sched_rt.c 27.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
49
{
P
Peter Zijlstra 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

#ifdef CONFIG_FAIR_GROUP_SCHED

static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
{
	if (!rt_rq->tg)
		return SCHED_RT_FRAC;

	return rt_rq->tg->rt_ratio;
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 98
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
99
		enqueue_rt_entity(rt_se);
100 101
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	}
}

static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

#else

static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
{
	return sysctl_sched_rt_ratio;
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
{
}

static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
{
}

#endif

static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
{
	unsigned int rt_ratio = sched_rt_ratio(rt_rq);
P
Peter Zijlstra 已提交
169 170
	u64 period, ratio;

P
Peter Zijlstra 已提交
171
	if (rt_ratio == SCHED_RT_FRAC)
P
Peter Zijlstra 已提交
172 173 174 175 176 177
		return 0;

	if (rt_rq->rt_throttled)
		return 1;

	period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
P
Peter Zijlstra 已提交
178
	ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
P
Peter Zijlstra 已提交
179 180

	if (rt_rq->rt_time > ratio) {
P
Peter Zijlstra 已提交
181 182 183
		struct rq *rq = rq_of_rt_rq(rt_rq);

		rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
184
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
185

P
Peter Zijlstra 已提交
186
		sched_rt_ratio_dequeue(rt_rq);
P
Peter Zijlstra 已提交
187 188 189 190 191 192 193 194
		return 1;
	}

	return 0;
}

static void update_sched_rt_period(struct rq *rq)
{
P
Peter Zijlstra 已提交
195 196
	struct rt_rq *rt_rq;
	u64 period;
P
Peter Zijlstra 已提交
197

P
Peter Zijlstra 已提交
198
	while (rq->clock > rq->rt_period_expire) {
P
Peter Zijlstra 已提交
199 200 201
		period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
		rq->rt_period_expire += period;

P
Peter Zijlstra 已提交
202 203 204 205 206 207 208 209 210 211 212 213
		for_each_leaf_rt_rq(rt_rq, rq) {
			unsigned long rt_ratio = sched_rt_ratio(rt_rq);
			u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;

			rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
			if (rt_rq->rt_throttled) {
				rt_rq->rt_throttled = 0;
				sched_rt_ratio_enqueue(rt_rq);
			}
		}

		rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
214 215 216
	}
}

I
Ingo Molnar 已提交
217 218 219 220
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
221
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
222 223
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
224 225
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
226 227 228 229 230
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

231
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
232 233
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
234 235

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
236 237

	curr->se.sum_exec_runtime += delta_exec;
238
	curr->se.exec_start = rq->clock;
239
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
240

P
Peter Zijlstra 已提交
241 242 243 244 245 246 247
	rt_rq->rt_time += delta_exec;
	/*
	 * might make it a tad more accurate:
	 *
	 * update_sched_rt_period(rq);
	 */
	if (sched_rt_ratio_exceeded(rt_rq))
P
Peter Zijlstra 已提交
248
		resched_task(curr);
I
Ingo Molnar 已提交
249 250
}

P
Peter Zijlstra 已提交
251 252
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
253
{
P
Peter Zijlstra 已提交
254 255 256 257 258 259
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_se_prio(rt_se) < rt_rq->highest_prio)
		rt_rq->highest_prio = rt_se_prio(rt_se);
#endif
260
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
261 262
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
263
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
264
	}
265

P
Peter Zijlstra 已提交
266 267
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
268 269
}

P
Peter Zijlstra 已提交
270 271
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_rq->rt_nr_running) {
278 279
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
280 281
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
282
			/* recalculate */
P
Peter Zijlstra 已提交
283 284
			array = &rt_rq->active;
			rt_rq->highest_prio =
285 286 287
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
288 289 290 291 292
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
293
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
294
	}
295

P
Peter Zijlstra 已提交
296
	update_rt_migration(rq_of_rt_rq(rt_rq));
297
#endif /* CONFIG_SMP */
298 299
}

P
Peter Zijlstra 已提交
300
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
301
{
P
Peter Zijlstra 已提交
302 303 304
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
305

P
Peter Zijlstra 已提交
306 307
	if (group_rq && group_rq->rt_throttled)
		return;
308

P
Peter Zijlstra 已提交
309 310
	list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
	__set_bit(rt_se_prio(rt_se), array->bitmap);
311

P
Peter Zijlstra 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 *
 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
 *      doesn't matter much for now, as h=2 for GROUP_SCHED.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
	struct sched_rt_entity *rt_se, *top_se;

	/*
	 * dequeue all, top - down.
	 */
	do {
		rt_se = &p->rt;
		top_se = NULL;
		for_each_sched_rt_entity(rt_se) {
			if (on_rt_rq(rt_se))
				top_se = rt_se;
		}
		if (top_se)
			dequeue_rt_entity(top_se);
	} while (top_se);
I
Ingo Molnar 已提交
351 352 353 354 355
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);

	inc_cpu_load(rq, p->se.load.weight);
}

374
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
375
{
P
Peter Zijlstra 已提交
376 377
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
378

379
	update_curr_rt(rq);
I
Ingo Molnar 已提交
380

P
Peter Zijlstra 已提交
381 382 383 384 385 386 387 388 389 390
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
391

P
Peter Zijlstra 已提交
392
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
393 394 395 396 397 398
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
399 400 401 402 403 404 405 406
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

	list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
}

I
Ingo Molnar 已提交
407 408
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
409 410
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
411

P
Peter Zijlstra 已提交
412 413 414 415
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
416 417
}

P
Peter Zijlstra 已提交
418
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
419
{
420
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
421 422
}

423
#ifdef CONFIG_SMP
424 425
static int find_lowest_rq(struct task_struct *task);

426 427
static int select_task_rq_rt(struct task_struct *p, int sync)
{
428 429 430
	struct rq *rq = task_rq(p);

	/*
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
446
	 */
447
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
448
	    (p->rt.nr_cpus_allowed > 1)) {
449 450 451 452 453 454 455 456 457
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
458 459 460 461
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
462 463 464 465 466 467 468 469 470
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

P
Peter Zijlstra 已提交
471 472
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
473
{
P
Peter Zijlstra 已提交
474 475
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
476 477 478 479
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
480
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
481 482

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
483
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
484

P
Peter Zijlstra 已提交
485 486
	return next;
}
I
Ingo Molnar 已提交
487

P
Peter Zijlstra 已提交
488 489 490 491 492
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
493

P
Peter Zijlstra 已提交
494 495 496 497 498 499 500 501 502 503
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

	if (sched_rt_ratio_exceeded(rt_rq))
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
504
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
505 506 507 508 509 510
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
511 512
}

513
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
514
{
515
	update_curr_rt(rq);
I
Ingo Molnar 已提交
516 517 518
	p->se.exec_start = 0;
}

519
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
520

S
Steven Rostedt 已提交
521 522 523 524 525 526
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

527 528 529
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
530
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
531
	    (p->rt.nr_cpus_allowed > 1))
532 533 534 535
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
536
/* Return the second highest RT task, NULL otherwise */
537
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
538
{
P
Peter Zijlstra 已提交
539 540 541 542
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
543 544
	int idx;

P
Peter Zijlstra 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
564 565
	}

S
Steven Rostedt 已提交
566 567 568 569 570
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
571
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
572
{
G
Gregory Haskins 已提交
573
	int       lowest_prio = -1;
574
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
575
	int       count       = 0;
576
	int       cpu;
S
Steven Rostedt 已提交
577

578
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
579

580 581 582
	/*
	 * Scan each rq for the lowest prio.
	 */
583
	for_each_cpu_mask(cpu, *lowest_mask) {
584
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
585

586 587
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
588 589 590 591 592 593 594 595 596
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
597
				cpus_clear(*lowest_mask);
598 599
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
600
			return 1;
601 602 603
		}

		/* no locking for now */
G
Gregory Haskins 已提交
604 605 606 607 608
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
609 610
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
611
			}
G
Gregory Haskins 已提交
612
			count++;
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
632
		}
633 634
	}

G
Gregory Haskins 已提交
635
	return count;
G
Gregory Haskins 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
659 660 661 662
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
663

G
Gregory Haskins 已提交
664 665 666 667 668 669
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
709 710 711
}

/* Will lock the rq it finds */
712
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
713 714 715
{
	struct rq *lowest_rq = NULL;
	int tries;
716
	int cpu;
S
Steven Rostedt 已提交
717

718 719 720
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

721
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
722 723
			break;

724 725
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
726
		/* if the prio of this runqueue changed, try again */
727
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
728 729 730 731 732 733
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
734
			if (unlikely(task_rq(task) != rq ||
735 736
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
737
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
738
				     !task->se.on_rq)) {
739

S
Steven Rostedt 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
763
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
764 765 766 767 768 769
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
770 771 772
	if (!rq->rt.overloaded)
		return 0;

773
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
774 775 776 777
	if (!next_task)
		return 0;

 retry:
778
	if (unlikely(next_task == rq->curr)) {
779
		WARN_ON(1);
S
Steven Rostedt 已提交
780
		return 0;
781
	}
S
Steven Rostedt 已提交
782 783 784 785 786 787

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
788 789
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
790 791 792
		return 0;
	}

793
	/* We might release rq lock */
S
Steven Rostedt 已提交
794 795 796
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
797
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
798 799 800
	if (!lowest_rq) {
		struct task_struct *task;
		/*
801
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
802 803 804
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
805
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
806 807 808 809 810 811 812 813
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

814
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

846 847
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
848 849
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
850 851
	struct rq *src_rq;

852
	if (likely(!rt_overloaded(this_rq)))
853 854 855 856
		return 0;

	next = pick_next_task_rt(this_rq);

857
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
858 859 860 861 862 863 864 865 866 867 868 869 870
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
871

872 873 874 875 876 877 878 879
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
880 881
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
905
				goto skip;
906 907 908 909 910 911 912 913 914 915 916

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
917
			 *
918 919 920 921 922 923 924
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
925
 skip:
926 927 928 929 930 931
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

932
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
933 934
{
	/* Try to pull RT tasks here if we lower this rq's prio */
935
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
936 937 938
		pull_rt_task(rq);
}

939
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
940 941 942 943 944 945 946 947
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
948
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
949 950 951 952 953 954
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

955

956
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
957
{
958
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
959 960
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
961 962 963
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
964
static unsigned long
I
Ingo Molnar 已提交
965
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
966 967 968
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
969
{
970 971
	/* don't touch RT tasks */
	return 0;
972 973 974 975 976 977
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
978 979
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
980
}
981

982 983 984 985 986 987 988 989 990 991
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
992
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
993 994
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
995
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
996
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
997
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
998 999 1000 1001 1002 1003 1004 1005
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1006
	p->rt.nr_cpus_allowed = weight;
1007
}
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1096
#endif /* CONFIG_SMP */
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1123
		if (p->rt.timeout > next)
1124 1125 1126
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1127

P
Peter Zijlstra 已提交
1128
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1129
{
1130 1131
	update_curr_rt(rq);

1132 1133
	watchdog(rq, p);

I
Ingo Molnar 已提交
1134 1135 1136 1137 1138 1139 1140
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1141
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1142 1143
		return;

P
Peter Zijlstra 已提交
1144
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1145

1146 1147 1148 1149
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1150
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1151 1152 1153
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1154 1155
}

1156 1157 1158 1159 1160 1161 1162
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1163 1164
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1165 1166 1167
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1168 1169 1170
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1177
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1178
	.load_balance		= load_balance_rt,
1179
	.move_one_task		= move_one_task_rt,
1180
	.set_cpus_allowed       = set_cpus_allowed_rt,
1181 1182
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
1183 1184 1185
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1186
	.switched_from		= switched_from_rt,
1187
#endif
I
Ingo Molnar 已提交
1188

1189
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1190
	.task_tick		= task_tick_rt,
1191 1192 1193

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1194
};