sched_rt.c 31.2 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
49
{
P
Peter Zijlstra 已提交
50 51 52 53 54 55 56 57
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

58
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
59

P
Peter Zijlstra 已提交
60
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
61 62
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
63
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
64

P
Peter Zijlstra 已提交
65 66 67 68 69 70
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
97
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
98 99 100 101
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102 103
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
104
		enqueue_rt_entity(rt_se);
105 106
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
107 108 109
	}
}

P
Peter Zijlstra 已提交
110
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
111 112 113 114 115 116 117
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

135 136 137 138 139
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
140
#else
141 142 143 144 145
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
146

147 148
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
149
{
150 151
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
152

P
Peter Zijlstra 已提交
153 154 155 156 157
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

158 159 160 161
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
162 163 164 165 166 167
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
194
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
195 196 197
{
}

P
Peter Zijlstra 已提交
198
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
199 200 201
{
}

P
Peter Zijlstra 已提交
202 203 204 205
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
206 207 208 209 210 211 212 213 214 215 216 217

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
218 219 220 221 222
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
223 224
#endif

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
P
Peter Zijlstra 已提交
241
			u64 runtime;
242

P
Peter Zijlstra 已提交
243 244
			spin_lock(&rt_rq->rt_runtime_lock);
			runtime = rt_rq->rt_runtime;
245 246 247 248 249 250 251
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
P
Peter Zijlstra 已提交
252
			spin_unlock(&rt_rq->rt_runtime_lock);
253 254 255 256 257 258 259 260 261 262
		}

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
#ifdef CONFIG_SMP
static int balance_runtime(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
#endif

P
Peter Zijlstra 已提交
304 305
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
306
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
307 308 309 310 311 312 313 314 315
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
316
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
317
{
P
Peter Zijlstra 已提交
318
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
319

P
Peter Zijlstra 已提交
320
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
321 322 323
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
324
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
325

P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

#ifdef CONFIG_SMP
	if (rt_rq->rt_time > runtime) {
		int more;

		spin_unlock(&rt_rq->rt_runtime_lock);
		more = balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);

		if (more)
			runtime = sched_rt_runtime(rt_rq);
	}
#endif

P
Peter Zijlstra 已提交
342
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
343
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
344
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
345
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
346 347
			return 1;
		}
P
Peter Zijlstra 已提交
348 349 350 351 352
	}

	return 0;
}

I
Ingo Molnar 已提交
353 354 355 356
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
357
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
358 359
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
360 361
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
362 363 364 365 366
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

367
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
368 369
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
370 371

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
372 373

	curr->se.sum_exec_runtime += delta_exec;
374
	curr->se.exec_start = rq->clock;
375
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
376

D
Dhaval Giani 已提交
377 378 379 380 381 382 383 384 385
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
386 387
}

P
Peter Zijlstra 已提交
388 389
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390
{
P
Peter Zijlstra 已提交
391 392
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
393
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394 395
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
396
		rt_rq->highest_prio = rt_se_prio(rt_se);
397 398
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se));
	}
P
Peter Zijlstra 已提交
399
#endif
400
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
401 402
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
403
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
404
	}
405

P
Peter Zijlstra 已提交
406 407
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
408
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
409 410
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
411 412 413 414 415

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
416
#endif
417 418
}

P
Peter Zijlstra 已提交
419 420
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421
{
422 423 424 425
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
426 427 428
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
429
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
430
	if (rt_rq->rt_nr_running) {
431 432
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
433 434
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
435
			/* recalculate */
P
Peter Zijlstra 已提交
436 437
			array = &rt_rq->active;
			rt_rq->highest_prio =
438 439 440
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
441 442 443 444 445
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
446
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
447
	}
448

449 450 451 452 453
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio);
	}

P
Peter Zijlstra 已提交
454
	update_rt_migration(rq_of_rt_rq(rt_rq));
455
#endif /* CONFIG_SMP */
456
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
457 458 459 460 461
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
462 463
}

P
Peter Zijlstra 已提交
464
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
465
{
P
Peter Zijlstra 已提交
466 467 468
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
469

P
Peter Zijlstra 已提交
470
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
471
		return;
472

473 474 475 476 477 478 479
	if (rt_se->nr_cpus_allowed == 1)
		list_add_tail(&rt_se->run_list,
			      array->xqueue + rt_se_prio(rt_se));
	else
		list_add_tail(&rt_se->run_list,
			      array->squeue + rt_se_prio(rt_se));

P
Peter Zijlstra 已提交
480
	__set_bit(rt_se_prio(rt_se), array->bitmap);
481

P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489 490
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
491 492
	if (list_empty(array->squeue + rt_se_prio(rt_se))
	    && list_empty(array->xqueue + rt_se_prio(rt_se)))
P
Peter Zijlstra 已提交
493 494 495 496 497 498 499 500 501 502 503
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
504
	struct sched_rt_entity *rt_se, *back = NULL;
P
Peter Zijlstra 已提交
505

506 507 508 509 510 511 512 513 514 515
	rt_se = &p->rt;
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
			dequeue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
516 517 518 519 520
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);
}

537
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
538
{
P
Peter Zijlstra 已提交
539 540
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
541

542
	update_curr_rt(rq);
I
Ingo Molnar 已提交
543

P
Peter Zijlstra 已提交
544 545 546 547 548 549 550 551 552 553
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
554 555 556 557 558
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
559 560 561 562 563
 *
 * Note: We always enqueue the task to the shared-queue, regardless of its
 * previous position w.r.t. exclusive vs shared.  This is so that exclusive RR
 * tasks fairly round-robin with all tasks on the runqueue, not just other
 * exclusive tasks.
I
Ingo Molnar 已提交
564
 */
P
Peter Zijlstra 已提交
565 566 567 568 569
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

570 571
	list_del_init(&rt_se->run_list);
	list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
P
Peter Zijlstra 已提交
572 573
}

I
Ingo Molnar 已提交
574 575
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
576 577
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
578

P
Peter Zijlstra 已提交
579 580 581 582
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
583 584
}

P
Peter Zijlstra 已提交
585
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
586
{
587
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
588 589
}

590
#ifdef CONFIG_SMP
591 592
static int find_lowest_rq(struct task_struct *task);

593 594
static int select_task_rq_rt(struct task_struct *p, int sync)
{
595 596 597
	struct rq *rq = task_rq(p);

	/*
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
613
	 */
614
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
615
	    (p->rt.nr_cpus_allowed > 1)) {
616 617 618 619 620 621 622 623 624
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
625 626 627 628
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

629 630 631
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq);

I
Ingo Molnar 已提交
632 633 634 635 636
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
637
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
638
		resched_task(rq->curr);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
	if((p->prio == rq->curr->prio)
	   && p->rt.nr_cpus_allowed == 1
	   && rq->curr->rt.nr_cpus_allowed != 1
	   && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
		cpumask_t mask;

		if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
			/*
			 * There appears to be other cpus that can accept
			 * current, so lets reschedule to try and push it away
			 */
			resched_task(rq->curr);
	}
#endif
I
Ingo Molnar 已提交
669 670
}

P
Peter Zijlstra 已提交
671 672
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
673
{
P
Peter Zijlstra 已提交
674 675
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
676 677 678 679
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
680
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
681

682 683 684 685 686 687 688 689 690
	queue = array->xqueue + idx;
	if (!list_empty(queue))
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	else {
		queue = array->squeue + idx;
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	}
691

P
Peter Zijlstra 已提交
692 693
	return next;
}
I
Ingo Molnar 已提交
694

P
Peter Zijlstra 已提交
695 696 697 698 699
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
700

P
Peter Zijlstra 已提交
701 702 703 704 705
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
706
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
707 708 709 710
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
711
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
712 713 714 715 716 717
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
718 719
}

720
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
721
{
722
	update_curr_rt(rq);
I
Ingo Molnar 已提交
723 724 725
	p->se.exec_start = 0;
}

726
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
727

S
Steven Rostedt 已提交
728 729 730 731 732 733
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

734 735 736
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
737
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
738
	    (p->rt.nr_cpus_allowed > 1))
739 740 741 742
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
743
/* Return the second highest RT task, NULL otherwise */
744
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
745
{
P
Peter Zijlstra 已提交
746 747 748 749
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
750 751
	int idx;

P
Peter Zijlstra 已提交
752 753 754 755 756 757 758 759
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
760
		list_for_each_entry(rt_se, array->squeue + idx, run_list) {
P
Peter Zijlstra 已提交
761 762 763 764 765 766 767 768 769 770
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
771 772
	}

S
Steven Rostedt 已提交
773 774 775 776 777
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
799

800 801
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
802

803 804
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
844 845 846
}

/* Will lock the rq it finds */
847
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
848 849 850
{
	struct rq *lowest_rq = NULL;
	int tries;
851
	int cpu;
S
Steven Rostedt 已提交
852

853 854 855
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

856
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
857 858
			break;

859 860
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
861
		/* if the prio of this runqueue changed, try again */
862
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
863 864 865 866 867 868
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
869
			if (unlikely(task_rq(task) != rq ||
870 871
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
872
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
873
				     !task->se.on_rq)) {
874

S
Steven Rostedt 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
898
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
899 900 901 902 903 904
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
905 906 907
	if (!rq->rt.overloaded)
		return 0;

908
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
909 910 911 912
	if (!next_task)
		return 0;

 retry:
913
	if (unlikely(next_task == rq->curr)) {
914
		WARN_ON(1);
S
Steven Rostedt 已提交
915
		return 0;
916
	}
S
Steven Rostedt 已提交
917 918 919 920 921 922

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
923 924
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
925 926 927
		return 0;
	}

928
	/* We might release rq lock */
S
Steven Rostedt 已提交
929 930 931
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
932
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
933 934 935
	if (!lowest_rq) {
		struct task_struct *task;
		/*
936
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
937 938 939
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
940
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
941 942 943 944 945 946 947 948
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

949
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

981 982
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
983 984
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
985 986
	struct rq *src_rq;

987
	if (likely(!rt_overloaded(this_rq)))
988 989 990 991
		return 0;

	next = pick_next_task_rt(this_rq);

992
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1006

1007 1008 1009 1010 1011 1012 1013 1014
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1015 1016
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1040
				goto skip;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1052
			 *
1053 1054 1055 1056 1057 1058 1059
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1060
 skip:
1061 1062 1063 1064 1065 1066
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1067
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1068 1069
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1070
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1071 1072 1073
		pull_rt_task(rq);
}

1074
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1075 1076 1077 1078 1079 1080 1081 1082
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1083
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1084 1085 1086 1087 1088 1089
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1090 1091 1092 1093
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1094
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1095
{
1096
	if (!task_running(rq, p) &&
1097
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1098
	    rq->rt.overloaded)
1099 1100 1101
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1102
static unsigned long
I
Ingo Molnar 已提交
1103
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1104 1105 1106
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1107
{
1108 1109
	/* don't touch RT tasks */
	return 0;
1110 1111 1112 1113 1114 1115
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1116 1117
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1118
}
1119

1120 1121
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1131
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1132 1133
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1134
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1135
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1136
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1137 1138 1139 1140 1141
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
1142 1143 1144 1145 1146 1147 1148 1149

		if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
			/*
			 * If either the new or old weight is a "1", we need
			 * to requeue to properly move between shared and
			 * exclusive queues.
			 */
			requeue_task_rt(rq, p);
1150 1151 1152
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1153
	p->rt.nr_cpus_allowed = weight;
1154
}
1155

1156 1157 1158 1159 1160
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1161 1162

	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1163 1164 1165 1166 1167 1168 1169
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1170 1171

	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1172
}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1239 1240 1241
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1242
		 */
1243
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1244 1245 1246 1247 1248
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1249
#endif /* CONFIG_SMP */
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1276
		if (p->rt.timeout > next)
1277 1278 1279
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1280

P
Peter Zijlstra 已提交
1281
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1282
{
1283 1284
	update_curr_rt(rq);

1285 1286
	watchdog(rq, p);

I
Ingo Molnar 已提交
1287 1288 1289 1290 1291 1292 1293
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1294
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1295 1296
		return;

P
Peter Zijlstra 已提交
1297
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1298

1299 1300 1301 1302
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1303
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1304 1305 1306
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1307 1308
}

1309 1310 1311 1312 1313 1314 1315
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1316
static const struct sched_class rt_sched_class = {
1317
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1318 1319 1320
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1321 1322 1323
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1324 1325 1326 1327 1328 1329

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1330
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1331
	.load_balance		= load_balance_rt,
1332
	.move_one_task		= move_one_task_rt,
1333
	.set_cpus_allowed       = set_cpus_allowed_rt,
1334 1335
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
1336 1337 1338
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1339
	.switched_from		= switched_from_rt,
1340
#endif
I
Ingo Molnar 已提交
1341

1342
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1343
	.task_tick		= task_tick_rt,
1344 1345 1346

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1347
};