sched_rt.c 36.8 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36
	atomic_dec(&rq->rd->rto_count);
37
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104
{
105
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
106 107
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

108 109 110
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
111
		if (rt_rq->highest_prio.curr < curr->prio)
112
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141
#ifdef CONFIG_SMP
142
static inline const struct cpumask *sched_rt_period_mask(void)
143 144 145
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147
static inline const struct cpumask *sched_rt_period_mask(void)
148
{
149
	return cpu_online_mask;
150 151
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164
#else /* !CONFIG_RT_GROUP_SCHED */
165 166 167

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202 203
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
204 205
}

P
Peter Zijlstra 已提交
206
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
207 208 209
{
}

P
Peter Zijlstra 已提交
210 211 212 213
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
214

215
static inline const struct cpumask *sched_rt_period_mask(void)
216
{
217
	return cpu_online_mask;
218 219 220 221 222 223 224 225
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
226 227 228 229 230
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

231
#endif /* CONFIG_RT_GROUP_SCHED */
232

P
Peter Zijlstra 已提交
233
#ifdef CONFIG_SMP
234 235 236
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
237
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
238 239 240 241 242 243
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

244
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
245 246 247

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
248
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
249 250 251 252 253 254 255
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
256 257 258 259 260
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
261 262 263
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

264 265 266 267
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
268 269
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
270
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
281
next:
P
Peter Zijlstra 已提交
282 283 284 285 286 287
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
288

289 290 291
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
307 308 309 310 311
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
312 313 314 315 316
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

317 318 319 320 321
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
322 323
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

324 325 326
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
327
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
328 329 330
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

331 332 333
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
334
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
353 354 355 356
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
357 358
		BUG_ON(want);
balanced:
359 360 361 362
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

385 386 387
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
388 389 390 391 392 393 394
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
395
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

410 411 412 413 414 415 416 417 418 419 420 421
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
422
#else /* !CONFIG_SMP */
423 424 425 426
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429 430 431
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
432
	const struct cpumask *span;
433

434
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435 436 437
		return 1;

	span = sched_rt_period_mask();
438
	for_each_cpu(i, span) {
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
459 460
		} else if (rt_rq->rt_nr_running)
			idle = 0;
461 462 463 464 465 466 467 468

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
469

P
Peter Zijlstra 已提交
470 471
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
472
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
473 474 475
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
476
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
477 478 479 480 481
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
482
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
483
{
P
Peter Zijlstra 已提交
484
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
485 486

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
487
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
488

P
Peter Zijlstra 已提交
489 490 491
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

492 493 494 495
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
496

P
Peter Zijlstra 已提交
497
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
498
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
499
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
500
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
501 502
			return 1;
		}
P
Peter Zijlstra 已提交
503 504 505 506 507
	}

	return 0;
}

I
Ingo Molnar 已提交
508 509 510 511
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
512
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
513 514
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
515 516
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
517 518 519 520 521
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

522
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
523 524
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
525 526

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
527 528

	curr->se.sum_exec_runtime += delta_exec;
529 530
	account_group_exec_runtime(curr, delta_exec);

531
	curr->se.exec_start = rq->clock;
532
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
533

534 535 536
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
537 538 539
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

540
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
541
			spin_lock(&rt_rq->rt_runtime_lock);
542 543 544
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
545
			spin_unlock(&rt_rq->rt_runtime_lock);
546
		}
D
Dhaval Giani 已提交
547
	}
I
Ingo Molnar 已提交
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
{
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}
#endif

P
Peter Zijlstra 已提交
565 566
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
567
{
G
Gregory Haskins 已提交
568
	int prio = rt_se_prio(rt_se);
569
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
570
	struct rq *rq = rq_of_rt_rq(rt_rq);
571
#endif
572

G
Gregory Haskins 已提交
573 574 575
	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
576
	if (prio < rt_rq->highest_prio.curr) {
G
Gregory Haskins 已提交
577

578 579 580 581 582 583 584 585
		/*
		 * If the new task is higher in priority than anything on the
		 * run-queue, we have a new high that must be published to
		 * the world.  We also know that the previous high becomes
		 * our next-highest.
		 */
		rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
		rt_rq->highest_prio.curr = prio;
I
Ingo Molnar 已提交
586
#ifdef CONFIG_SMP
587
		if (rq->online)
G
Gregory Haskins 已提交
588
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
589
#endif
590 591 592 593 594 595 596 597 598 599 600 601
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
P
Peter Zijlstra 已提交
602
#endif
603
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
604
	if (rt_se->nr_cpus_allowed > 1)
605 606
		rq->rt.rt_nr_migratory++;

G
Gregory Haskins 已提交
607
	update_rt_migration(rq);
P
Peter Zijlstra 已提交
608
#endif
609
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
610 611
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
612 613 614 615 616

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
617
#endif
618 619
}

P
Peter Zijlstra 已提交
620 621
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
622
{
623
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
624
	struct rq *rq = rq_of_rt_rq(rt_rq);
625
	int highest_prio = rt_rq->highest_prio.curr;
626 627
#endif

P
Peter Zijlstra 已提交
628 629 630
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
631
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
632
	if (rt_rq->rt_nr_running) {
633 634 635
		int prio = rt_se_prio(rt_se);

		WARN_ON(prio < rt_rq->highest_prio.curr);
636

637 638 639 640 641 642 643 644
		/*
		 * This may have been our highest or next-highest priority
		 * task and therefore we may have some recomputation to do
		 */
		if (prio == rt_rq->highest_prio.curr) {
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
645
				sched_find_first_bit(array->bitmap);
646 647 648 649
		}

		if (prio <= rt_rq->highest_prio.next)
			rt_rq->highest_prio.next = next_prio(rq);
650
	} else
651
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
652 653
#endif
#ifdef CONFIG_SMP
G
Gregory Haskins 已提交
654
	if (rt_se->nr_cpus_allowed > 1)
655 656
		rq->rt.rt_nr_migratory--;

657 658
	if (rq->online && rt_rq->highest_prio.curr != highest_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
659

G
Gregory Haskins 已提交
660
	update_rt_migration(rq);
661
#endif /* CONFIG_SMP */
662
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
663 664 665 666 667
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
668 669
}

670
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
671
{
P
Peter Zijlstra 已提交
672 673 674
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
675
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
676

677 678 679 680 681 682 683
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
684
		return;
685

686
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
687
	__set_bit(rt_se_prio(rt_se), array->bitmap);
688

P
Peter Zijlstra 已提交
689 690 691
	inc_rt_tasks(rt_se, rt_rq);
}

692
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
708
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
709
{
710
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
711

712 713 714 715 716 717 718
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
739
	}
I
Ingo Molnar 已提交
740 741 742 743 744
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

752
	enqueue_rt_entity(rt_se);
753 754

	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
755 756
}

757
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
758
{
P
Peter Zijlstra 已提交
759
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
760

761
	update_curr_rt(rq);
762
	dequeue_rt_entity(rt_se);
763 764

	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
765 766 767 768 769 770
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
771 772
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
773
{
774
	if (on_rt_rq(rt_se)) {
775 776 777 778 779 780 781
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
782
	}
P
Peter Zijlstra 已提交
783 784
}

785
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
786
{
P
Peter Zijlstra 已提交
787 788
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
789

P
Peter Zijlstra 已提交
790 791
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
792
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
793
	}
I
Ingo Molnar 已提交
794 795
}

P
Peter Zijlstra 已提交
796
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
797
{
798
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
799 800
}

801
#ifdef CONFIG_SMP
802 803
static int find_lowest_rq(struct task_struct *task);

804 805
static int select_task_rq_rt(struct task_struct *p, int sync)
{
806 807 808
	struct rq *rq = task_rq(p);

	/*
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
824
	 */
825
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
826
	    (p->rt.nr_cpus_allowed > 1)) {
827 828 829 830 831 832 833 834 835
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
836 837
	return task_cpu(p);
}
838 839 840

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
841
	cpumask_var_t mask;
842 843 844 845

	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

846
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
847 848
		return;

849 850 851 852 853 854
	if (p->rt.nr_cpus_allowed != 1
	    && cpupri_find(&rq->rd->cpupri, p, mask))
		goto free;

	if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
		goto free;
855 856 857 858 859 860 861 862

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
863 864
free:
	free_cpumask_var(mask);
865 866
}

867 868
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
869 870 871
/*
 * Preempt the current task with a newly woken task if needed:
 */
872
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
873
{
874
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
875
		resched_task(rq->curr);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
892 893
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
894
#endif
I
Ingo Molnar 已提交
895 896
}

P
Peter Zijlstra 已提交
897 898
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
899
{
P
Peter Zijlstra 已提交
900 901
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
902 903 904 905
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
906
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
907 908

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
909
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
910

P
Peter Zijlstra 已提交
911 912
	return next;
}
I
Ingo Molnar 已提交
913

P
Peter Zijlstra 已提交
914 915 916 917 918
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
919

P
Peter Zijlstra 已提交
920 921 922 923 924
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
925
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
926 927 928 929
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
930
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
931 932 933 934 935 936
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
937 938
}

939
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
940
{
941
	update_curr_rt(rq);
I
Ingo Molnar 已提交
942 943 944
	p->se.exec_start = 0;
}

945
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
946

S
Steven Rostedt 已提交
947 948 949 950 951
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

952 953 954
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
955
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
956
	    (p->rt.nr_cpus_allowed > 1))
957 958 959 960
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
961
/* Return the second highest RT task, NULL otherwise */
962
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
963
{
P
Peter Zijlstra 已提交
964 965 966 967
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
968 969
	int idx;

P
Peter Zijlstra 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
989 990
	}

S
Steven Rostedt 已提交
991 992 993
	return next;
}

994
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
995

G
Gregory Haskins 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1014
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1015 1016
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1017

1018 1019
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1020

1021 1022
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1023

1024 1025 1026 1027 1028
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
1029
	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1030

G
Gregory Haskins 已提交
1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1039
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

1054 1055
			cpumask_and(&domain_mask, sched_domain_span(sd),
				    lowest_mask);
G
Gregory Haskins 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1070 1071 1072
}

/* Will lock the rq it finds */
1073
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1074 1075 1076
{
	struct rq *lowest_rq = NULL;
	int tries;
1077
	int cpu;
S
Steven Rostedt 已提交
1078

1079 1080 1081
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1082
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1083 1084
			break;

1085 1086
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1087
		/* if the prio of this runqueue changed, try again */
1088
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1089 1090 1091 1092 1093 1094
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1095
			if (unlikely(task_rq(task) != rq ||
1096 1097
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1098
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1099
				     !task->se.on_rq)) {
1100

S
Steven Rostedt 已提交
1101 1102 1103 1104 1105 1106 1107
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1108
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1109 1110 1111
			break;

		/* try again */
1112
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1124
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1125 1126 1127 1128 1129 1130
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1131 1132 1133
	if (!rq->rt.overloaded)
		return 0;

1134
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1135 1136 1137 1138
	if (!next_task)
		return 0;

 retry:
1139
	if (unlikely(next_task == rq->curr)) {
1140
		WARN_ON(1);
S
Steven Rostedt 已提交
1141
		return 0;
1142
	}
S
Steven Rostedt 已提交
1143 1144 1145 1146 1147 1148

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1149 1150
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1151 1152 1153
		return 0;
	}

1154
	/* We might release rq lock */
S
Steven Rostedt 已提交
1155 1156 1157
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1158
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1159 1160 1161
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1162
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1163 1164 1165
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1166
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1167 1168 1169 1170 1171 1172 1173 1174
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1175
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1176 1177 1178 1179 1180
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1181
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1207 1208
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1209
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1210
	struct task_struct *p;
1211 1212
	struct rq *src_rq;

1213
	if (likely(!rt_overloaded(this_rq)))
1214 1215
		return 0;

1216
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1217 1218 1219 1220
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1233 1234 1235
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1236
		 * alter this_rq
1237
		 */
1238
		double_lock_balance(this_rq, src_rq);
1239 1240 1241 1242

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1243 1244
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1245 1246 1247 1248 1249 1250 1251

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1252
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1253 1254 1255 1256 1257 1258 1259 1260 1261
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1262
			 * current task on the run queue
1263
			 */
1264
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1265
				goto skip;
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1279
 skip:
1280
		double_unlock_balance(this_rq, src_rq);
1281 1282 1283 1284 1285
	}

	return ret;
}

1286
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1287 1288
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1289
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1290 1291 1292
		pull_rt_task(rq);
}

1293 1294 1295 1296 1297 1298 1299 1300
/*
 * assumes rq->lock is held
 */
static int needs_post_schedule_rt(struct rq *rq)
{
	return rq->rt.overloaded ? 1 : 0;
}

1301
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1302 1303
{
	/*
1304 1305
	 * This is only called if needs_post_schedule_rt() indicates that
	 * we need to push tasks away
S
Steven Rostedt 已提交
1306
	 */
1307 1308 1309
	spin_lock_irq(&rq->lock);
	push_rt_tasks(rq);
	spin_unlock_irq(&rq->lock);
S
Steven Rostedt 已提交
1310 1311
}

1312 1313 1314 1315
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1316
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1317
{
1318
	if (!task_running(rq, p) &&
1319
	    !test_tsk_need_resched(rq->curr) &&
1320 1321
	    rq->rt.overloaded &&
	    p->rt.nr_cpus_allowed > 1)
1322 1323 1324
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1325
static unsigned long
I
Ingo Molnar 已提交
1326
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1327 1328 1329
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1330
{
1331 1332
	/* don't touch RT tasks */
	return 0;
1333 1334 1335 1336 1337 1338
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1339 1340
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1341
}
1342

1343
static void set_cpus_allowed_rt(struct task_struct *p,
1344
				const struct cpumask *new_mask)
1345
{
1346
	int weight = cpumask_weight(new_mask);
1347 1348 1349 1350 1351 1352 1353

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1354
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1355 1356
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1357
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1358
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1359
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1360 1361 1362 1363 1364 1365 1366
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

1367
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1368
	p->rt.nr_cpus_allowed = weight;
1369
}
1370

1371
/* Assumes rq->lock is held */
1372
static void rq_online_rt(struct rq *rq)
1373 1374 1375
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1376

P
Peter Zijlstra 已提交
1377 1378
	__enable_runtime(rq);

1379
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1380 1381 1382
}

/* Assumes rq->lock is held */
1383
static void rq_offline_rt(struct rq *rq)
1384 1385 1386
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1387

P
Peter Zijlstra 已提交
1388 1389
	__disable_runtime(rq);

1390
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1391
}
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1410 1411 1412 1413 1414 1415 1416 1417

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
		alloc_cpumask_var(&per_cpu(local_cpu_mask, i), GFP_KERNEL);
}
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1466 1467 1468
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1469
		 */
1470
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1471 1472 1473 1474 1475
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1476
#endif /* CONFIG_SMP */
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1503
		if (p->rt.timeout > next)
1504
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1505 1506
	}
}
I
Ingo Molnar 已提交
1507

P
Peter Zijlstra 已提交
1508
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1509
{
1510 1511
	update_curr_rt(rq);

1512 1513
	watchdog(rq, p);

I
Ingo Molnar 已提交
1514 1515 1516 1517 1518 1519 1520
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1521
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1522 1523
		return;

P
Peter Zijlstra 已提交
1524
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1525

1526 1527 1528 1529
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1530
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1531
		requeue_task_rt(rq, p, 0);
1532 1533
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1534 1535
}

1536 1537 1538 1539 1540 1541 1542
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1543
static const struct sched_class rt_sched_class = {
1544
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1554
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1555 1556
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1557
	.load_balance		= load_balance_rt,
1558
	.move_one_task		= move_one_task_rt,
1559
	.set_cpus_allowed       = set_cpus_allowed_rt,
1560 1561
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1562
	.pre_schedule		= pre_schedule_rt,
1563
	.needs_post_schedule	= needs_post_schedule_rt,
1564 1565
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1566
	.switched_from		= switched_from_rt,
1567
#endif
I
Ingo Molnar 已提交
1568

1569
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1570
	.task_tick		= task_tick_rt,
1571 1572 1573

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1574
};
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1588
#endif /* CONFIG_SCHED_DEBUG */
1589