sched_rt.c 40.7 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185 186
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
187
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
188 189 190 191 192 193 194 195 196 197 198 199

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
200
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
203 204
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

205 206 207
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
208
		if (rt_rq->highest_prio.curr < curr->prio)
209
			resched_task(curr);
P
Peter Zijlstra 已提交
210 211 212
	}
}

P
Peter Zijlstra 已提交
213
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
214 215 216 217 218 219 220
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

238
#ifdef CONFIG_SMP
239
static inline const struct cpumask *sched_rt_period_mask(void)
240 241 242
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
243
#else
244
static inline const struct cpumask *sched_rt_period_mask(void)
245
{
246
	return cpu_online_mask;
247 248
}
#endif
P
Peter Zijlstra 已提交
249

250 251
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
252
{
253 254
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
255

P
Peter Zijlstra 已提交
256 257 258 259 260
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

261
#else /* !CONFIG_RT_GROUP_SCHED */
262 263 264

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
265 266 267 268 269 270
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
284
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
285
{
286 287
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
288 289
}

P
Peter Zijlstra 已提交
290
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
291 292 293
{
}

P
Peter Zijlstra 已提交
294 295 296 297
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
298

299
static inline const struct cpumask *sched_rt_period_mask(void)
300
{
301
	return cpu_online_mask;
302 303 304 305 306 307 308 309
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
310 311 312 313 314
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

315
#endif /* CONFIG_RT_GROUP_SCHED */
316

P
Peter Zijlstra 已提交
317
#ifdef CONFIG_SMP
318 319 320
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
321
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
322 323 324 325 326 327
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

328
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
329 330 331

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
332
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
340 341 342 343 344
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
345 346 347
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

348 349 350 351
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
352 353
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
354
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
355 356 357 358 359 360 361 362 363 364
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
365
next:
P
Peter Zijlstra 已提交
366 367 368 369 370 371
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
372

373 374 375
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
391 392 393 394 395
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
396 397 398 399 400
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

401 402 403 404 405
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
406 407
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

408 409 410
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
411
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
412 413 414
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

415 416 417
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
418
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
437 438 439 440
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
441 442
		BUG_ON(want);
balanced:
443 444 445 446
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

469 470 471
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
472 473 474 475 476 477 478
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
479
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

494 495 496 497 498 499 500 501 502 503 504 505
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
506
#else /* !CONFIG_SMP */
507 508 509 510
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
511
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
512

513 514 515
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
516
	const struct cpumask *span;
517

518
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
519 520 521
		return 1;

	span = sched_rt_period_mask();
522
	for_each_cpu(i, span) {
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
543 544
		} else if (rt_rq->rt_nr_running)
			idle = 0;
545 546 547 548 549 550 551 552

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
553

P
Peter Zijlstra 已提交
554 555
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
556
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
557 558 559
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
560
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
561 562 563 564 565
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
566
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
567
{
P
Peter Zijlstra 已提交
568
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
569 570

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
571
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
572

P
Peter Zijlstra 已提交
573 574 575
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

576 577 578 579
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
580

P
Peter Zijlstra 已提交
581
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
582
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
583
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
584
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
585 586
			return 1;
		}
P
Peter Zijlstra 已提交
587 588 589 590 591
	}

	return 0;
}

I
Ingo Molnar 已提交
592 593 594 595
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
596
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
597 598
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
599 600
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
601 602 603 604 605
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

606
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
607 608
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
609 610

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
611 612

	curr->se.sum_exec_runtime += delta_exec;
613 614
	account_group_exec_runtime(curr, delta_exec);

615
	curr->se.exec_start = rq->clock;
616
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
617

618 619
	sched_rt_avg_update(rq, delta_exec);

620 621 622
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
623 624 625
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

626
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
627
			spin_lock(&rt_rq->rt_runtime_lock);
628 629 630
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
631
			spin_unlock(&rt_rq->rt_runtime_lock);
632
		}
D
Dhaval Giani 已提交
633
	}
I
Ingo Molnar 已提交
634 635
}

636
#if defined CONFIG_SMP
637 638 639 640

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
641
{
642 643 644 645 646 647 648 649
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

650 651
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
652
{
G
Gregory Haskins 已提交
653
	struct rq *rq = rq_of_rt_rq(rt_rq);
654

655
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
656

657 658
		/*
		 * If the new task is higher in priority than anything on the
659 660
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
661
		 */
662
		rt_rq->highest_prio.next = prev_prio;
663 664

		if (rq->online)
G
Gregory Haskins 已提交
665
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
666

667 668 669 670 671 672 673 674 675 676 677 678
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
679
}
680

681 682 683 684
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
685

686 687 688 689 690
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
691 692
}

693 694
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
695
static inline
696 697 698 699 700
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
701

702
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
719
	if (rt_rq->rt_nr_running) {
720

721
		WARN_ON(prio < prev_prio);
722

723
		/*
724 725
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
726
		 */
727
		if (prio == prev_prio) {
728 729 730
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
731
				sched_find_first_bit(array->bitmap);
732 733
		}

734
	} else
735
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
736

737 738
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
739

740 741 742 743 744 745
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
746

747
#ifdef CONFIG_RT_GROUP_SCHED
748 749 750 751 752 753 754 755 756 757 758 759 760 761

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
762 763 764 765
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
804 805
}

806
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
807
{
P
Peter Zijlstra 已提交
808 809 810
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
811
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
812

813 814 815 816 817 818 819
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
820
		return;
821

822
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
823
	__set_bit(rt_se_prio(rt_se), array->bitmap);
824

P
Peter Zijlstra 已提交
825 826 827
	inc_rt_tasks(rt_se, rt_rq);
}

828
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
844
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
845
{
846
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
875
	}
I
Ingo Molnar 已提交
876 877 878 879 880
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
881 882 883 884 885 886 887
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

888
	enqueue_rt_entity(rt_se);
889

890 891
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
892 893
}

894
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
895
{
P
Peter Zijlstra 已提交
896
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
897

898
	update_curr_rt(rq);
899
	dequeue_rt_entity(rt_se);
900

901
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
902 903 904 905 906 907
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
908 909
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
910
{
911
	if (on_rt_rq(rt_se)) {
912 913 914 915 916 917 918
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
919
	}
P
Peter Zijlstra 已提交
920 921
}

922
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
923
{
P
Peter Zijlstra 已提交
924 925
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
926

P
Peter Zijlstra 已提交
927 928
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
929
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
930
	}
I
Ingo Molnar 已提交
931 932
}

P
Peter Zijlstra 已提交
933
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
934
{
935
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
936 937
}

938
#ifdef CONFIG_SMP
939 940
static int find_lowest_rq(struct task_struct *task);

P
Peter Zijlstra 已提交
941
static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
942
{
943 944
	struct rq *rq = task_rq(p);

945
	if (sd_flag != SD_BALANCE_WAKE)
946 947
		return smp_processor_id();

948
	/*
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
964
	 */
965
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
966
	    (p->rt.nr_cpus_allowed > 1)) {
967 968 969 970 971 972 973 974 975
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
976 977
	return task_cpu(p);
}
978 979 980 981 982 983

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

984
	if (p->rt.nr_cpus_allowed != 1
985 986
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
987

988 989
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
990 991 992 993 994 995 996 997 998 999

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1000 1001
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1002 1003 1004
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1005
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1006
{
1007
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1008
		resched_task(rq->curr);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1025 1026
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1027
#endif
I
Ingo Molnar 已提交
1028 1029
}

P
Peter Zijlstra 已提交
1030 1031
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1032
{
P
Peter Zijlstra 已提交
1033 1034
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1035 1036 1037 1038
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1039
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1040 1041

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1042
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1043

P
Peter Zijlstra 已提交
1044 1045
	return next;
}
I
Ingo Molnar 已提交
1046

1047
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1048 1049 1050 1051
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1052

P
Peter Zijlstra 已提交
1053 1054 1055 1056 1057
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1058
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1059 1060 1061 1062
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1063
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1081
#ifdef CONFIG_SMP
1082 1083 1084 1085 1086
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1087
#endif
1088

P
Peter Zijlstra 已提交
1089
	return p;
I
Ingo Molnar 已提交
1090 1091
}

1092
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1093
{
1094
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1095
	p->se.exec_start = 0;
1096 1097 1098 1099 1100 1101 1102

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1103 1104
}

1105
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1106

S
Steven Rostedt 已提交
1107 1108 1109 1110 1111
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1112 1113 1114
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1115
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1116
	    (p->rt.nr_cpus_allowed > 1))
1117 1118 1119 1120
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1121
/* Return the second highest RT task, NULL otherwise */
1122
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1123
{
P
Peter Zijlstra 已提交
1124 1125 1126 1127
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1128 1129
	int idx;

P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1149 1150
	}

S
Steven Rostedt 已提交
1151 1152 1153
	return next;
}

1154
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1155

1156 1157
static inline int pick_optimal_cpu(int this_cpu,
				   const struct cpumask *mask)
G
Gregory Haskins 已提交
1158 1159 1160 1161
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
1162
	if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
G
Gregory Haskins 已提交
1163 1164
		return this_cpu;

1165 1166
	first = cpumask_first(mask);
	if (first < nr_cpu_ids)
G
Gregory Haskins 已提交
1167 1168 1169 1170 1171 1172 1173 1174
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1175
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1176 1177
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
1178
	cpumask_var_t domain_mask;
G
Gregory Haskins 已提交
1179

1180 1181
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1182

1183 1184
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1194
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

1204 1205 1206 1207
	if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
		for_each_domain(cpu, sd) {
			if (sd->flags & SD_WAKE_AFFINE) {
				int best_cpu;
G
Gregory Haskins 已提交
1208

1209 1210 1211
				cpumask_and(domain_mask,
					    sched_domain_span(sd),
					    lowest_mask);
G
Gregory Haskins 已提交
1212

1213 1214
				best_cpu = pick_optimal_cpu(this_cpu,
							    domain_mask);
G
Gregory Haskins 已提交
1215

1216 1217 1218 1219 1220
				if (best_cpu != -1) {
					free_cpumask_var(domain_mask);
					return best_cpu;
				}
			}
G
Gregory Haskins 已提交
1221
		}
1222
		free_cpumask_var(domain_mask);
G
Gregory Haskins 已提交
1223 1224 1225 1226 1227 1228 1229 1230
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1231 1232 1233
}

/* Will lock the rq it finds */
1234
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1235 1236 1237
{
	struct rq *lowest_rq = NULL;
	int tries;
1238
	int cpu;
S
Steven Rostedt 已提交
1239

1240 1241 1242
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1243
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1244 1245
			break;

1246 1247
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1248
		/* if the prio of this runqueue changed, try again */
1249
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1250 1251 1252 1253 1254 1255
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1256
			if (unlikely(task_rq(task) != rq ||
1257 1258
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1259
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1260
				     !task->se.on_rq)) {
1261

S
Steven Rostedt 已提交
1262 1263 1264 1265 1266 1267 1268
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1269
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1270 1271 1272
			break;

		/* try again */
1273
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1274 1275 1276 1277 1278 1279
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1300 1301 1302 1303 1304
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1305
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1306 1307 1308 1309
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1310 1311 1312
	if (!rq->rt.overloaded)
		return 0;

1313
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1314 1315 1316 1317
	if (!next_task)
		return 0;

 retry:
1318
	if (unlikely(next_task == rq->curr)) {
1319
		WARN_ON(1);
S
Steven Rostedt 已提交
1320
		return 0;
1321
	}
S
Steven Rostedt 已提交
1322 1323 1324 1325 1326 1327

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1328 1329
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1330 1331 1332
		return 0;
	}

1333
	/* We might release rq lock */
S
Steven Rostedt 已提交
1334 1335 1336
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1337
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1338 1339 1340
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1341
		 * find lock_lowest_rq releases rq->lock
1342 1343 1344 1345 1346
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1347
		 */
1348
		task = pick_next_pushable_task(rq);
1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1358
		}
1359

1360 1361 1362 1363
		if (!task)
			/* No more tasks, just exit */
			goto out;

1364
		/*
1365
		 * Something has shifted, try again.
1366
		 */
1367 1368 1369
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1370 1371
	}

1372
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1373 1374 1375 1376 1377
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1378
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1379 1380 1381 1382

out:
	put_task_struct(next_task);

1383
	return 1;
S
Steven Rostedt 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1393 1394
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1395
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1396
	struct task_struct *p;
1397 1398
	struct rq *src_rq;

1399
	if (likely(!rt_overloaded(this_rq)))
1400 1401
		return 0;

1402
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1403 1404 1405 1406
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1419 1420 1421
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1422
		 * alter this_rq
1423
		 */
1424
		double_lock_balance(this_rq, src_rq);
1425 1426 1427 1428

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1429 1430
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1431 1432 1433 1434 1435 1436 1437

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1438
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1448
			 * current task on the run queue
1449
			 */
1450
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1451
				goto skip;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1465
 skip:
1466
		double_unlock_balance(this_rq, src_rq);
1467 1468 1469 1470 1471
	}

	return ret;
}

1472
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1473 1474
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1475
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1476 1477 1478
		pull_rt_task(rq);
}

1479
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1480
{
1481
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1482 1483
}

1484 1485 1486 1487
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1488
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1489
{
1490
	if (!task_running(rq, p) &&
1491
	    !test_tsk_need_resched(rq->curr) &&
1492
	    has_pushable_tasks(rq) &&
1493
	    p->rt.nr_cpus_allowed > 1)
1494 1495 1496
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1497
static unsigned long
I
Ingo Molnar 已提交
1498
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1499 1500 1501
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1502
{
1503 1504
	/* don't touch RT tasks */
	return 0;
1505 1506 1507 1508 1509 1510
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1511 1512
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1513
}
1514

1515
static void set_cpus_allowed_rt(struct task_struct *p,
1516
				const struct cpumask *new_mask)
1517
{
1518
	int weight = cpumask_weight(new_mask);
1519 1520 1521 1522 1523 1524 1525

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1526
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1527 1528
		struct rq *rq = task_rq(p);

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1547
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1548
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1549
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1550 1551 1552 1553
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1554
		update_rt_migration(&rq->rt);
1555 1556
	}

1557
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1558
	p->rt.nr_cpus_allowed = weight;
1559
}
1560

1561
/* Assumes rq->lock is held */
1562
static void rq_online_rt(struct rq *rq)
1563 1564 1565
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1566

P
Peter Zijlstra 已提交
1567 1568
	__enable_runtime(rq);

1569
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1570 1571 1572
}

/* Assumes rq->lock is held */
1573
static void rq_offline_rt(struct rq *rq)
1574 1575 1576
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1577

P
Peter Zijlstra 已提交
1578 1579
	__disable_runtime(rq);

1580
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1581
}
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1600 1601 1602 1603 1604 1605

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1606
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1607
					GFP_KERNEL, cpu_to_node(i));
1608
}
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1657 1658 1659
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1660
		 */
1661
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1662 1663 1664 1665 1666
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1667
#endif /* CONFIG_SMP */
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1694
		if (p->rt.timeout > next)
1695
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1696 1697
	}
}
I
Ingo Molnar 已提交
1698

P
Peter Zijlstra 已提交
1699
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1700
{
1701 1702
	update_curr_rt(rq);

1703 1704
	watchdog(rq, p);

I
Ingo Molnar 已提交
1705 1706 1707 1708 1709 1710 1711
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1712
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1713 1714
		return;

P
Peter Zijlstra 已提交
1715
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1716

1717 1718 1719 1720
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1721
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1722
		requeue_task_rt(rq, p, 0);
1723 1724
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1725 1726
}

1727 1728 1729 1730 1731
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1732 1733 1734

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
unsigned int get_rr_interval_rt(struct task_struct *task)
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1748
static const struct sched_class rt_sched_class = {
1749
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1759
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1760 1761
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1762
	.load_balance		= load_balance_rt,
1763
	.move_one_task		= move_one_task_rt,
1764
	.set_cpus_allowed       = set_cpus_allowed_rt,
1765 1766
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1767 1768 1769
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1770
	.switched_from		= switched_from_rt,
1771
#endif
I
Ingo Molnar 已提交
1772

1773
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1774
	.task_tick		= task_tick_rt,
1775

1776 1777
	.get_rr_interval	= get_rr_interval_rt,

1778 1779
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1780
};
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1794
#endif /* CONFIG_SCHED_DEBUG */
1795