sched_rt.c 40.3 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185 186
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
187
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
188 189 190 191 192 193 194 195 196

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

197
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
198 199
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
200
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202
	int this_cpu = smp_processor_id();
203
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
204 205 206
	struct sched_rt_entity *rt_se;

	rt_se = rt_rq->tg->rt_se[this_cpu];
P
Peter Zijlstra 已提交
207

208 209
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
210
			enqueue_rt_entity(rt_se, false);
211
		if (rt_rq->highest_prio.curr < curr->prio)
212
			resched_task(curr);
P
Peter Zijlstra 已提交
213 214 215
	}
}

P
Peter Zijlstra 已提交
216
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
217
{
218 219 220 221
	int this_cpu = smp_processor_id();
	struct sched_rt_entity *rt_se;

	rt_se = rt_rq->tg->rt_se[this_cpu];
P
Peter Zijlstra 已提交
222 223 224 225 226

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

244
#ifdef CONFIG_SMP
245
static inline const struct cpumask *sched_rt_period_mask(void)
246 247 248
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
249
#else
250
static inline const struct cpumask *sched_rt_period_mask(void)
251
{
252
	return cpu_online_mask;
253 254
}
#endif
P
Peter Zijlstra 已提交
255

256 257
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
258
{
259 260
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
261

P
Peter Zijlstra 已提交
262 263 264 265 266
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

267
#else /* !CONFIG_RT_GROUP_SCHED */
268 269 270

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
271 272 273 274 275 276
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
290
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
291
{
292 293
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
294 295
}

P
Peter Zijlstra 已提交
296
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
297 298 299
{
}

P
Peter Zijlstra 已提交
300 301 302 303
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
304

305
static inline const struct cpumask *sched_rt_period_mask(void)
306
{
307
	return cpu_online_mask;
308 309 310 311 312 313 314 315
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
316 317 318 319 320
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

321
#endif /* CONFIG_RT_GROUP_SCHED */
322

P
Peter Zijlstra 已提交
323
#ifdef CONFIG_SMP
324 325 326
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
327
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
328 329 330 331 332 333
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

334
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
335

336
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
337
	rt_period = ktime_to_ns(rt_b->rt_period);
338
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
339 340 341 342 343 344
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

345
		raw_spin_lock(&iter->rt_runtime_lock);
346 347 348 349 350
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
351 352 353
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

354 355 356 357
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
358 359
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
360
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
361 362 363 364 365 366
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
367
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
368 369 370
				break;
			}
		}
P
Peter Zijlstra 已提交
371
next:
372
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
373
	}
374
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
375 376 377

	return more;
}
P
Peter Zijlstra 已提交
378

379 380 381
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

395 396
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
397 398 399 400 401
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
402 403 404
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
405
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
406

407 408 409 410 411
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
412 413
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

414 415 416
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
417
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
418 419 420
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

421 422 423
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
424
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
425 426
				continue;

427
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
436
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
437 438 439 440 441

			if (!want)
				break;
		}

442
		raw_spin_lock(&rt_rq->rt_runtime_lock);
443 444 445 446
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
447 448
		BUG_ON(want);
balanced:
449 450 451 452
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
453
		rt_rq->rt_runtime = RUNTIME_INF;
454 455
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
456 457 458 459 460 461 462
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

463
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
464
	__disable_runtime(rq);
465
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473 474
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

475 476 477
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
478 479 480
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

481 482
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
483 484
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
485
		rt_rq->rt_throttled = 0;
486 487
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
488 489 490 491 492 493 494
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

495
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
496
	__enable_runtime(rq);
497
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
498 499
}

500 501 502 503 504
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
505
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
506
		more = do_balance_runtime(rt_rq);
507
		raw_spin_lock(&rt_rq->rt_runtime_lock);
508 509 510 511
	}

	return more;
}
512
#else /* !CONFIG_SMP */
513 514 515 516
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
517
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
518

519 520 521
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
522
	const struct cpumask *span;
523

524
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
525 526 527
		return 1;

	span = sched_rt_period_mask();
528
	for_each_cpu(i, span) {
529 530 531 532
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

533
		raw_spin_lock(&rq->lock);
534 535 536
		if (rt_rq->rt_time) {
			u64 runtime;

537
			raw_spin_lock(&rt_rq->rt_runtime_lock);
538 539 540 541 542 543 544 545 546 547
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
548
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
549 550
		} else if (rt_rq->rt_nr_running)
			idle = 0;
551 552 553

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
554
		raw_spin_unlock(&rq->lock);
555 556 557 558
	}

	return idle;
}
P
Peter Zijlstra 已提交
559

P
Peter Zijlstra 已提交
560 561
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
562
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
563 564 565
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
566
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
567 568 569 570 571
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
572
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
573
{
P
Peter Zijlstra 已提交
574
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
575 576

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
577
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
578

P
Peter Zijlstra 已提交
579 580 581
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

582 583 584 585
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
586

P
Peter Zijlstra 已提交
587
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
588
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
589
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
590
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
591 592
			return 1;
		}
P
Peter Zijlstra 已提交
593 594 595 596 597
	}

	return 0;
}

I
Ingo Molnar 已提交
598 599 600 601
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
602
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
603 604
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
605 606
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
607 608 609 610 611
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

612
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
613 614
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
615 616

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
617 618

	curr->se.sum_exec_runtime += delta_exec;
619 620
	account_group_exec_runtime(curr, delta_exec);

621
	curr->se.exec_start = rq->clock;
622
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
623

624 625
	sched_rt_avg_update(rq, delta_exec);

626 627 628
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
629 630 631
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

632
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
633
			raw_spin_lock(&rt_rq->rt_runtime_lock);
634 635 636
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
637
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
638
		}
D
Dhaval Giani 已提交
639
	}
I
Ingo Molnar 已提交
640 641
}

642
#if defined CONFIG_SMP
643 644 645 646

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
647
{
648 649 650 651 652 653 654 655
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

656 657
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
658
{
G
Gregory Haskins 已提交
659
	struct rq *rq = rq_of_rt_rq(rt_rq);
660

661
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
662

663 664
		/*
		 * If the new task is higher in priority than anything on the
665 666
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
667
		 */
668
		rt_rq->highest_prio.next = prev_prio;
669 670

		if (rq->online)
G
Gregory Haskins 已提交
671
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
672

673 674 675 676 677 678 679 680 681 682 683 684
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
685
}
686

687 688 689 690
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
691

692 693 694 695 696
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
697 698
}

699 700
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
701
static inline
702 703 704 705 706
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
707

708
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
725
	if (rt_rq->rt_nr_running) {
726

727
		WARN_ON(prio < prev_prio);
728

729
		/*
730 731
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
732
		 */
733
		if (prio == prev_prio) {
734 735 736
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
737
				sched_find_first_bit(array->bitmap);
738 739
		}

740
	} else
741
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
742

743 744
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
745

746 747 748 749 750 751
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
752

753
#ifdef CONFIG_RT_GROUP_SCHED
754 755 756 757 758 759 760 761 762 763 764 765 766 767

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
768 769 770 771
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
810 811
}

812
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
813
{
P
Peter Zijlstra 已提交
814 815 816
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
817
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
818

819 820 821 822 823 824 825
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
826
		return;
827

828 829 830 831
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
832
	__set_bit(rt_se_prio(rt_se), array->bitmap);
833

P
Peter Zijlstra 已提交
834 835 836
	inc_rt_tasks(rt_se, rt_rq);
}

837
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
853
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
854
{
855
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
856

857 858 859 860 861 862 863
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
864 865 866 867
			__dequeue_rt_entity(rt_se);
	}
}

868
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
869 870 871
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
872
		__enqueue_rt_entity(rt_se, head);
873 874 875 876 877 878 879 880 881 882
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
883
			__enqueue_rt_entity(rt_se, false);
884
	}
I
Ingo Molnar 已提交
885 886 887 888 889
}

/*
 * Adding/removing a task to/from a priority array:
 */
890 891
static void
enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
P
Peter Zijlstra 已提交
892 893 894 895 896 897
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

898
	enqueue_rt_entity(rt_se, head);
899

900 901
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
902 903
}

904
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
905
{
P
Peter Zijlstra 已提交
906
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
907

908
	update_curr_rt(rq);
909
	dequeue_rt_entity(rt_se);
910

911
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
912 913 914 915 916 917
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
918 919
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
920
{
921
	if (on_rt_rq(rt_se)) {
922 923 924 925 926 927 928
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
929
	}
P
Peter Zijlstra 已提交
930 931
}

932
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
933
{
P
Peter Zijlstra 已提交
934 935
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
936

P
Peter Zijlstra 已提交
937 938
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
939
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
940
	}
I
Ingo Molnar 已提交
941 942
}

P
Peter Zijlstra 已提交
943
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
944
{
945
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
946 947
}

948
#ifdef CONFIG_SMP
949 950
static int find_lowest_rq(struct task_struct *task);

P
Peter Zijlstra 已提交
951
static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
952
{
953 954
	struct rq *rq = task_rq(p);

955
	if (sd_flag != SD_BALANCE_WAKE)
956 957
		return smp_processor_id();

958
	/*
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
974
	 */
975
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
976
	    (p->rt.nr_cpus_allowed > 1)) {
977 978 979 980 981 982 983 984 985
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
986 987
	return task_cpu(p);
}
988 989 990 991 992 993

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

994
	if (p->rt.nr_cpus_allowed != 1
995 996
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
997

998 999
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1010 1011
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1012 1013 1014
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1015
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1016
{
1017
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1018
		resched_task(rq->curr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1035 1036
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1037
#endif
I
Ingo Molnar 已提交
1038 1039
}

P
Peter Zijlstra 已提交
1040 1041
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1042
{
P
Peter Zijlstra 已提交
1043 1044
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1045 1046 1047 1048
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1049
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1050 1051

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1052
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1053

P
Peter Zijlstra 已提交
1054 1055
	return next;
}
I
Ingo Molnar 已提交
1056

1057
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1058 1059 1060 1061
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1062

P
Peter Zijlstra 已提交
1063 1064 1065 1066 1067
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1068
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1069 1070 1071 1072
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1073
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1074 1075 1076 1077 1078
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1091
#ifdef CONFIG_SMP
1092 1093 1094 1095 1096
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1097
#endif
1098

P
Peter Zijlstra 已提交
1099
	return p;
I
Ingo Molnar 已提交
1100 1101
}

1102
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1103
{
1104
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1105
	p->se.exec_start = 0;
1106 1107 1108 1109 1110 1111 1112

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1113 1114
}

1115
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1116

S
Steven Rostedt 已提交
1117 1118 1119 1120 1121
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1122 1123 1124
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1125
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1126
	    (p->rt.nr_cpus_allowed > 1))
1127 1128 1129 1130
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1131
/* Return the second highest RT task, NULL otherwise */
1132
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1133
{
P
Peter Zijlstra 已提交
1134 1135 1136 1137
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1138 1139
	int idx;

P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1159 1160
	}

S
Steven Rostedt 已提交
1161 1162 1163
	return next;
}

1164
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1165

G
Gregory Haskins 已提交
1166 1167 1168
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1169
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1170 1171
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1172

1173 1174
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1175

1176 1177
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1187
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1188 1189 1190 1191 1192 1193
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1194 1195
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1196

R
Rusty Russell 已提交
1197 1198 1199
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1200

R
Rusty Russell 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
				return this_cpu;

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
			if (best_cpu < nr_cpu_ids)
				return best_cpu;
G
Gregory Haskins 已提交
1213 1214 1215 1216 1217 1218 1219 1220
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1221 1222 1223 1224 1225 1226 1227
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1228 1229 1230
}

/* Will lock the rq it finds */
1231
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1232 1233 1234
{
	struct rq *lowest_rq = NULL;
	int tries;
1235
	int cpu;
S
Steven Rostedt 已提交
1236

1237 1238 1239
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1240
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1241 1242
			break;

1243 1244
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1245
		/* if the prio of this runqueue changed, try again */
1246
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1247 1248 1249 1250 1251 1252
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1253
			if (unlikely(task_rq(task) != rq ||
1254 1255
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1256
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1257
				     !task->se.on_rq)) {
1258

1259
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1260 1261 1262 1263 1264 1265
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1266
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1267 1268 1269
			break;

		/* try again */
1270
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1271 1272 1273 1274 1275 1276
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1297 1298 1299 1300 1301
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1302
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1303 1304 1305 1306
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1307 1308 1309
	if (!rq->rt.overloaded)
		return 0;

1310
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1311 1312 1313 1314
	if (!next_task)
		return 0;

 retry:
1315
	if (unlikely(next_task == rq->curr)) {
1316
		WARN_ON(1);
S
Steven Rostedt 已提交
1317
		return 0;
1318
	}
S
Steven Rostedt 已提交
1319 1320 1321 1322 1323 1324

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1325 1326
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1327 1328 1329
		return 0;
	}

1330
	/* We might release rq lock */
S
Steven Rostedt 已提交
1331 1332 1333
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1334
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1335 1336 1337
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1338
		 * find lock_lowest_rq releases rq->lock
1339 1340 1341 1342 1343
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1344
		 */
1345
		task = pick_next_pushable_task(rq);
1346 1347 1348 1349 1350 1351 1352 1353 1354
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1355
		}
1356

1357 1358 1359 1360
		if (!task)
			/* No more tasks, just exit */
			goto out;

1361
		/*
1362
		 * Something has shifted, try again.
1363
		 */
1364 1365 1366
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1367 1368
	}

1369
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1370 1371 1372 1373 1374
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1375
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1376 1377 1378 1379

out:
	put_task_struct(next_task);

1380
	return 1;
S
Steven Rostedt 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1390 1391
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1392
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1393
	struct task_struct *p;
1394 1395
	struct rq *src_rq;

1396
	if (likely(!rt_overloaded(this_rq)))
1397 1398
		return 0;

1399
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1400 1401 1402 1403
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1416 1417 1418
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1419
		 * alter this_rq
1420
		 */
1421
		double_lock_balance(this_rq, src_rq);
1422 1423 1424 1425

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1426 1427
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1428 1429 1430 1431 1432 1433 1434

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1435
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1436 1437 1438 1439 1440 1441 1442 1443 1444
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1445
			 * current task on the run queue
1446
			 */
1447
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1448
				goto skip;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1462
 skip:
1463
		double_unlock_balance(this_rq, src_rq);
1464 1465 1466 1467 1468
	}

	return ret;
}

1469
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1470 1471
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1472
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1473 1474 1475
		pull_rt_task(rq);
}

1476
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1477
{
1478
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1479 1480
}

1481 1482 1483 1484
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1485
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1486
{
1487
	if (!task_running(rq, p) &&
1488
	    !test_tsk_need_resched(rq->curr) &&
1489
	    has_pushable_tasks(rq) &&
1490
	    p->rt.nr_cpus_allowed > 1)
1491 1492 1493
		push_rt_tasks(rq);
}

1494
static void set_cpus_allowed_rt(struct task_struct *p,
1495
				const struct cpumask *new_mask)
1496
{
1497
	int weight = cpumask_weight(new_mask);
1498 1499 1500 1501 1502 1503 1504

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1505
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1506 1507
		struct rq *rq = task_rq(p);

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1526
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1527
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1528
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1529 1530 1531 1532
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1533
		update_rt_migration(&rq->rt);
1534 1535
	}

1536
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1537
	p->rt.nr_cpus_allowed = weight;
1538
}
1539

1540
/* Assumes rq->lock is held */
1541
static void rq_online_rt(struct rq *rq)
1542 1543 1544
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1545

P
Peter Zijlstra 已提交
1546 1547
	__enable_runtime(rq);

1548
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1549 1550 1551
}

/* Assumes rq->lock is held */
1552
static void rq_offline_rt(struct rq *rq)
1553 1554 1555
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1556

P
Peter Zijlstra 已提交
1557 1558
	__disable_runtime(rq);

1559
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1560
}
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1579 1580 1581 1582 1583 1584

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1585
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1586
					GFP_KERNEL, cpu_to_node(i));
1587
}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1636 1637 1638
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1639
		 */
1640
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1641 1642 1643 1644 1645
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1646
#endif /* CONFIG_SMP */
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1673
		if (p->rt.timeout > next)
1674
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1675 1676
	}
}
I
Ingo Molnar 已提交
1677

P
Peter Zijlstra 已提交
1678
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1679
{
1680 1681
	update_curr_rt(rq);

1682 1683
	watchdog(rq, p);

I
Ingo Molnar 已提交
1684 1685 1686 1687 1688 1689 1690
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1691
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1692 1693
		return;

P
Peter Zijlstra 已提交
1694
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1695

1696 1697 1698 1699
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1700
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1701
		requeue_task_rt(rq, p, 0);
1702 1703
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1704 1705
}

1706 1707 1708 1709 1710
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1711 1712 1713

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1714 1715
}

1716
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1727
static const struct sched_class rt_sched_class = {
1728
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1738
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1739 1740
	.select_task_rq		= select_task_rq_rt,

1741
	.set_cpus_allowed       = set_cpus_allowed_rt,
1742 1743
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1744 1745
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1746
	.task_woken		= task_woken_rt,
1747
	.switched_from		= switched_from_rt,
1748
#endif
I
Ingo Molnar 已提交
1749

1750
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1751
	.task_tick		= task_tick_rt,
1752

1753 1754
	.get_rr_interval	= get_rr_interval_rt,

1755 1756
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1757
};
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1771
#endif /* CONFIG_SCHED_DEBUG */
1772