sched_rt.c 41.8 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

132 133 134 135 136
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 138 139 140

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
141 142 143 144 145 146
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

147 148 149 150 151 152 153
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
154 155
}

156 157
#else

158
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
159
{
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

166
static inline
167 168 169 170
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

171
static inline
172 173 174
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
175

S
Steven Rostedt 已提交
176 177
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
178 179 180 181 182
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

183
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
184

P
Peter Zijlstra 已提交
185
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
186 187
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
188
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
189

P
Peter Zijlstra 已提交
190 191 192 193 194 195
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
196 197
}

C
Cheng Xu 已提交
198 199
typedef struct task_group *rt_rq_iter_t;

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
217

218 219 220 221 222 223 224 225 226 227 228
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
229
#define for_each_leaf_rt_rq(rt_rq, rq) \
230
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
231 232 233 234 235 236 237 238 239

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

240
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
241 242
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
243
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
244
{
245
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246 247
	struct sched_rt_entity *rt_se;

248 249 250
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
251

252 253
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
254
			enqueue_rt_entity(rt_se, false);
255
		if (rt_rq->highest_prio.curr < curr->prio)
256
			resched_task(curr);
P
Peter Zijlstra 已提交
257 258 259
	}
}

P
Peter Zijlstra 已提交
260
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
261
{
262
	struct sched_rt_entity *rt_se;
263
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
264

265
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
266 267 268 269 270

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

288
#ifdef CONFIG_SMP
289
static inline const struct cpumask *sched_rt_period_mask(void)
290 291 292
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
293
#else
294
static inline const struct cpumask *sched_rt_period_mask(void)
295
{
296
	return cpu_online_mask;
297 298
}
#endif
P
Peter Zijlstra 已提交
299

300 301
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
302
{
303 304
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
305

P
Peter Zijlstra 已提交
306 307 308 309 310
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

311
#else /* !CONFIG_RT_GROUP_SCHED */
312 313 314

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
315 316 317 318 319 320
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
321 322
}

C
Cheng Xu 已提交
323 324 325 326 327
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

328 329 330 331 332 333 334 335
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
336 337 338 339 340 341 342 343 344 345 346
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
347
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
348
{
349 350
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
351 352
}

P
Peter Zijlstra 已提交
353
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
354 355 356
{
}

P
Peter Zijlstra 已提交
357 358 359 360
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
361

362
static inline const struct cpumask *sched_rt_period_mask(void)
363
{
364
	return cpu_online_mask;
365 366 367 368 369 370 371 372
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
373 374 375 376 377
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

378
#endif /* CONFIG_RT_GROUP_SCHED */
379

P
Peter Zijlstra 已提交
380
#ifdef CONFIG_SMP
381 382 383
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
384
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
385 386 387 388 389 390
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

391
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
392

393
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
394
	rt_period = ktime_to_ns(rt_b->rt_period);
395
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
396 397 398 399 400 401
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

402
		raw_spin_lock(&iter->rt_runtime_lock);
403 404 405 406 407
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
408 409 410
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

411 412 413 414
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
415 416
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
417
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
418 419 420 421 422 423
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
424
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
425 426 427
				break;
			}
		}
P
Peter Zijlstra 已提交
428
next:
429
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
430
	}
431
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
432 433 434

	return more;
}
P
Peter Zijlstra 已提交
435

436 437 438
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
439 440 441
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
442
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
443 444 445 446 447
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
448
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
449 450 451 452
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

453 454
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
455 456 457 458 459
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
460 461 462
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
463
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
464

465 466 467 468 469
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
470 471
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

472 473 474
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
475
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
476 477 478
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

479 480 481
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
482
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
483 484
				continue;

485
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
494
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
495 496 497 498 499

			if (!want)
				break;
		}

500
		raw_spin_lock(&rt_rq->rt_runtime_lock);
501 502 503 504
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
505 506
		BUG_ON(want);
balanced:
507 508 509 510
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
511
		rt_rq->rt_runtime = RUNTIME_INF;
512 513
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
514 515 516 517 518 519 520
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

521
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
522
	__disable_runtime(rq);
523
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
524 525 526 527
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
528
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
529 530 531 532 533
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

534 535 536
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
537
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
538 539
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

540 541
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
542 543
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
544
		rt_rq->rt_throttled = 0;
545 546
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
547 548 549 550 551 552 553
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

554
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
555
	__enable_runtime(rq);
556
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
557 558
}

559 560 561 562 563
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
564
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
565
		more = do_balance_runtime(rt_rq);
566
		raw_spin_lock(&rt_rq->rt_runtime_lock);
567 568 569 570
	}

	return more;
}
571
#else /* !CONFIG_SMP */
572 573 574 575
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
576
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
577

578 579 580
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
581
	const struct cpumask *span;
582

583
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
584 585 586
		return 1;

	span = sched_rt_period_mask();
587
	for_each_cpu(i, span) {
588 589 590 591
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

592
		raw_spin_lock(&rq->lock);
593 594 595
		if (rt_rq->rt_time) {
			u64 runtime;

596
			raw_spin_lock(&rt_rq->rt_runtime_lock);
597 598 599 600 601 602 603
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
604 605 606 607 608 609 610

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
611 612 613
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
614
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
615
		} else if (rt_rq->rt_nr_running) {
616
			idle = 0;
617 618 619
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
620 621 622

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
623
		raw_spin_unlock(&rq->lock);
624 625 626 627
	}

	return idle;
}
P
Peter Zijlstra 已提交
628

P
Peter Zijlstra 已提交
629 630
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
631
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
632 633 634
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
635
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
636 637 638 639 640
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
641
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
642
{
P
Peter Zijlstra 已提交
643
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
644 645

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
646
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
647

P
Peter Zijlstra 已提交
648 649 650
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

651 652 653 654
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
655

P
Peter Zijlstra 已提交
656
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
657
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
658
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
659
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
660 661
			return 1;
		}
P
Peter Zijlstra 已提交
662 663 664 665 666
	}

	return 0;
}

I
Ingo Molnar 已提交
667 668 669 670
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
671
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
672 673
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
674 675
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
676 677
	u64 delta_exec;

P
Peter Zijlstra 已提交
678
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
679 680
		return;

681
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
682 683
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
684

685
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
686 687

	curr->se.sum_exec_runtime += delta_exec;
688 689
	account_group_exec_runtime(curr, delta_exec);

690
	curr->se.exec_start = rq->clock_task;
691
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
692

693 694
	sched_rt_avg_update(rq, delta_exec);

695 696 697
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
698 699 700
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

701
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
702
			raw_spin_lock(&rt_rq->rt_runtime_lock);
703 704 705
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
706
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
707
		}
D
Dhaval Giani 已提交
708
	}
I
Ingo Molnar 已提交
709 710
}

711
#if defined CONFIG_SMP
712

713 714
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
715
{
G
Gregory Haskins 已提交
716
	struct rq *rq = rq_of_rt_rq(rt_rq);
717

718 719
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
720
}
721

722 723 724 725
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
726

727 728
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
729 730
}

731 732
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
733
static inline
734 735 736 737 738
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
739

740
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
757
	if (rt_rq->rt_nr_running) {
758

759
		WARN_ON(prio < prev_prio);
760

761
		/*
762 763
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
764
		 */
765
		if (prio == prev_prio) {
766 767 768
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
769
				sched_find_first_bit(array->bitmap);
770 771
		}

772
	} else
773
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
774

775 776
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
777

778 779 780 781 782 783
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
784

785
#ifdef CONFIG_RT_GROUP_SCHED
786 787 788 789 790 791 792 793 794 795 796 797 798 799

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
800 801 802 803
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
842 843
}

844
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
845
{
P
Peter Zijlstra 已提交
846 847 848
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
849
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
850

851 852 853 854 855 856 857
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
858
		return;
859

860 861 862
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

863 864 865 866
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
867
	__set_bit(rt_se_prio(rt_se), array->bitmap);
868

P
Peter Zijlstra 已提交
869 870 871
	inc_rt_tasks(rt_se, rt_rq);
}

872
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
873 874 875 876 877 878 879 880 881
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
882 883
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
884 885 886 887 888 889
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
890
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
891
{
892
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
893

894 895 896 897 898 899 900
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
901 902 903 904
			__dequeue_rt_entity(rt_se);
	}
}

905
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
906 907 908
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
909
		__enqueue_rt_entity(rt_se, head);
910 911 912 913 914 915 916 917 918 919
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
920
			__enqueue_rt_entity(rt_se, false);
921
	}
I
Ingo Molnar 已提交
922 923 924 925 926
}

/*
 * Adding/removing a task to/from a priority array:
 */
927
static void
928
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
929 930 931
{
	struct sched_rt_entity *rt_se = &p->rt;

932
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
933 934
		rt_se->timeout = 0;

935
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
936

937 938
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
939 940
}

941
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
942
{
P
Peter Zijlstra 已提交
943
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
944

945
	update_curr_rt(rq);
946
	dequeue_rt_entity(rt_se);
947

948
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
949 950 951 952 953 954
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
955 956
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
957
{
958
	if (on_rt_rq(rt_se)) {
959 960 961 962 963 964 965
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
966
	}
P
Peter Zijlstra 已提交
967 968
}

969
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
970
{
P
Peter Zijlstra 已提交
971 972
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
973

P
Peter Zijlstra 已提交
974 975
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
976
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
977
	}
I
Ingo Molnar 已提交
978 979
}

P
Peter Zijlstra 已提交
980
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
981
{
982
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
983 984
}

985
#ifdef CONFIG_SMP
986 987
static int find_lowest_rq(struct task_struct *task);

988
static int
989
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
990
{
991 992 993 994 995
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
996 997 998 999 1000

	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1001 1002 1003 1004 1005
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1006
	/*
1007
	 * If the current task on @p's runqueue is an RT task, then
1008 1009 1010 1011
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1012 1013 1014 1015 1016 1017 1018 1019 1020
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1021 1022 1023 1024 1025 1026
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1027
	 */
1028 1029 1030
	if (curr && unlikely(rt_task(curr)) &&
	    (curr->rt.nr_cpus_allowed < 2 ||
	     curr->prio < p->prio) &&
P
Peter Zijlstra 已提交
1031
	    (p->rt.nr_cpus_allowed > 1)) {
1032
		int target = find_lowest_rq(p);
1033

1034 1035
		if (target != -1)
			cpu = target;
1036
	}
1037
	rcu_read_unlock();
1038

1039
out:
1040
	return cpu;
1041
}
1042 1043 1044 1045 1046 1047

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1048
	if (p->rt.nr_cpus_allowed != 1
1049 1050
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1051

1052 1053
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1064 1065
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1066 1067 1068
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1069
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1070
{
1071
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1072
		resched_task(rq->curr);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1089
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1090
		check_preempt_equal_prio(rq, p);
1091
#endif
I
Ingo Molnar 已提交
1092 1093
}

P
Peter Zijlstra 已提交
1094 1095
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1096
{
P
Peter Zijlstra 已提交
1097 1098
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1099 1100 1101 1102
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1103
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1104 1105

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1106
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1107

P
Peter Zijlstra 已提交
1108 1109
	return next;
}
I
Ingo Molnar 已提交
1110

1111
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1112 1113 1114 1115
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1116

P
Peter Zijlstra 已提交
1117 1118
	rt_rq = &rq->rt;

1119
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1120 1121
		return NULL;

P
Peter Zijlstra 已提交
1122
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1123 1124 1125 1126
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1127
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1128 1129 1130 1131
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1132
	p->se.exec_start = rq->clock_task;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1145
#ifdef CONFIG_SMP
1146 1147 1148 1149 1150
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1151
#endif
1152

P
Peter Zijlstra 已提交
1153
	return p;
I
Ingo Molnar 已提交
1154 1155
}

1156
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1157
{
1158
	update_curr_rt(rq);
1159 1160 1161 1162 1163

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
P
Peter Zijlstra 已提交
1164
	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1165
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1166 1167
}

1168
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1169

S
Steven Rostedt 已提交
1170 1171 1172 1173 1174
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1175 1176 1177
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1178
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1179
	    (p->rt.nr_cpus_allowed > 1))
1180 1181 1182 1183
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1184
/* Return the second highest RT task, NULL otherwise */
1185
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1186
{
P
Peter Zijlstra 已提交
1187 1188 1189 1190
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1191 1192
	int idx;

P
Peter Zijlstra 已提交
1193 1194 1195
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1196
next_idx:
P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1202 1203 1204 1205 1206 1207
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1217 1218
	}

S
Steven Rostedt 已提交
1219 1220 1221
	return next;
}

1222
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1223

G
Gregory Haskins 已提交
1224 1225 1226
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1227
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1228 1229
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1230

1231 1232 1233 1234
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1235 1236
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1237

1238 1239
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1249
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1250 1251 1252 1253 1254 1255
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1256 1257
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1258

1259
	rcu_read_lock();
R
Rusty Russell 已提交
1260 1261 1262
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1263

R
Rusty Russell 已提交
1264 1265 1266 1267 1268
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1269 1270
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1271
				return this_cpu;
1272
			}
R
Rusty Russell 已提交
1273 1274 1275

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1276 1277
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1278
				return best_cpu;
1279
			}
G
Gregory Haskins 已提交
1280 1281
		}
	}
1282
	rcu_read_unlock();
G
Gregory Haskins 已提交
1283 1284 1285 1286 1287 1288

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1289 1290 1291 1292 1293 1294 1295
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1296 1297 1298
}

/* Will lock the rq it finds */
1299
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1300 1301 1302
{
	struct rq *lowest_rq = NULL;
	int tries;
1303
	int cpu;
S
Steven Rostedt 已提交
1304

1305 1306 1307
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1308
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1309 1310
			break;

1311 1312
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1313
		/* if the prio of this runqueue changed, try again */
1314
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1315 1316 1317 1318 1319 1320
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1321
			if (unlikely(task_rq(task) != rq ||
1322 1323
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1324
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1325
				     !task->on_rq)) {
1326

1327
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1328 1329 1330 1331 1332 1333
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1334
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1335 1336 1337
			break;

		/* try again */
1338
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1339 1340 1341 1342 1343 1344
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

P
Peter Zijlstra 已提交
1359
	BUG_ON(!p->on_rq);
1360 1361 1362 1363 1364
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1365 1366 1367 1368 1369
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1370
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1371 1372 1373
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1374
	int ret = 0;
S
Steven Rostedt 已提交
1375

G
Gregory Haskins 已提交
1376 1377 1378
	if (!rq->rt.overloaded)
		return 0;

1379
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1380 1381 1382
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1383
retry:
1384
	if (unlikely(next_task == rq->curr)) {
1385
		WARN_ON(1);
S
Steven Rostedt 已提交
1386
		return 0;
1387
	}
S
Steven Rostedt 已提交
1388 1389 1390 1391 1392 1393

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1394 1395
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1396 1397 1398
		return 0;
	}

1399
	/* We might release rq lock */
S
Steven Rostedt 已提交
1400 1401 1402
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1403
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1404 1405 1406
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1407
		 * find_lock_lowest_rq releases rq->lock
1408 1409 1410 1411 1412
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1413
		 */
1414
		task = pick_next_pushable_task(rq);
1415 1416
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1417 1418 1419 1420
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1421 1422
			 */
			goto out;
S
Steven Rostedt 已提交
1423
		}
1424

1425 1426 1427 1428
		if (!task)
			/* No more tasks, just exit */
			goto out;

1429
		/*
1430
		 * Something has shifted, try again.
1431
		 */
1432 1433 1434
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1435 1436
	}

1437
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1438 1439
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1440
	ret = 1;
S
Steven Rostedt 已提交
1441 1442 1443

	resched_task(lowest_rq->curr);

1444
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1445 1446 1447 1448

out:
	put_task_struct(next_task);

1449
	return ret;
S
Steven Rostedt 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1459 1460
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1461
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1462
	struct task_struct *p;
1463 1464
	struct rq *src_rq;

1465
	if (likely(!rt_overloaded(this_rq)))
1466 1467
		return 0;

1468
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1469 1470 1471 1472
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1485 1486 1487
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1488
		 * alter this_rq
1489
		 */
1490
		double_lock_balance(this_rq, src_rq);
1491 1492 1493 1494

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1495 1496
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1497 1498 1499 1500 1501 1502 1503

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1504
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1505
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1506
			WARN_ON(!p->on_rq);
1507 1508 1509 1510 1511 1512 1513

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1514
			 * current task on the run queue
1515
			 */
1516
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1517
				goto skip;
1518 1519 1520 1521 1522 1523 1524 1525 1526

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1527
			 * in another runqueue. (low likelihood
1528 1529 1530
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1531
skip:
1532
		double_unlock_balance(this_rq, src_rq);
1533 1534 1535 1536 1537
	}

	return ret;
}

1538
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1539 1540
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1541
	if (rq->rt.highest_prio.curr > prev->prio)
1542 1543 1544
		pull_rt_task(rq);
}

1545
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1546
{
1547
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1548 1549
}

1550 1551 1552 1553
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1554
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1555
{
1556
	if (!task_running(rq, p) &&
1557
	    !test_tsk_need_resched(rq->curr) &&
1558
	    has_pushable_tasks(rq) &&
1559
	    p->rt.nr_cpus_allowed > 1 &&
1560
	    rt_task(rq->curr) &&
1561 1562
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio))
1563 1564 1565
		push_rt_tasks(rq);
}

1566
static void set_cpus_allowed_rt(struct task_struct *p,
1567
				const struct cpumask *new_mask)
1568
{
1569
	int weight = cpumask_weight(new_mask);
1570 1571 1572 1573 1574 1575 1576

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1577
	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1578 1579
		struct rq *rq = task_rq(p);

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1598
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1599
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1600
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1601 1602 1603 1604
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1605
		update_rt_migration(&rq->rt);
1606 1607
	}

1608
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1609
	p->rt.nr_cpus_allowed = weight;
1610
}
1611

1612
/* Assumes rq->lock is held */
1613
static void rq_online_rt(struct rq *rq)
1614 1615 1616
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1617

P
Peter Zijlstra 已提交
1618 1619
	__enable_runtime(rq);

1620
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1621 1622 1623
}

/* Assumes rq->lock is held */
1624
static void rq_offline_rt(struct rq *rq)
1625 1626 1627
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1628

P
Peter Zijlstra 已提交
1629 1630
	__disable_runtime(rq);

1631
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1632
}
1633 1634 1635 1636 1637

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1638
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1639 1640 1641 1642 1643 1644 1645 1646
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1647
	if (p->on_rq && !rq->rt.rt_nr_running)
1648 1649
		pull_rt_task(rq);
}
1650 1651 1652 1653 1654 1655

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1656
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1657
					GFP_KERNEL, cpu_to_node(i));
1658
}
1659 1660 1661 1662 1663 1664 1665
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1666
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1677
	if (p->on_rq && rq->curr != p) {
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1693 1694
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1695
{
P
Peter Zijlstra 已提交
1696
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1697 1698 1699
		return;

	if (rq->curr == p) {
1700 1701 1702 1703 1704 1705 1706 1707 1708
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1709 1710 1711
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1712
		 */
1713
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1714 1715 1716 1717 1718
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1719
#endif /* CONFIG_SMP */
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1731 1732 1733 1734
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1735 1736 1737
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1738 1739 1740 1741 1742 1743

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1744
		if (p->rt.timeout > next)
1745
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1746 1747
	}
}
I
Ingo Molnar 已提交
1748

P
Peter Zijlstra 已提交
1749
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1750
{
1751 1752
	update_curr_rt(rq);

1753 1754
	watchdog(rq, p);

I
Ingo Molnar 已提交
1755 1756 1757 1758 1759 1760 1761
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1762
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1763 1764
		return;

P
Peter Zijlstra 已提交
1765
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1766

1767 1768 1769 1770
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1771
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1772
		requeue_task_rt(rq, p, 0);
1773 1774
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1775 1776
}

1777 1778 1779 1780
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1781
	p->se.exec_start = rq->clock_task;
1782 1783 1784

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1785 1786
}

1787
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1798
static const struct sched_class rt_sched_class = {
1799
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1809
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1810 1811
	.select_task_rq		= select_task_rq_rt,

1812
	.set_cpus_allowed       = set_cpus_allowed_rt,
1813 1814
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1815 1816
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1817
	.task_woken		= task_woken_rt,
1818
	.switched_from		= switched_from_rt,
1819
#endif
I
Ingo Molnar 已提交
1820

1821
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1822
	.task_tick		= task_tick_rt,
1823

1824 1825
	.get_rr_interval	= get_rr_interval_rt,

1826 1827
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1828
};
1829 1830 1831 1832 1833 1834

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
C
Cheng Xu 已提交
1835
	rt_rq_iter_t iter;
1836 1837 1838
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
1839
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1840 1841 1842
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1843
#endif /* CONFIG_SCHED_DEBUG */
1844