sched_rt.c 33.3 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104 105 106 107
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 109
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
110
		enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164 165 166 167
#else

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201 202 203
{
}

P
Peter Zijlstra 已提交
204
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
205 206 207
{
}

P
Peter Zijlstra 已提交
208 209 210 211
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
212 213 214 215 216 217 218 219 220 221 222 223

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
224 225 226 227 228
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

P
Peter Zijlstra 已提交
229 230
#endif

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
P
Peter Zijlstra 已提交
247
			u64 runtime;
248

P
Peter Zijlstra 已提交
249 250
			spin_lock(&rt_rq->rt_runtime_lock);
			runtime = rt_rq->rt_runtime;
251 252 253 254 255 256 257
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
P
Peter Zijlstra 已提交
258
			spin_unlock(&rt_rq->rt_runtime_lock);
259 260 261 262 263 264 265 266 267 268
		}

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}

P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#ifdef CONFIG_SMP
static int balance_runtime(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
	for_each_cpu_mask(i, rd->span) {
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
289 290 291
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

P
Peter Zijlstra 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
			do_div(diff, weight);
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
305
next:
P
Peter Zijlstra 已提交
306 307 308 309 310 311
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

		want = rt_b->rt_runtime - rt_rq->rt_runtime;

		for_each_cpu_mask(i, rd->span) {
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

			if (iter == rt_rq)
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
		BUG_ON(want);
balanced:
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

P
Peter Zijlstra 已提交
404 405
#endif

P
Peter Zijlstra 已提交
406 407
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
408
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
409 410 411 412 413 414 415 416 417
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
418
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
419
{
P
Peter Zijlstra 已提交
420
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
421

P
Peter Zijlstra 已提交
422
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
423 424 425
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
426
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
427

P
Peter Zijlstra 已提交
428 429 430 431 432 433
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

#ifdef CONFIG_SMP
	if (rt_rq->rt_time > runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
434
		balance_runtime(rt_rq);
P
Peter Zijlstra 已提交
435 436
		spin_lock(&rt_rq->rt_runtime_lock);

P
Peter Zijlstra 已提交
437 438 439
		runtime = sched_rt_runtime(rt_rq);
		if (runtime == RUNTIME_INF)
			return 0;
P
Peter Zijlstra 已提交
440 441 442
	}
#endif

P
Peter Zijlstra 已提交
443
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
444
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
445
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
446
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
447 448
			return 1;
		}
P
Peter Zijlstra 已提交
449 450 451 452 453
	}

	return 0;
}

I
Ingo Molnar 已提交
454 455 456 457
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
458
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
459 460
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
461 462
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
463 464 465 466 467
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

468
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
469 470
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
471 472

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
473 474

	curr->se.sum_exec_runtime += delta_exec;
475
	curr->se.exec_start = rq->clock;
476
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
477

D
Dhaval Giani 已提交
478 479 480 481 482 483 484 485 486
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_time += delta_exec;
		if (sched_rt_runtime_exceeded(rt_rq))
			resched_task(curr);
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
487 488
}

P
Peter Zijlstra 已提交
489 490
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
491
{
P
Peter Zijlstra 已提交
492 493
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
494
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
495 496
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
497

I
Ingo Molnar 已提交
498 499
		rt_rq->highest_prio = rt_se_prio(rt_se);
#ifdef CONFIG_SMP
500 501 502
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
503
#endif
504
	}
P
Peter Zijlstra 已提交
505
#endif
506
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
507 508
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
509

510
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
511
	}
512

P
Peter Zijlstra 已提交
513 514
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
515
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
516 517
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
518 519 520 521 522

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
523
#endif
524 525
}

P
Peter Zijlstra 已提交
526 527
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
528
{
529 530 531 532
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
533 534 535
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
536
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	if (rt_rq->rt_nr_running) {
538 539
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
540 541
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
542
			/* recalculate */
P
Peter Zijlstra 已提交
543 544
			array = &rt_rq->active;
			rt_rq->highest_prio =
545 546 547
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
548 549 550 551 552
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
553
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
554
	}
555

556 557
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
558 559 560 561

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
562 563
	}

P
Peter Zijlstra 已提交
564
	update_rt_migration(rq_of_rt_rq(rt_rq));
565
#endif /* CONFIG_SMP */
566
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
567 568 569 570 571
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
572 573
}

P
Peter Zijlstra 已提交
574
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
575
{
P
Peter Zijlstra 已提交
576 577 578
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
579

P
Peter Zijlstra 已提交
580
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
581
		return;
582

583 584 585 586 587 588 589
	if (rt_se->nr_cpus_allowed == 1)
		list_add_tail(&rt_se->run_list,
			      array->xqueue + rt_se_prio(rt_se));
	else
		list_add_tail(&rt_se->run_list,
			      array->squeue + rt_se_prio(rt_se));

P
Peter Zijlstra 已提交
590
	__set_bit(rt_se_prio(rt_se), array->bitmap);
591

P
Peter Zijlstra 已提交
592 593 594 595 596 597 598 599 600
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
601 602
	if (list_empty(array->squeue + rt_se_prio(rt_se))
	    && list_empty(array->xqueue + rt_se_prio(rt_se)))
P
Peter Zijlstra 已提交
603 604 605 606 607 608 609 610 611 612 613
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
614
	struct sched_rt_entity *rt_se, *back = NULL;
P
Peter Zijlstra 已提交
615

616 617 618 619 620 621 622 623 624 625
	rt_se = &p->rt;
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
			dequeue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
626 627 628 629 630
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);
}

647
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
648
{
P
Peter Zijlstra 已提交
649 650
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
651

652
	update_curr_rt(rq);
I
Ingo Molnar 已提交
653

P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662 663
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
I
Ingo Molnar 已提交
664 665 666 667 668
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
669 670 671 672 673
 *
 * Note: We always enqueue the task to the shared-queue, regardless of its
 * previous position w.r.t. exclusive vs shared.  This is so that exclusive RR
 * tasks fairly round-robin with all tasks on the runqueue, not just other
 * exclusive tasks.
I
Ingo Molnar 已提交
674
 */
P
Peter Zijlstra 已提交
675 676 677 678 679
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

680 681
	list_del_init(&rt_se->run_list);
	list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
P
Peter Zijlstra 已提交
682 683
}

I
Ingo Molnar 已提交
684 685
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
686 687
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
688

P
Peter Zijlstra 已提交
689 690 691 692
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
693 694
}

P
Peter Zijlstra 已提交
695
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
696
{
697
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
698 699
}

700
#ifdef CONFIG_SMP
701 702
static int find_lowest_rq(struct task_struct *task);

703 704
static int select_task_rq_rt(struct task_struct *p, int sync)
{
705 706 707
	struct rq *rq = task_rq(p);

	/*
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
723
	 */
724
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
725
	    (p->rt.nr_cpus_allowed > 1)) {
726 727 728 729 730 731 732 733 734
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
735 736 737 738
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

739 740 741
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq);

I
Ingo Molnar 已提交
742 743 744 745 746
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
747
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
748
		resched_task(rq->curr);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
	if((p->prio == rq->curr->prio)
	   && p->rt.nr_cpus_allowed == 1
	   && rq->curr->rt.nr_cpus_allowed != 1
	   && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
		cpumask_t mask;

		if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
			/*
			 * There appears to be other cpus that can accept
			 * current, so lets reschedule to try and push it away
			 */
			resched_task(rq->curr);
	}
#endif
I
Ingo Molnar 已提交
779 780
}

P
Peter Zijlstra 已提交
781 782
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
783
{
P
Peter Zijlstra 已提交
784 785
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
786 787 788 789
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
790
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
791

792 793 794 795 796 797 798 799 800
	queue = array->xqueue + idx;
	if (!list_empty(queue))
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	else {
		queue = array->squeue + idx;
		next = list_entry(queue->next, struct sched_rt_entity,
				  run_list);
	}
801

P
Peter Zijlstra 已提交
802 803
	return next;
}
I
Ingo Molnar 已提交
804

P
Peter Zijlstra 已提交
805 806 807 808 809
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
810

P
Peter Zijlstra 已提交
811 812 813 814 815
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
816
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
817 818 819 820
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
821
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
822 823 824 825 826 827
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
828 829
}

830
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
831
{
832
	update_curr_rt(rq);
I
Ingo Molnar 已提交
833 834 835
	p->se.exec_start = 0;
}

836
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
837

S
Steven Rostedt 已提交
838 839 840 841 842 843
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

844 845 846
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
847
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
848
	    (p->rt.nr_cpus_allowed > 1))
849 850 851 852
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
853
/* Return the second highest RT task, NULL otherwise */
854
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
855
{
P
Peter Zijlstra 已提交
856 857 858 859
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
860 861
	int idx;

P
Peter Zijlstra 已提交
862 863 864 865 866 867 868 869
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
870
		list_for_each_entry(rt_se, array->squeue + idx, run_list) {
P
Peter Zijlstra 已提交
871 872 873 874 875 876 877 878 879 880
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
881 882
	}

S
Steven Rostedt 已提交
883 884 885 886 887
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
909

910 911
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
912

913 914
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
954 955 956
}

/* Will lock the rq it finds */
957
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
958 959 960
{
	struct rq *lowest_rq = NULL;
	int tries;
961
	int cpu;
S
Steven Rostedt 已提交
962

963 964 965
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

966
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
967 968
			break;

969 970
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
971
		/* if the prio of this runqueue changed, try again */
972
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
973 974 975 976 977 978
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
979
			if (unlikely(task_rq(task) != rq ||
980 981
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
982
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
983
				     !task->se.on_rq)) {
984

S
Steven Rostedt 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1008
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1009 1010 1011 1012 1013 1014
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1015 1016 1017
	if (!rq->rt.overloaded)
		return 0;

1018
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1019 1020 1021 1022
	if (!next_task)
		return 0;

 retry:
1023
	if (unlikely(next_task == rq->curr)) {
1024
		WARN_ON(1);
S
Steven Rostedt 已提交
1025
		return 0;
1026
	}
S
Steven Rostedt 已提交
1027 1028 1029 1030 1031 1032

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1033 1034
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1035 1036 1037
		return 0;
	}

1038
	/* We might release rq lock */
S
Steven Rostedt 已提交
1039 1040 1041
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1042
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1043 1044 1045
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1046
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1047 1048 1049
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1050
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1051 1052 1053 1054 1055 1056 1057 1058
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1059
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1091 1092
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1093 1094
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1095 1096
	struct rq *src_rq;

1097
	if (likely(!rt_overloaded(this_rq)))
1098 1099 1100 1101
		return 0;

	next = pick_next_task_rt(this_rq);

1102
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1125 1126
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1150
				goto skip;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1162
			 *
1163 1164 1165 1166 1167 1168 1169
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1170
 skip:
1171 1172 1173 1174 1175 1176
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

1177
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1178 1179
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1180
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1181 1182 1183
		pull_rt_task(rq);
}

1184
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1185 1186 1187 1188 1189 1190 1191 1192
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1193
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1194 1195 1196 1197 1198 1199
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1200 1201 1202 1203
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1204
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1205
{
1206
	if (!task_running(rq, p) &&
1207
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1208
	    rq->rt.overloaded)
1209 1210 1211
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1212
static unsigned long
I
Ingo Molnar 已提交
1213
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1214 1215 1216
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1217
{
1218 1219
	/* don't touch RT tasks */
	return 0;
1220 1221 1222 1223 1224 1225
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1226 1227
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1228
}
1229

1230 1231
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1232 1233 1234 1235 1236 1237 1238 1239 1240
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1241
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1242 1243
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1244
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1245
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1246
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1247 1248 1249 1250 1251
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
1252 1253 1254 1255 1256 1257 1258 1259

		if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
			/*
			 * If either the new or old weight is a "1", we need
			 * to requeue to properly move between shared and
			 * exclusive queues.
			 */
			requeue_task_rt(rq, p);
1260 1261 1262
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1263
	p->rt.nr_cpus_allowed = weight;
1264
}
1265

1266
/* Assumes rq->lock is held */
1267
static void rq_online_rt(struct rq *rq)
1268 1269 1270
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1271

P
Peter Zijlstra 已提交
1272 1273
	__enable_runtime(rq);

1274
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1275 1276 1277
}

/* Assumes rq->lock is held */
1278
static void rq_offline_rt(struct rq *rq)
1279 1280 1281
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1282

P
Peter Zijlstra 已提交
1283 1284
	__disable_runtime(rq);

1285
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1286
}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1353 1354 1355
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1356
		 */
1357
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1358 1359 1360 1361 1362
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1363
#endif /* CONFIG_SMP */
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1390
		if (p->rt.timeout > next)
1391 1392 1393
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1394

P
Peter Zijlstra 已提交
1395
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1396
{
1397 1398
	update_curr_rt(rq);

1399 1400
	watchdog(rq, p);

I
Ingo Molnar 已提交
1401 1402 1403 1404 1405 1406 1407
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1408
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1409 1410
		return;

P
Peter Zijlstra 已提交
1411
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1417
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1418 1419 1420
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1421 1422
}

1423 1424 1425 1426 1427 1428 1429
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1430
static const struct sched_class rt_sched_class = {
1431
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1432 1433 1434
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1435 1436 1437
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1438 1439 1440 1441 1442 1443

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1444
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1445
	.load_balance		= load_balance_rt,
1446
	.move_one_task		= move_one_task_rt,
1447
	.set_cpus_allowed       = set_cpus_allowed_rt,
1448 1449
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1450 1451 1452
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1453
	.switched_from		= switched_from_rt,
1454
#endif
I
Ingo Molnar 已提交
1455

1456
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1457
	.task_tick		= task_tick_rt,
1458 1459 1460

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1461
};