042
{
5043 5044
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5045 5046 5047
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5048
	const char *name;
5049

5050 5051
	memset(tmp, 0, sizeof(tmp));

5052
	if (file) {
5053
		/*
5054
		 * d_path works from the end of the rb backwards, so we
5055 5056 5057 5058
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5059 5060 5061 5062
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5063
		name = d_path(&file->f_path, buf, PATH_MAX);
5064 5065 5066 5067 5068
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5069 5070
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5071 5072
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5073
			goto got_name;
5074
		}
5075 5076 5077 5078

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5079 5080 5081 5082 5083 5084 5085 5086
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5087 5088
		}

5089 5090 5091 5092 5093
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5094
	size = ALIGN(strlen(name)+1, sizeof(u64));
5095 5096 5097 5098

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5099 5100 5101
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5102
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5103

5104
	perf_event_aux(perf_event_mmap_output,
5105 5106
		       mmap_event,
		       NULL);
5107

5108 5109 5110
	kfree(buf);
}

5111
void perf_event_mmap(struct vm_area_struct *vma)
5112
{
5113 5114
	struct perf_mmap_event mmap_event;

5115
	if (!atomic_read(&nr_mmap_events))
5116 5117 5118
		return;

	mmap_event = (struct perf_mmap_event){
5119
		.vma	= vma,
5120 5121
		/* .file_name */
		/* .file_size */
5122
		.event_id  = {
5123
			.header = {
5124
				.type = PERF_RECORD_MMAP,
5125
				.misc = PERF_RECORD_MISC_USER,
5126 5127 5128 5129
				/* .size */
			},
			/* .pid */
			/* .tid */
5130 5131
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5132
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5133 5134 5135
		},
	};

5136
	perf_event_mmap_event(&mmap_event);
5137 5138
}

5139 5140 5141 5142
/*
 * IRQ throttle logging
 */

5143
static void perf_log_throttle(struct perf_event *event, int enable)
5144 5145
{
	struct perf_output_handle handle;
5146
	struct perf_sample_data sample;
5147 5148 5149 5150 5151
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5152
		u64				id;
5153
		u64				stream_id;
5154 5155
	} throttle_event = {
		.header = {
5156
			.type = PERF_RECORD_THROTTLE,
5157 5158 5159
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5160
		.time		= perf_clock(),
5161 5162
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5163 5164
	};

5165
	if (enable)
5166
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5167

5168 5169 5170
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5171
				throttle_event.header.size);
5172 5173 5174 5175
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5176
	perf_event__output_id_sample(event, &handle, &sample);
5177 5178 5179
	perf_output_end(&handle);
}

5180
/*
5181
 * Generic event overflow handling, sampling.
5182 5183
 */

5184
static int __perf_event_overflow(struct perf_event *event,
5185 5186
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5187
{
5188 5189
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5190
	u64 seq;
5191 5192
	int ret = 0;

5193 5194 5195 5196 5197 5198 5199
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5200 5201 5202 5203 5204 5205 5206 5207 5208
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5209 5210
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5211
			tick_nohz_full_kick();
5212 5213
			ret = 1;
		}
5214
	}
5215

5216
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5217
		u64 now = perf_clock();
5218
		s64 delta = now - hwc->freq_time_stamp;
5219

5220
		hwc->freq_time_stamp = now;
5221

5222
		if (delta > 0 && delta < 2*TICK_NSEC)
5223
			perf_adjust_period(event, delta, hwc->last_period, true);
5224 5225
	}

5226 5227
	/*
	 * XXX event_limit might not quite work as expected on inherited
5228
	 * events
5229 5230
	 */

5231 5232
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5233
		ret = 1;
5234
		event->pending_kill = POLL_HUP;
5235 5236
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5237 5238
	}

5239
	if (event->overflow_handler)
5240
		event->overflow_handler(event, data, regs);
5241
	else
5242
		perf_event_output(event, data, regs);
5243

P
Peter Zijlstra 已提交
5244
	if (event->fasync && event->pending_kill) {
5245 5246
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5247 5248
	}

5249
	return ret;
5250 5251
}

5252
int perf_event_overflow(struct perf_event *event,
5253 5254
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5255
{
5256
	return __perf_event_overflow(event, 1, data, regs);
5257 5258
}

5259
/*
5260
 * Generic software event infrastructure
5261 5262
 */

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5274
/*
5275 5276
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5277 5278 5279 5280
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5281
u64 perf_swevent_set_period(struct perf_event *event)
5282
{
5283
	struct hw_perf_event *hwc = &event->hw;
5284 5285 5286 5287 5288
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5289 5290

again:
5291
	old = val = local64_read(&hwc->period_left);
5292 5293
	if (val < 0)
		return 0;
5294

5295 5296 5297
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5298
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5299
		goto again;
5300

5301
	return nr;
5302 5303
}

5304
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5305
				    struct perf_sample_data *data,
5306
				    struct pt_regs *regs)
5307
{
5308
	struct hw_perf_event *hwc = &event->hw;
5309
	int throttle = 0;
5310

5311 5312
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5313

5314 5315
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5316

5317
	for (; overflow; overflow--) {
5318
		if (__perf_event_overflow(event, throttle,
5319
					    data, regs)) {
5320 5321 5322 5323 5324 5325
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5326
		throttle = 1;
5327
	}
5328 5329
}

P
Peter Zijlstra 已提交
5330
static void perf_swevent_event(struct perf_event *event, u64 nr,
5331
			       struct perf_sample_data *data,
5332
			       struct pt_regs *regs)
5333
{
5334
	struct hw_perf_event *hwc = &event->hw;
5335

5336
	local64_add(nr, &event->count);
5337

5338 5339 5340
	if (!regs)
		return;

5341
	if (!is_sampling_event(event))
5342
		return;
5343

5344 5345 5346 5347 5348 5349
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5350
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5351
		return perf_swevent_overflow(event, 1, data, regs);
5352

5353
	if (local64_add_negative(nr, &hwc->period_left))
5354
		return;
5355

5356
	perf_swevent_overflow(event, 0, data, regs);
5357 5358
}

5359 5360 5361
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5362
	if (event->hw.state & PERF_HES_STOPPED)
5363
		return 1;
P
Peter Zijlstra 已提交
5364

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5376
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5377
				enum perf_type_id type,
L
Li Zefan 已提交
5378 5379 5380
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5381
{
5382
	if (event->attr.type != type)
5383
		return 0;
5384

5385
	if (event->attr.config != event_id)
5386 5387
		return 0;

5388 5389
	if (perf_exclude_event(event, regs))
		return 0;
5390 5391 5392 5393

	return 1;
}

5394 5395 5396 5397 5398 5399 5400
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5401 5402
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5403
{
5404 5405 5406 5407
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5408

5409 5410
/* For the read side: events when they trigger */
static inline struct hlist_head *
5411
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5412 5413
{
	struct swevent_hlist *hlist;
5414

5415
	hlist = rcu_dereference(swhash->swevent_hlist);
5416 5417 5418
	if (!hlist)
		return NULL;

5419 5420 5421 5422 5423
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5424
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5435
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5436 5437 5438 5439 5440
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5441 5442 5443
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5444
				    u64 nr,
5445 5446
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5447
{
5448
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5449
	struct perf_event *event;
5450
	struct hlist_head *head;
5451

5452
	rcu_read_lock();
5453
	head = find_swevent_head_rcu(swhash, type, event_id);
5454 5455 5456
	if (!head)
		goto end;

5457
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5458
		if (perf_swevent_match(event, type, event_id, data, regs))
5459
			perf_swevent_event(event, nr, data, regs);
5460
	}
5461 5462
end:
	rcu_read_unlock();
5463 5464
}

5465
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5466
{
5467
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5468

5469
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5470
}
I
Ingo Molnar 已提交
5471
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5472

5473
inline void perf_swevent_put_recursion_context(int rctx)
5474
{
5475
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5476

5477
	put_recursion_context(swhash->recursion, rctx);
5478
}
5479

5480
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5481
{
5482
	struct perf_sample_data data;
5483 5484
	int rctx;

5485
	preempt_disable_notrace();
5486 5487 5488
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5489

5490
	perf_sample_data_init(&data, addr, 0);
5491

5492
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5493 5494

	perf_swevent_put_recursion_context(rctx);
5495
	preempt_enable_notrace();
5496 5497
}

5498
static void perf_swevent_read(struct perf_event *event)
5499 5500 5501
{
}

P
Peter Zijlstra 已提交
5502
static int perf_swevent_add(struct perf_event *event, int flags)
5503
{
5504
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5505
	struct hw_perf_event *hwc = &event->hw;
5506 5507
	struct hlist_head *head;

5508
	if (is_sampling_event(event)) {
5509
		hwc->last_period = hwc->sample_period;
5510
		perf_swevent_set_period(event);
5511
	}
5512

P
Peter Zijlstra 已提交
5513 5514
	hwc->state = !(flags & PERF_EF_START);

5515
	head = find_swevent_head(swhash, event);
5516 5517 5518 5519 5520
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5521 5522 5523
	return 0;
}

P
Peter Zijlstra 已提交
5524
static void perf_swevent_del(struct perf_event *event, int flags)
5525
{
5526
	hlist_del_rcu(&event->hlist_entry);
5527 5528
}

P
Peter Zijlstra 已提交
5529
static void perf_swevent_start(struct perf_event *event, int flags)
5530
{
P
Peter Zijlstra 已提交
5531
	event->hw.state = 0;
5532
}
I
Ingo Molnar 已提交
5533

P
Peter Zijlstra 已提交
5534
static void perf_swevent_stop(struct perf_event *event, int flags)
5535
{
P
Peter Zijlstra 已提交
5536
	event->hw.state = PERF_HES_STOPPED;
5537 5538
}

5539 5540
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5541
swevent_hlist_deref(struct swevent_htable *swhash)
5542
{
5543 5544
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5545 5546
}

5547
static void swevent_hlist_release(struct swevent_htable *swhash)
5548
{
5549
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5550

5551
	if (!hlist)
5552 5553
		return;

5554
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5555
	kfree_rcu(hlist, rcu_head);
5556 5557 5558 5559
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5560
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5561

5562
	mutex_lock(&swhash->hlist_mutex);
5563

5564 5565
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5566

5567
	mutex_unlock(&swhash->hlist_mutex);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5585
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5586 5587
	int err = 0;

5588
	mutex_lock(&swhash->hlist_mutex);
5589

5590
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5591 5592 5593 5594 5595 5596 5597
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5598
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5599
	}
5600
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5601
exit:
5602
	mutex_unlock(&swhash->hlist_mutex);
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5626
fail:
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5637
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5638

5639 5640 5641
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5642

5643 5644
	WARN_ON(event->parent);

5645
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5646 5647 5648 5649 5650
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5651
	u64 event_id = event->attr.config;
5652 5653 5654 5655

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5656 5657 5658 5659 5660 5661
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5662 5663 5664 5665 5666 5667 5668 5669 5670
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5671
	if (event_id >= PERF_COUNT_SW_MAX)
5672 5673 5674 5675 5676 5677 5678 5679 5680
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5681
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5682 5683 5684 5685 5686 5687
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5688 5689 5690 5691 5692
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5693
static struct pmu perf_swevent = {
5694
	.task_ctx_nr	= perf_sw_context,
5695

5696
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5697 5698 5699 5700
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5701
	.read		= perf_swevent_read,
5702 5703

	.event_idx	= perf_swevent_event_idx,
5704 5705
};

5706 5707
#ifdef CONFIG_EVENT_TRACING

5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5722 5723
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5724 5725 5726 5727
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5728 5729 5730 5731 5732 5733 5734 5735 5736
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5737 5738
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5739 5740
{
	struct perf_sample_data data;
5741 5742
	struct perf_event *event;

5743 5744 5745 5746 5747
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5748
	perf_sample_data_init(&data, addr, 0);
5749 5750
	data.raw = &raw;

5751
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5752
		if (perf_tp_event_match(event, &data, regs))
5753
			perf_swevent_event(event, count, &data, regs);
5754
	}
5755

5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5781
	perf_swevent_put_recursion_context(rctx);
5782 5783 5784
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5785
static void tp_perf_event_destroy(struct perf_event *event)
5786
{
5787
	perf_trace_destroy(event);
5788 5789
}

5790
static int perf_tp_event_init(struct perf_event *event)
5791
{
5792 5793
	int err;

5794 5795 5796
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5797 5798 5799 5800 5801 5802
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5803 5804
	err = perf_trace_init(event);
	if (err)
5805
		return err;
5806

5807
	event->destroy = tp_perf_event_destroy;
5808

5809 5810 5811 5812
	return 0;
}

static struct pmu perf_tracepoint = {
5813 5814
	.task_ctx_nr	= perf_sw_context,

5815
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5816 5817 5818 5819
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5820
	.read		= perf_swevent_read,
5821 5822

	.event_idx	= perf_swevent_event_idx,
5823 5824 5825 5826
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5827
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5828
}
L
Li Zefan 已提交
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5853
#else
L
Li Zefan 已提交
5854

5855
static inline void perf_tp_register(void)
5856 5857
{
}
L
Li Zefan 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5868
#endif /* CONFIG_EVENT_TRACING */
5869

5870
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5871
void perf_bp_event(struct perf_event *bp, void *data)
5872
{
5873 5874 5875
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5876
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5877

P
Peter Zijlstra 已提交
5878
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5879
		perf_swevent_event(bp, 1, &sample, regs);
5880 5881 5882
}
#endif

5883 5884 5885
/*
 * hrtimer based swevent callback
 */
5886

5887
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5888
{
5889 5890 5891 5892 5893
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5894

5895
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5896 5897 5898 5899

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5900
	event->pmu->read(event);
5901

5902
	perf_sample_data_init(&data, 0, event->hw.last_period);
5903 5904 5905
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5906
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5907
			if (__perf_event_overflow(event, 1, &data, regs))
5908 5909
				ret = HRTIMER_NORESTART;
	}
5910

5911 5912
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5913

5914
	return ret;
5915 5916
}

5917
static void perf_swevent_start_hrtimer(struct perf_event *event)
5918
{
5919
	struct hw_perf_event *hwc = &event->hw;
5920 5921 5922 5923
	s64 period;

	if (!is_sampling_event(event))
		return;
5924

5925 5926 5927 5928
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5929

5930 5931 5932 5933 5934
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5935
				ns_to_ktime(period), 0,
5936
				HRTIMER_MODE_REL_PINNED, 0);
5937
}
5938 5939

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5940
{
5941 5942
	struct hw_perf_event *hwc = &event->hw;

5943
	if (is_sampling_event(event)) {
5944
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5945
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5946 5947 5948

		hrtimer_cancel(&hwc->hrtimer);
	}
5949 5950
}

P
Peter Zijlstra 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5971
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5972 5973 5974 5975
		event->attr.freq = 0;
	}
}

5976 5977 5978 5979 5980
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5981
{
5982 5983 5984
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5985
	now = local_clock();
5986 5987
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5988 5989
}

P
Peter Zijlstra 已提交
5990
static void cpu_clock_event_start(struct perf_event *event, int flags)
5991
{
P
Peter Zijlstra 已提交
5992
	local64_set(&event->hw.prev_count, local_clock());
5993 5994 5995
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5996
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5997
{
5998 5999 6000
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6001

P
Peter Zijlstra 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6015 6016 6017 6018
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6019

6020 6021 6022 6023 6024 6025 6026 6027
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6028 6029 6030 6031 6032 6033
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6034 6035
	perf_swevent_init_hrtimer(event);

6036
	return 0;
6037 6038
}

6039
static struct pmu perf_cpu_clock = {
6040 6041
	.task_ctx_nr	= perf_sw_context,

6042
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6043 6044 6045 6046
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6047
	.read		= cpu_clock_event_read,
6048 6049

	.event_idx	= perf_swevent_event_idx,
6050 6051 6052 6053 6054 6055 6056
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6057
{
6058 6059
	u64 prev;
	s64 delta;
6060

6061 6062 6063 6064
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6065

P
Peter Zijlstra 已提交
6066
static void task_clock_event_start(struct perf_event *event, int flags)
6067
{
P
Peter Zijlstra 已提交
6068
	local64_set(&event->hw.prev_count, event->ctx->time);
6069 6070 6071
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6072
static void task_clock_event_stop(struct perf_event *event, int flags)
6073 6074 6075
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6076 6077 6078 6079 6080 6081
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6082

P
Peter Zijlstra 已提交
6083 6084 6085 6086 6087 6088
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6089 6090 6091 6092
}

static void task_clock_event_read(struct perf_event *event)
{
6093 6094 6095
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6096 6097 6098 6099 6100

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6101
{
6102 6103 6104 6105 6106 6107
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6108 6109 6110 6111 6112 6113
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6114 6115
	perf_swevent_init_hrtimer(event);

6116
	return 0;
L
Li Zefan 已提交
6117 6118
}

6119
static struct pmu perf_task_clock = {
6120 6121
	.task_ctx_nr	= perf_sw_context,

6122
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6123 6124 6125 6126
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6127
	.read		= task_clock_event_read,
6128 6129

	.event_idx	= perf_swevent_event_idx,
6130
};
L
Li Zefan 已提交
6131

P
Peter Zijlstra 已提交
6132
static void perf_pmu_nop_void(struct pmu *pmu)
6133 6134
{
}
L
Li Zefan 已提交
6135

P
Peter Zijlstra 已提交
6136
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6137
{
P
Peter Zijlstra 已提交
6138
	return 0;
L
Li Zefan 已提交
6139 6140
}

P
Peter Zijlstra 已提交
6141
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6142
{
P
Peter Zijlstra 已提交
6143
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6144 6145
}

P
Peter Zijlstra 已提交
6146 6147 6148 6149 6150
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6151

P
Peter Zijlstra 已提交
6152
static void perf_pmu_cancel_txn(struct pmu *pmu)
6153
{
P
Peter Zijlstra 已提交
6154
	perf_pmu_enable(pmu);
6155 6156
}

6157 6158 6159 6160 6161
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6162 6163 6164 6165 6166
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6167
{
P
Peter Zijlstra 已提交
6168
	struct pmu *pmu;
6169

P
Peter Zijlstra 已提交
6170 6171
	if (ctxn < 0)
		return NULL;
6172

P
Peter Zijlstra 已提交
6173 6174 6175 6176
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6177

P
Peter Zijlstra 已提交
6178
	return NULL;
6179 6180
}

6181
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6182
{
6183 6184 6185 6186 6187 6188 6189
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6190 6191
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6192 6193 6194 6195 6196 6197
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6198

P
Peter Zijlstra 已提交
6199
	mutex_lock(&pmus_lock);
6200
	/*
P
Peter Zijlstra 已提交
6201
	 * Like a real lame refcount.
6202
	 */
6203 6204 6205
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6206
			goto out;
6207
		}
P
Peter Zijlstra 已提交
6208
	}
6209

6210
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6211 6212
out:
	mutex_unlock(&pmus_lock);
6213
}
P
Peter Zijlstra 已提交
6214
static struct idr pmu_idr;
6215

P
Peter Zijlstra 已提交
6216 6217 6218 6219 6220 6221 6222 6223
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6268
static struct device_attribute pmu_dev_attrs[] = {
6269 6270 6271
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6293
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6314
static struct lock_class_key cpuctx_mutex;
6315
static struct lock_class_key cpuctx_lock;
6316

6317
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6318
{
P
Peter Zijlstra 已提交
6319
	int cpu, ret;
6320

6321
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6322 6323 6324 6325
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6326

P
Peter Zijlstra 已提交
6327 6328 6329 6330 6331 6332
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6333 6334 6335
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6336 6337 6338 6339 6340
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6341 6342 6343 6344 6345 6346
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6347
skip_type:
P
Peter Zijlstra 已提交
6348 6349 6350
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6351

W
Wei Yongjun 已提交
6352
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6353 6354
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6355
		goto free_dev;
6356

P
Peter Zijlstra 已提交
6357 6358 6359 6360
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6361
		__perf_event_init_context(&cpuctx->ctx);
6362
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6363
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6364
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6365
		cpuctx->ctx.pmu = pmu;
6366 6367 6368

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6369
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6370
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6371
	}
6372

P
Peter Zijlstra 已提交
6373
got_cpu_context:
P
Peter Zijlstra 已提交
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6388
		}
6389
	}
6390

P
Peter Zijlstra 已提交
6391 6392 6393 6394 6395
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6396 6397 6398
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6399
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6400 6401
	ret = 0;
unlock:
6402 6403
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6404
	return ret;
P
Peter Zijlstra 已提交
6405

P
Peter Zijlstra 已提交
6406 6407 6408 6409
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6410 6411 6412 6413
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6414 6415 6416
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6417 6418
}

6419
void perf_pmu_unregister(struct pmu *pmu)
6420
{
6421 6422 6423
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6424

6425
	/*
P
Peter Zijlstra 已提交
6426 6427
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6428
	 */
6429
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6430
	synchronize_rcu();
6431

P
Peter Zijlstra 已提交
6432
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6433 6434
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6435 6436
	device_del(pmu->dev);
	put_device(pmu->dev);
6437
	free_pmu_context(pmu);
6438
}
6439

6440 6441 6442 6443
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6444
	int ret;
6445 6446

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6447 6448 6449 6450

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6451
	if (pmu) {
6452
		event->pmu = pmu;
6453 6454 6455
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6456
		goto unlock;
6457
	}
P
Peter Zijlstra 已提交
6458

6459
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6460
		event->pmu = pmu;
6461
		ret = pmu->event_init(event);
6462
		if (!ret)
P
Peter Zijlstra 已提交
6463
			goto unlock;
6464

6465 6466
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6467
			goto unlock;
6468
		}
6469
	}
P
Peter Zijlstra 已提交
6470 6471
	pmu = ERR_PTR(-ENOENT);
unlock:
6472
	srcu_read_unlock(&pmus_srcu, idx);
6473

6474
	return pmu;
6475 6476
}

6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6490 6491
static void account_event(struct perf_event *event)
{
6492 6493 6494
	if (event->parent)
		return;

6495 6496 6497 6498 6499 6500 6501 6502
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6503 6504 6505 6506
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6507
	if (has_branch_stack(event))
6508
		static_key_slow_inc(&perf_sched_events.key);
6509
	if (is_cgroup_event(event))
6510
		static_key_slow_inc(&perf_sched_events.key);
6511 6512

	account_event_cpu(event, event->cpu);
6513 6514
}

T
Thomas Gleixner 已提交
6515
/*
6516
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6517
 */
6518
static struct perf_event *
6519
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6520 6521 6522
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6523 6524
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6525
{
P
Peter Zijlstra 已提交
6526
	struct pmu *pmu;
6527 6528
	struct perf_event *event;
	struct hw_perf_event *hwc;
6529
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6530

6531 6532 6533 6534 6535
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6536
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6537
	if (!event)
6538
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6539

6540
	/*
6541
	 * Single events are their own group leaders, with an
6542 6543 6544
	 * empty sibling list:
	 */
	if (!group_leader)
6545
		group_leader = event;
6546

6547 6548
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6549

6550 6551 6552
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6553 6554
	INIT_LIST_HEAD(&event->rb_entry);

6555
	init_waitqueue_head(&event->waitq);
6556
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6557

6558
	mutex_init(&event->mmap_mutex);
6559

6560
	atomic_long_set(&event->refcount, 1);
6561 6562 6563 6564 6565
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6566

6567
	event->parent		= parent_event;
6568

6569
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6570
	event->id		= atomic64_inc_return(&perf_event_id);
6571

6572
	event->state		= PERF_EVENT_STATE_INACTIVE;
6573

6574 6575
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6576 6577 6578

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6579 6580 6581 6582
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6583
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6584 6585 6586 6587
			event->hw.bp_target = task;
#endif
	}

6588
	if (!overflow_handler && parent_event) {
6589
		overflow_handler = parent_event->overflow_handler;
6590 6591
		context = parent_event->overflow_handler_context;
	}
6592

6593
	event->overflow_handler	= overflow_handler;
6594
	event->overflow_handler_context = context;
6595

J
Jiri Olsa 已提交
6596
	perf_event__state_init(event);
6597

6598
	pmu = NULL;
6599

6600
	hwc = &event->hw;
6601
	hwc->sample_period = attr->sample_period;
6602
	if (attr->freq && attr->sample_freq)
6603
		hwc->sample_period = 1;
6604
	hwc->last_period = hwc->sample_period;
6605

6606
	local64_set(&hwc->period_left, hwc->sample_period);
6607

6608
	/*
6609
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6610
	 */
6611
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6612
		goto err_ns;
6613

6614
	pmu = perf_init_event(event);
6615
	if (!pmu)
6616 6617
		goto err_ns;
	else if (IS_ERR(pmu)) {
6618
		err = PTR_ERR(pmu);
6619
		goto err_ns;
I
Ingo Molnar 已提交
6620
	}
6621

6622
	if (!event->parent) {
6623 6624 6625 6626 6627
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err)
				goto err_pmu;
		}
6628
	}
6629

6630
	return event;
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6641 6642
}

6643 6644
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6645 6646
{
	u32 size;
6647
	int ret;
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6672 6673 6674
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6675 6676
	 */
	if (size > sizeof(*attr)) {
6677 6678 6679
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6680

6681 6682
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6683

6684
		for (; addr < end; addr++) {
6685 6686 6687 6688 6689 6690
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6691
		size = sizeof(*attr);
6692 6693 6694 6695 6696 6697
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6698
	if (attr->__reserved_1)
6699 6700 6701 6702 6703 6704 6705 6706
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6735 6736
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6737 6738
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6739
	}
6740

6741
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6742
		ret = perf_reg_validate(attr->sample_regs_user);
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6761

6762 6763 6764 6765 6766 6767 6768 6769 6770
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6771 6772
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6773
{
6774
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6775 6776
	int ret = -EINVAL;

6777
	if (!output_event)
6778 6779
		goto set;

6780 6781
	/* don't allow circular references */
	if (event == output_event)
6782 6783
		goto out;

6784 6785 6786 6787 6788 6789 6790
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6791
	 * If its not a per-cpu rb, it must be the same task.
6792 6793 6794 6795
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6796
set:
6797
	mutex_lock(&event->mmap_mutex);
6798 6799 6800
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6801

6802 6803
	old_rb = event->rb;

6804
	if (output_event) {
6805 6806 6807
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6808
			goto unlock;
6809 6810
	}

6811 6812
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6829
	ret = 0;
6830 6831 6832
unlock:
	mutex_unlock(&event->mmap_mutex);

6833 6834 6835 6836
out:
	return ret;
}

T
Thomas Gleixner 已提交
6837
/**
6838
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6839
 *
6840
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6841
 * @pid:		target pid
I
Ingo Molnar 已提交
6842
 * @cpu:		target cpu
6843
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6844
 */
6845 6846
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6847
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6848
{
6849 6850
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6851 6852 6853
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6854
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6855
	struct task_struct *task = NULL;
6856
	struct pmu *pmu;
6857
	int event_fd;
6858
	int move_group = 0;
6859
	int err;
T
Thomas Gleixner 已提交
6860

6861
	/* for future expandability... */
S
Stephane Eranian 已提交
6862
	if (flags & ~PERF_FLAG_ALL)
6863 6864
		return -EINVAL;

6865 6866 6867
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6868

6869 6870 6871 6872 6873
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6874
	if (attr.freq) {
6875
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6876 6877 6878
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6888
	event_fd = get_unused_fd();
6889 6890 6891
	if (event_fd < 0)
		return event_fd;

6892
	if (group_fd != -1) {
6893 6894
		err = perf_fget_light(group_fd, &group);
		if (err)
6895
			goto err_fd;
6896
		group_leader = group.file->private_data;
6897 6898 6899 6900 6901 6902
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6903
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6904 6905 6906 6907 6908 6909 6910
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6911 6912
	get_online_cpus();

6913 6914
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6915 6916
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6917
		goto err_task;
6918 6919
	}

S
Stephane Eranian 已提交
6920 6921
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6922 6923 6924 6925
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6926 6927
	}

6928 6929
	account_event(event);

6930 6931 6932 6933 6934
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6958 6959 6960 6961

	/*
	 * Get the target context (task or percpu):
	 */
6962
	ctx = find_get_context(pmu, task, event->cpu);
6963 6964
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6965
		goto err_alloc;
6966 6967
	}

6968 6969 6970 6971 6972
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6973
	/*
6974
	 * Look up the group leader (we will attach this event to it):
6975
	 */
6976
	if (group_leader) {
6977
		err = -EINVAL;
6978 6979

		/*
I
Ingo Molnar 已提交
6980 6981 6982 6983
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6984
			goto err_context;
I
Ingo Molnar 已提交
6985 6986 6987
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6988
		 */
6989 6990 6991 6992 6993 6994 6995 6996
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6997 6998 6999
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7000
		if (attr.exclusive || attr.pinned)
7001
			goto err_context;
7002 7003 7004 7005 7006
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7007
			goto err_context;
7008
	}
T
Thomas Gleixner 已提交
7009

7010 7011 7012
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7013
		goto err_context;
7014
	}
7015

7016 7017 7018 7019
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7020
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7021 7022 7023 7024 7025 7026 7027

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7028 7029
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7030
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7031
			perf_event__state_init(sibling);
7032 7033 7034 7035
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7036
	}
7037

7038
	WARN_ON_ONCE(ctx->parent_ctx);
7039
	mutex_lock(&ctx->mutex);
7040 7041

	if (move_group) {
7042
		synchronize_rcu();
7043
		perf_install_in_context(ctx, group_leader, event->cpu);
7044 7045 7046
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7047
			perf_install_in_context(ctx, sibling, event->cpu);
7048 7049 7050 7051
			get_ctx(ctx);
		}
	}

7052
	perf_install_in_context(ctx, event, event->cpu);
7053
	++ctx->generation;
7054
	perf_unpin_context(ctx);
7055
	mutex_unlock(&ctx->mutex);
7056

7057 7058
	put_online_cpus();

7059
	event->owner = current;
P
Peter Zijlstra 已提交
7060

7061 7062 7063
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7064

7065 7066 7067 7068
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7069
	perf_event__id_header_size(event);
7070

7071 7072 7073 7074 7075 7076
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7077
	fdput(group);
7078 7079
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7080

7081
err_context:
7082
	perf_unpin_context(ctx);
7083
	put_ctx(ctx);
7084
err_alloc:
7085
	free_event(event);
P
Peter Zijlstra 已提交
7086
err_task:
7087
	put_online_cpus();
P
Peter Zijlstra 已提交
7088 7089
	if (task)
		put_task_struct(task);
7090
err_group_fd:
7091
	fdput(group);
7092 7093
err_fd:
	put_unused_fd(event_fd);
7094
	return err;
T
Thomas Gleixner 已提交
7095 7096
}

7097 7098 7099 7100 7101
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7102
 * @task: task to profile (NULL for percpu)
7103 7104 7105
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7106
				 struct task_struct *task,
7107 7108
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7109 7110
{
	struct perf_event_context *ctx;
7111
	struct perf_event *event;
7112
	int err;
7113

7114 7115 7116
	/*
	 * Get the target context (task or percpu):
	 */
7117

7118 7119
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7120 7121 7122 7123
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7124

7125 7126
	account_event(event);

M
Matt Helsley 已提交
7127
	ctx = find_get_context(event->pmu, task, cpu);
7128 7129
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7130
		goto err_free;
7131
	}
7132 7133 7134 7135 7136

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7137
	perf_unpin_context(ctx);
7138 7139 7140 7141
	mutex_unlock(&ctx->mutex);

	return event;

7142 7143 7144
err_free:
	free_event(event);
err:
7145
	return ERR_PTR(err);
7146
}
7147
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7148

7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7163
		unaccount_event_cpu(event, src_cpu);
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7176
		account_event_cpu(event, dst_cpu);
7177 7178 7179 7180 7181 7182 7183
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7184
static void sync_child_event(struct perf_event *child_event,
7185
			       struct task_struct *child)
7186
{
7187
	struct perf_event *parent_event = child_event->parent;
7188
	u64 child_val;
7189

7190 7191
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7192

P
Peter Zijlstra 已提交
7193
	child_val = perf_event_count(child_event);
7194 7195 7196 7197

	/*
	 * Add back the child's count to the parent's count:
	 */
7198
	atomic64_add(child_val, &parent_event->child_count);
7199 7200 7201 7202
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7203 7204

	/*
7205
	 * Remove this event from the parent's list
7206
	 */
7207 7208 7209 7210
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7211 7212

	/*
7213
	 * Release the parent event, if this was the last
7214 7215
	 * reference to it.
	 */
7216
	put_event(parent_event);
7217 7218
}

7219
static void
7220 7221
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7222
			 struct task_struct *child)
7223
{
7224 7225 7226 7227 7228
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7229

7230
	perf_remove_from_context(child_event);
7231

7232
	/*
7233
	 * It can happen that the parent exits first, and has events
7234
	 * that are still around due to the child reference. These
7235
	 * events need to be zapped.
7236
	 */
7237
	if (child_event->parent) {
7238 7239
		sync_child_event(child_event, child);
		free_event(child_event);
7240
	}
7241 7242
}

P
Peter Zijlstra 已提交
7243
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7244
{
7245 7246
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7247
	unsigned long flags;
7248

P
Peter Zijlstra 已提交
7249
	if (likely(!child->perf_event_ctxp[ctxn])) {
7250
		perf_event_task(child, NULL, 0);
7251
		return;
P
Peter Zijlstra 已提交
7252
	}
7253

7254
	local_irq_save(flags);
7255 7256 7257 7258 7259 7260
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7261
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7262 7263 7264

	/*
	 * Take the context lock here so that if find_get_context is
7265
	 * reading child->perf_event_ctxp, we wait until it has
7266 7267
	 * incremented the context's refcount before we do put_ctx below.
	 */
7268
	raw_spin_lock(&child_ctx->lock);
7269
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7270
	child->perf_event_ctxp[ctxn] = NULL;
7271 7272 7273
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7274
	 * the events from it.
7275 7276
	 */
	unclone_ctx(child_ctx);
7277
	update_context_time(child_ctx);
7278
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7279 7280

	/*
7281 7282 7283
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7284
	 */
7285
	perf_event_task(child, child_ctx, 0);
7286

7287 7288 7289
	/*
	 * We can recurse on the same lock type through:
	 *
7290 7291
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7292 7293
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7294 7295 7296
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7297
	mutex_lock(&child_ctx->mutex);
7298

7299
again:
7300 7301 7302 7303 7304
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7305
				 group_entry)
7306
		__perf_event_exit_task(child_event, child_ctx, child);
7307 7308

	/*
7309
	 * If the last event was a group event, it will have appended all
7310 7311 7312
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7313 7314
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7315
		goto again;
7316 7317 7318 7319

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7320 7321
}

P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7327
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7328 7329
	int ctxn;

P
Peter Zijlstra 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7345 7346 7347 7348
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7361
	put_event(parent);
7362

7363
	perf_group_detach(event);
7364 7365 7366 7367
	list_del_event(event, ctx);
	free_event(event);
}

7368 7369
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7370
 * perf_event_init_task below, used by fork() in case of fail.
7371
 */
7372
void perf_event_free_task(struct task_struct *task)
7373
{
P
Peter Zijlstra 已提交
7374
	struct perf_event_context *ctx;
7375
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7376
	int ctxn;
7377

P
Peter Zijlstra 已提交
7378 7379 7380 7381
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7382

P
Peter Zijlstra 已提交
7383
		mutex_lock(&ctx->mutex);
7384
again:
P
Peter Zijlstra 已提交
7385 7386 7387
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7388

P
Peter Zijlstra 已提交
7389 7390 7391
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7392

P
Peter Zijlstra 已提交
7393 7394 7395
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7396

P
Peter Zijlstra 已提交
7397
		mutex_unlock(&ctx->mutex);
7398

P
Peter Zijlstra 已提交
7399 7400
		put_ctx(ctx);
	}
7401 7402
}

7403 7404 7405 7406 7407 7408 7409 7410
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7423
	unsigned long flags;
P
Peter Zijlstra 已提交
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7436
					   child,
P
Peter Zijlstra 已提交
7437
					   group_leader, parent_event,
7438
				           NULL, NULL);
P
Peter Zijlstra 已提交
7439 7440
	if (IS_ERR(child_event))
		return child_event;
7441 7442 7443 7444 7445 7446

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7471 7472
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7473

7474 7475 7476 7477
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7478
	perf_event__id_header_size(child_event);
7479

P
Peter Zijlstra 已提交
7480 7481 7482
	/*
	 * Link it up in the child's context:
	 */
7483
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7484
	add_event_to_ctx(child_event, child_ctx);
7485
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7519 7520 7521 7522 7523
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7524
		   struct task_struct *child, int ctxn,
7525 7526 7527
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7528
	struct perf_event_context *child_ctx;
7529 7530 7531 7532

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7533 7534
	}

7535
	child_ctx = child->perf_event_ctxp[ctxn];
7536 7537 7538 7539 7540 7541 7542
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7543

7544
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7545 7546
		if (!child_ctx)
			return -ENOMEM;
7547

P
Peter Zijlstra 已提交
7548
		child->perf_event_ctxp[ctxn] = child_ctx;
7549 7550 7551 7552 7553 7554 7555 7556 7557
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7558 7559
}

7560
/*
7561
 * Initialize the perf_event context in task_struct
7562
 */
P
Peter Zijlstra 已提交
7563
int perf_event_init_context(struct task_struct *child, int ctxn)
7564
{
7565
	struct perf_event_context *child_ctx, *parent_ctx;
7566 7567
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7568
	struct task_struct *parent = current;
7569
	int inherited_all = 1;
7570
	unsigned long flags;
7571
	int ret = 0;
7572

P
Peter Zijlstra 已提交
7573
	if (likely(!parent->perf_event_ctxp[ctxn]))
7574 7575
		return 0;

7576
	/*
7577 7578
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7579
	 */
P
Peter Zijlstra 已提交
7580
	parent_ctx = perf_pin_task_context(parent, ctxn);
7581

7582 7583 7584 7585 7586 7587 7588
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7589 7590 7591 7592
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7593
	mutex_lock(&parent_ctx->mutex);
7594 7595 7596 7597 7598

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7599
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7600 7601
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7602 7603 7604
		if (ret)
			break;
	}
7605

7606 7607 7608 7609 7610 7611 7612 7613 7614
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7615
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7616 7617
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7618
		if (ret)
7619
			break;
7620 7621
	}

7622 7623 7624
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7625
	child_ctx = child->perf_event_ctxp[ctxn];
7626

7627
	if (child_ctx && inherited_all) {
7628 7629 7630
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7631 7632 7633
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7634
		 */
P
Peter Zijlstra 已提交
7635
		cloned_ctx = parent_ctx->parent_ctx;
7636 7637
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7638
			child_ctx->parent_gen = parent_ctx->parent_gen;
7639 7640 7641 7642 7643
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7644 7645
	}

P
Peter Zijlstra 已提交
7646
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7647
	mutex_unlock(&parent_ctx->mutex);
7648

7649
	perf_unpin_context(parent_ctx);
7650
	put_ctx(parent_ctx);
7651

7652
	return ret;
7653 7654
}

P
Peter Zijlstra 已提交
7655 7656 7657 7658 7659 7660 7661
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7662 7663 7664 7665
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7675 7676
static void __init perf_event_init_all_cpus(void)
{
7677
	struct swevent_htable *swhash;
7678 7679 7680
	int cpu;

	for_each_possible_cpu(cpu) {
7681 7682
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7683
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7684 7685 7686
	}
}

7687
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7688
{
P
Peter Zijlstra 已提交
7689
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7690

7691
	mutex_lock(&swhash->hlist_mutex);
7692
	if (swhash->hlist_refcount > 0) {
7693 7694
		struct swevent_hlist *hlist;

7695 7696 7697
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7698
	}
7699
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7700 7701
}

P
Peter Zijlstra 已提交
7702
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7703
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7704
{
7705 7706 7707 7708 7709 7710 7711
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7712
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7713
{
P
Peter Zijlstra 已提交
7714
	struct perf_event_context *ctx = __info;
7715
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7716

P
Peter Zijlstra 已提交
7717
	perf_pmu_rotate_stop(ctx->pmu);
7718

7719
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7720
		__perf_remove_from_context(event);
7721
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7722
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7723
}
P
Peter Zijlstra 已提交
7724 7725 7726 7727 7728 7729 7730 7731 7732

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7733
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7734 7735 7736 7737 7738 7739 7740 7741

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7742
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7743
{
7744
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7745

7746 7747 7748
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7749

P
Peter Zijlstra 已提交
7750
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7751 7752
}
#else
7753
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7754 7755
#endif

P
Peter Zijlstra 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7776
static int
T
Thomas Gleixner 已提交
7777 7778 7779 7780
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7781
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7782 7783

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7784
	case CPU_DOWN_FAILED:
7785
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7786 7787
		break;

P
Peter Zijlstra 已提交
7788
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7789
	case CPU_DOWN_PREPARE:
7790
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7791 7792 7793 7794 7795 7796 7797 7798
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7799
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7800
{
7801 7802
	int ret;

P
Peter Zijlstra 已提交
7803 7804
	idr_init(&pmu_idr);

7805
	perf_event_init_all_cpus();
7806
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7807 7808 7809
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7810 7811
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7812
	register_reboot_notifier(&perf_reboot_notifier);
7813 7814 7815

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7816 7817 7818

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7819 7820 7821 7822 7823 7824 7825

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7826
}
P
Peter Zijlstra 已提交
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7855 7856

#ifdef CONFIG_CGROUP_PERF
7857
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7858 7859 7860
{
	struct perf_cgroup *jc;

7861
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7874
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7890
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7891
{
7892 7893 7894 7895
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7896 7897
}

7898 7899
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7909
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7910 7911 7912
}

struct cgroup_subsys perf_subsys = {
7913 7914
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7915 7916
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7917
	.exit		= perf_cgroup_exit,
7918
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7919 7920
};
#endif /* CONFIG_CGROUP_PERF */