sched_rt.c 41.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185
}

186 187 188 189 190 191 192 193 194 195 196
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
197
#define for_each_leaf_rt_rq(rt_rq, rq) \
198
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
199 200 201 202 203 204 205 206 207

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

208
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
209 210
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
211
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
212
{
213
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
214 215
	struct sched_rt_entity *rt_se;

216 217 218
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
219

220 221
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
222
			enqueue_rt_entity(rt_se, false);
223
		if (rt_rq->highest_prio.curr < curr->prio)
224
			resched_task(curr);
P
Peter Zijlstra 已提交
225 226 227
	}
}

P
Peter Zijlstra 已提交
228
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
229
{
230
	struct sched_rt_entity *rt_se;
231
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
232

233
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
234 235 236 237 238

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

256
#ifdef CONFIG_SMP
257
static inline const struct cpumask *sched_rt_period_mask(void)
258 259 260
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
261
#else
262
static inline const struct cpumask *sched_rt_period_mask(void)
263
{
264
	return cpu_online_mask;
265 266
}
#endif
P
Peter Zijlstra 已提交
267

268 269
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
270
{
271 272
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
273

P
Peter Zijlstra 已提交
274 275 276 277 278
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

279
#else /* !CONFIG_RT_GROUP_SCHED */
280 281 282

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
283 284 285 286 287 288
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
289 290
}

291 292 293 294 295 296 297 298
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
299 300 301 302 303 304 305 306 307 308 309
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
310
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
311
{
312 313
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
314 315
}

P
Peter Zijlstra 已提交
316
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
317 318 319
{
}

P
Peter Zijlstra 已提交
320 321 322 323
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
324

325
static inline const struct cpumask *sched_rt_period_mask(void)
326
{
327
	return cpu_online_mask;
328 329 330 331 332 333 334 335
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
336 337 338 339 340
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

341
#endif /* CONFIG_RT_GROUP_SCHED */
342

P
Peter Zijlstra 已提交
343
#ifdef CONFIG_SMP
344 345 346
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
347
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
348 349 350 351 352 353
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

354
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
355

356
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
357
	rt_period = ktime_to_ns(rt_b->rt_period);
358
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
359 360 361 362 363 364
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

365
		raw_spin_lock(&iter->rt_runtime_lock);
366 367 368 369 370
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
371 372 373
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

374 375 376 377
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
378 379
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
380
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
381 382 383 384 385 386
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
387
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
388 389 390
				break;
			}
		}
P
Peter Zijlstra 已提交
391
next:
392
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
393
	}
394
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
395 396 397

	return more;
}
P
Peter Zijlstra 已提交
398

399 400 401
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

415 416
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
417 418 419 420 421
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
422 423 424
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
425
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
426

427 428 429 430 431
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
432 433
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

434 435 436
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
437
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
438 439 440
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

441 442 443
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
444
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
445 446
				continue;

447
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
448 449 450 451 452 453 454 455
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
456
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
457 458 459 460 461

			if (!want)
				break;
		}

462
		raw_spin_lock(&rt_rq->rt_runtime_lock);
463 464 465 466
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
467 468
		BUG_ON(want);
balanced:
469 470 471 472
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
473
		rt_rq->rt_runtime = RUNTIME_INF;
474 475
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
476 477 478 479 480 481 482
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

483
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
484
	__disable_runtime(rq);
485
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493 494
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

495 496 497
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
498 499 500
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

501 502
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
503 504
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
505
		rt_rq->rt_throttled = 0;
506 507
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
508 509 510 511 512 513 514
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

515
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
516
	__enable_runtime(rq);
517
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
518 519
}

520 521 522 523 524
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
525
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
526
		more = do_balance_runtime(rt_rq);
527
		raw_spin_lock(&rt_rq->rt_runtime_lock);
528 529 530 531
	}

	return more;
}
532
#else /* !CONFIG_SMP */
533 534 535 536
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
537
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
538

539 540 541
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
542
	const struct cpumask *span;
543

544
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
545 546 547
		return 1;

	span = sched_rt_period_mask();
548
	for_each_cpu(i, span) {
549 550 551 552
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

553
		raw_spin_lock(&rq->lock);
554 555 556
		if (rt_rq->rt_time) {
			u64 runtime;

557
			raw_spin_lock(&rt_rq->rt_runtime_lock);
558 559 560 561 562 563 564 565 566 567
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
568
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
569
		} else if (rt_rq->rt_nr_running) {
570
			idle = 0;
571 572 573
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
574 575 576

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
577
		raw_spin_unlock(&rq->lock);
578 579 580 581
	}

	return idle;
}
P
Peter Zijlstra 已提交
582

P
Peter Zijlstra 已提交
583 584
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
585
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
586 587 588
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
589
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
590 591 592 593 594
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
595
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
596
{
P
Peter Zijlstra 已提交
597
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
598 599

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
600
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
601

P
Peter Zijlstra 已提交
602 603 604
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

605 606 607 608
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
609

P
Peter Zijlstra 已提交
610
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
611
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
612
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
613
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
614 615
			return 1;
		}
P
Peter Zijlstra 已提交
616 617 618 619 620
	}

	return 0;
}

I
Ingo Molnar 已提交
621 622 623 624
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
625
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
626 627
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
628 629
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
630 631
	u64 delta_exec;

P
Peter Zijlstra 已提交
632
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
633 634
		return;

635
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
636 637
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
638

639
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
640 641

	curr->se.sum_exec_runtime += delta_exec;
642 643
	account_group_exec_runtime(curr, delta_exec);

644
	curr->se.exec_start = rq->clock_task;
645
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
646

647 648
	sched_rt_avg_update(rq, delta_exec);

649 650 651
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
652 653 654
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

655
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
656
			raw_spin_lock(&rt_rq->rt_runtime_lock);
657 658 659
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
660
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
661
		}
D
Dhaval Giani 已提交
662
	}
I
Ingo Molnar 已提交
663 664
}

665
#if defined CONFIG_SMP
666 667 668 669

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
670
{
671 672 673 674 675 676 677 678
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

679 680
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
681
{
G
Gregory Haskins 已提交
682
	struct rq *rq = rq_of_rt_rq(rt_rq);
683

684
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
685

686 687
		/*
		 * If the new task is higher in priority than anything on the
688 689
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
690
		 */
691
		rt_rq->highest_prio.next = prev_prio;
692 693

		if (rq->online)
G
Gregory Haskins 已提交
694
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
695

696 697 698 699 700 701 702 703 704 705 706 707
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
708
}
709

710 711 712 713
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
714

715 716 717 718 719
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
720 721
}

722 723
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
724
static inline
725 726 727 728 729
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
730

731
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
748
	if (rt_rq->rt_nr_running) {
749

750
		WARN_ON(prio < prev_prio);
751

752
		/*
753 754
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
755
		 */
756
		if (prio == prev_prio) {
757 758 759
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
760
				sched_find_first_bit(array->bitmap);
761 762
		}

763
	} else
764
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
765

766 767
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
768

769 770 771 772 773 774
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
775

776
#ifdef CONFIG_RT_GROUP_SCHED
777 778 779 780 781 782 783 784 785 786 787 788 789 790

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
791 792 793 794
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
833 834
}

835
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
836
{
P
Peter Zijlstra 已提交
837 838 839
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
840
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
841

842 843 844 845 846 847 848
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
849
		return;
850

851 852 853
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

854 855 856 857
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
858
	__set_bit(rt_se_prio(rt_se), array->bitmap);
859

P
Peter Zijlstra 已提交
860 861 862
	inc_rt_tasks(rt_se, rt_rq);
}

863
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
864 865 866 867 868 869 870 871 872
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
873 874
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
875 876 877 878 879 880
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
881
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
882
{
883
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
884

885 886 887 888 889 890 891
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
892 893 894 895
			__dequeue_rt_entity(rt_se);
	}
}

896
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
897 898 899
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
900
		__enqueue_rt_entity(rt_se, head);
901 902 903 904 905 906 907 908 909 910
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
911
			__enqueue_rt_entity(rt_se, false);
912
	}
I
Ingo Molnar 已提交
913 914 915 916 917
}

/*
 * Adding/removing a task to/from a priority array:
 */
918
static void
919
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
920 921 922
{
	struct sched_rt_entity *rt_se = &p->rt;

923
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
924 925
		rt_se->timeout = 0;

926
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
927

928 929
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
930 931
}

932
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
933
{
P
Peter Zijlstra 已提交
934
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
935

936
	update_curr_rt(rq);
937
	dequeue_rt_entity(rt_se);
938

939
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
940 941 942 943 944 945
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
946 947
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
948
{
949
	if (on_rt_rq(rt_se)) {
950 951 952 953 954 955 956
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
957
	}
P
Peter Zijlstra 已提交
958 959
}

960
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
961
{
P
Peter Zijlstra 已提交
962 963
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
964

P
Peter Zijlstra 已提交
965 966
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
967
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
968
	}
I
Ingo Molnar 已提交
969 970
}

P
Peter Zijlstra 已提交
971
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
972
{
973
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
974 975
}

976
#ifdef CONFIG_SMP
977 978
static int find_lowest_rq(struct task_struct *task);

979 980
static int
select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
981
{
982
	if (sd_flag != SD_BALANCE_WAKE)
983 984
		return smp_processor_id();

985
	/*
986 987 988 989 990
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
991 992 993 994 995 996 997 998 999
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1000
	 */
1001
	if (unlikely(rt_task(rq->curr)) &&
1002 1003
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio) &&
P
Peter Zijlstra 已提交
1004
	    (p->rt.nr_cpus_allowed > 1)) {
1005 1006 1007 1008 1009 1010 1011 1012 1013
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
1014 1015
	return task_cpu(p);
}
1016 1017 1018 1019 1020 1021

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1022
	if (p->rt.nr_cpus_allowed != 1
1023 1024
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1025

1026 1027
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1038 1039
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1040 1041 1042
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1043
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1044
{
1045
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1046
		resched_task(rq->curr);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1063 1064
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1065
#endif
I
Ingo Molnar 已提交
1066 1067
}

P
Peter Zijlstra 已提交
1068 1069
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1070
{
P
Peter Zijlstra 已提交
1071 1072
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1073 1074 1075 1076
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1077
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1078 1079

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1080
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1081

P
Peter Zijlstra 已提交
1082 1083
	return next;
}
I
Ingo Molnar 已提交
1084

1085
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1086 1087 1088 1089
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1090

P
Peter Zijlstra 已提交
1091 1092 1093 1094 1095
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1096
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1097 1098 1099 1100
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1101
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1102 1103 1104 1105
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1106
	p->se.exec_start = rq->clock_task;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1119
#ifdef CONFIG_SMP
1120 1121 1122 1123 1124
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1125
#endif
1126

P
Peter Zijlstra 已提交
1127
	return p;
I
Ingo Molnar 已提交
1128 1129
}

1130
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1131
{
1132
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1133
	p->se.exec_start = 0;
1134 1135 1136 1137 1138 1139 1140

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1141 1142
}

1143
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1144

S
Steven Rostedt 已提交
1145 1146 1147 1148 1149
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1150 1151 1152
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1153
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1154
	    (p->rt.nr_cpus_allowed > 1))
1155 1156 1157 1158
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1159
/* Return the second highest RT task, NULL otherwise */
1160
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1161
{
P
Peter Zijlstra 已提交
1162 1163 1164 1165
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1166 1167
	int idx;

P
Peter Zijlstra 已提交
1168 1169 1170
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1171
next_idx:
P
Peter Zijlstra 已提交
1172 1173 1174 1175 1176
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1177 1178 1179 1180 1181 1182
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1192 1193
	}

S
Steven Rostedt 已提交
1194 1195 1196
	return next;
}

1197
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1198

G
Gregory Haskins 已提交
1199 1200 1201
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1202
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1203 1204
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1205

1206 1207
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1208

1209 1210
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1220
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1221 1222 1223 1224 1225 1226
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1227 1228
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1229

R
Rusty Russell 已提交
1230 1231 1232
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1233

R
Rusty Russell 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
				return this_cpu;

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
			if (best_cpu < nr_cpu_ids)
				return best_cpu;
G
Gregory Haskins 已提交
1246 1247 1248 1249 1250 1251 1252 1253
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1254 1255 1256 1257 1258 1259 1260
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1261 1262 1263
}

/* Will lock the rq it finds */
1264
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1265 1266 1267
{
	struct rq *lowest_rq = NULL;
	int tries;
1268
	int cpu;
S
Steven Rostedt 已提交
1269

1270 1271 1272
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1273
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1274 1275
			break;

1276 1277
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1278
		/* if the prio of this runqueue changed, try again */
1279
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1280 1281 1282 1283 1284 1285
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1286
			if (unlikely(task_rq(task) != rq ||
1287 1288
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1289
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1290
				     !task->se.on_rq)) {
1291

1292
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1293 1294 1295 1296 1297 1298
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1299
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1300 1301 1302
			break;

		/* try again */
1303
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1304 1305 1306 1307 1308 1309
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1330 1331 1332 1333 1334
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1335
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1336 1337 1338 1339
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1340 1341 1342
	if (!rq->rt.overloaded)
		return 0;

1343
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1344 1345 1346
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1347
retry:
1348
	if (unlikely(next_task == rq->curr)) {
1349
		WARN_ON(1);
S
Steven Rostedt 已提交
1350
		return 0;
1351
	}
S
Steven Rostedt 已提交
1352 1353 1354 1355 1356 1357

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1358 1359
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1360 1361 1362
		return 0;
	}

1363
	/* We might release rq lock */
S
Steven Rostedt 已提交
1364 1365 1366
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1367
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1368 1369 1370
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1371
		 * find lock_lowest_rq releases rq->lock
1372 1373 1374 1375 1376
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1377
		 */
1378
		task = pick_next_pushable_task(rq);
1379 1380
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
L
Lucas De Marchi 已提交
1381
			 * If we get here, the task hasn't moved at all, but
1382 1383 1384 1385 1386 1387
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1388
		}
1389

1390 1391 1392 1393
		if (!task)
			/* No more tasks, just exit */
			goto out;

1394
		/*
1395
		 * Something has shifted, try again.
1396
		 */
1397 1398 1399
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1400 1401
	}

1402
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1403 1404 1405 1406 1407
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1408
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1409 1410 1411 1412

out:
	put_task_struct(next_task);

1413
	return 1;
S
Steven Rostedt 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1423 1424
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1425
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1426
	struct task_struct *p;
1427 1428
	struct rq *src_rq;

1429
	if (likely(!rt_overloaded(this_rq)))
1430 1431
		return 0;

1432
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1433 1434 1435 1436
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1449 1450 1451
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1452
		 * alter this_rq
1453
		 */
1454
		double_lock_balance(this_rq, src_rq);
1455 1456 1457 1458

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1459 1460
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1461 1462 1463 1464 1465 1466 1467

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1468
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1469 1470 1471 1472 1473 1474 1475 1476 1477
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1478
			 * current task on the run queue
1479
			 */
1480
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1481
				goto skip;
1482 1483 1484 1485 1486 1487 1488 1489 1490

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1491
			 * in another runqueue. (low likelihood
1492 1493 1494
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1495
skip:
1496
		double_unlock_balance(this_rq, src_rq);
1497 1498 1499 1500 1501
	}

	return ret;
}

1502
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1503 1504
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1505
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1506 1507 1508
		pull_rt_task(rq);
}

1509
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1510
{
1511
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1512 1513
}

1514 1515 1516 1517
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1518
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1519
{
1520
	if (!task_running(rq, p) &&
1521
	    !test_tsk_need_resched(rq->curr) &&
1522
	    has_pushable_tasks(rq) &&
1523
	    p->rt.nr_cpus_allowed > 1 &&
1524
	    rt_task(rq->curr) &&
1525 1526
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio))
1527 1528 1529
		push_rt_tasks(rq);
}

1530
static void set_cpus_allowed_rt(struct task_struct *p,
1531
				const struct cpumask *new_mask)
1532
{
1533
	int weight = cpumask_weight(new_mask);
1534 1535 1536 1537 1538 1539 1540

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1541
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1542 1543
		struct rq *rq = task_rq(p);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1562
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1563
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1564
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1565 1566 1567 1568
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1569
		update_rt_migration(&rq->rt);
1570 1571
	}

1572
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1573
	p->rt.nr_cpus_allowed = weight;
1574
}
1575

1576
/* Assumes rq->lock is held */
1577
static void rq_online_rt(struct rq *rq)
1578 1579 1580
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1581

P
Peter Zijlstra 已提交
1582 1583
	__enable_runtime(rq);

1584
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1585 1586 1587
}

/* Assumes rq->lock is held */
1588
static void rq_offline_rt(struct rq *rq)
1589 1590 1591
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1592

P
Peter Zijlstra 已提交
1593 1594
	__disable_runtime(rq);

1595
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1596
}
1597 1598 1599 1600 1601

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1602
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1603 1604 1605 1606 1607 1608 1609 1610
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1611
	if (p->se.on_rq && !rq->rt.rt_nr_running)
1612 1613
		pull_rt_task(rq);
}
1614 1615 1616 1617 1618 1619

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1620
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1621
					GFP_KERNEL, cpu_to_node(i));
1622
}
1623 1624 1625 1626 1627 1628 1629
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1630
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1641
	if (p->se.on_rq && rq->curr != p) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1657 1658
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1659
{
P
Peter Zijlstra 已提交
1660 1661 1662 1663
	if (!p->se.on_rq)
		return;

	if (rq->curr == p) {
1664 1665 1666 1667 1668 1669 1670 1671 1672
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1673 1674 1675
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1676
		 */
1677
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1678 1679 1680 1681 1682
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1683
#endif /* CONFIG_SMP */
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1695 1696 1697 1698
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1699 1700 1701
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1702 1703 1704 1705 1706 1707

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1708
		if (p->rt.timeout > next)
1709
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1710 1711
	}
}
I
Ingo Molnar 已提交
1712

P
Peter Zijlstra 已提交
1713
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1714
{
1715 1716
	update_curr_rt(rq);

1717 1718
	watchdog(rq, p);

I
Ingo Molnar 已提交
1719 1720 1721 1722 1723 1724 1725
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1726
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1727 1728
		return;

P
Peter Zijlstra 已提交
1729
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1730

1731 1732 1733 1734
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1735
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1736
		requeue_task_rt(rq, p, 0);
1737 1738
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1739 1740
}

1741 1742 1743 1744
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1745
	p->se.exec_start = rq->clock_task;
1746 1747 1748

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1749 1750
}

1751
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1762
static const struct sched_class rt_sched_class = {
1763
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1773
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1774 1775
	.select_task_rq		= select_task_rq_rt,

1776
	.set_cpus_allowed       = set_cpus_allowed_rt,
1777 1778
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1779 1780
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1781
	.task_woken		= task_woken_rt,
1782
	.switched_from		= switched_from_rt,
1783
#endif
I
Ingo Molnar 已提交
1784

1785
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1786
	.task_tick		= task_tick_rt,
1787

1788 1789
	.get_rr_interval	= get_rr_interval_rt,

1790 1791
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1792
};
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1806
#endif /* CONFIG_SCHED_DEBUG */
1807