sched_rt.c 27.9 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
49
{
P
Peter Zijlstra 已提交
50 51 52 53 54 55 56 57 58 59
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

#ifdef CONFIG_FAIR_GROUP_SCHED

P
Peter Zijlstra 已提交
60
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
61 62
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
63
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
64

P
Peter Zijlstra 已提交
65
	return rt_rq->tg->rt_runtime;
P
Peter Zijlstra 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
92
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
93 94 95 96
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 98
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
99
		enqueue_rt_entity(rt_se);
100 101
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
102 103 104
	}
}

P
Peter Zijlstra 已提交
105
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
106 107 108 109 110 111 112
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

P
Peter Zijlstra 已提交
130 131
#else

P
Peter Zijlstra 已提交
132
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
133
{
P
Peter Zijlstra 已提交
134 135 136 137
	if (sysctl_sched_rt_runtime == -1)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
164
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
165 166 167
{
}

P
Peter Zijlstra 已提交
168
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
169 170 171
{
}

P
Peter Zijlstra 已提交
172 173 174 175
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
P
Peter Zijlstra 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189
#endif

static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
190
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
191
{
P
Peter Zijlstra 已提交
192
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
193

P
Peter Zijlstra 已提交
194
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
195 196 197
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
198
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
199

P
Peter Zijlstra 已提交
200
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
201 202 203
		struct rq *rq = rq_of_rt_rq(rt_rq);

		rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
204
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
205

P
Peter Zijlstra 已提交
206
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
207
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
208 209
			return 1;
		}
P
Peter Zijlstra 已提交
210 211 212 213 214 215 216
	}

	return 0;
}

static void update_sched_rt_period(struct rq *rq)
{
P
Peter Zijlstra 已提交
217 218
	struct rt_rq *rt_rq;
	u64 period;
P
Peter Zijlstra 已提交
219

P
Peter Zijlstra 已提交
220
	while (rq->clock > rq->rt_period_expire) {
P
Peter Zijlstra 已提交
221
		period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
222 223
		rq->rt_period_expire += period;

P
Peter Zijlstra 已提交
224
		for_each_leaf_rt_rq(rt_rq, rq) {
P
Peter Zijlstra 已提交
225
			u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
226

P
Peter Zijlstra 已提交
227 228
			rt_rq->rt_time -= min(rt_rq->rt_time, runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
P
Peter Zijlstra 已提交
229
				rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
230
				sched_rt_rq_enqueue(rt_rq);
P
Peter Zijlstra 已提交
231 232 233 234
			}
		}

		rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
235 236 237
	}
}

I
Ingo Molnar 已提交
238 239 240 241
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
242
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
243 244
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
245 246
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
247 248 249 250 251
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

252
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
253 254
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
255 256

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
257 258

	curr->se.sum_exec_runtime += delta_exec;
259
	curr->se.exec_start = rq->clock;
260
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
261

P
Peter Zijlstra 已提交
262
	rt_rq->rt_time += delta_exec;
P
Peter Zijlstra 已提交
263
	if (sched_rt_runtime_exceeded(rt_rq))
P
Peter Zijlstra 已提交
264
		resched_task(curr);
I
Ingo Molnar 已提交
265 266
}

P
Peter Zijlstra 已提交
267 268
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
269
{
P
Peter Zijlstra 已提交
270 271 272 273 274 275
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_se_prio(rt_se) < rt_rq->highest_prio)
		rt_rq->highest_prio = rt_se_prio(rt_se);
#endif
276
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
277 278
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
279
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
280
	}
281

P
Peter Zijlstra 已提交
282 283
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
P
Peter Zijlstra 已提交
284 285 286 287
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
#endif
288 289
}

P
Peter Zijlstra 已提交
290 291
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
292
{
P
Peter Zijlstra 已提交
293 294 295 296 297
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_rq->rt_nr_running) {
298 299
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
300 301
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
302
			/* recalculate */
P
Peter Zijlstra 已提交
303 304
			array = &rt_rq->active;
			rt_rq->highest_prio =
305 306 307
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
308 309 310 311 312
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
313
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
314
	}
315

P
Peter Zijlstra 已提交
316
	update_rt_migration(rq_of_rt_rq(rt_rq));
317
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
318 319 320 321 322 323
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
324 325
}

P
Peter Zijlstra 已提交
326
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
327
{
P
Peter Zijlstra 已提交
328 329 330
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
331

P
Peter Zijlstra 已提交
332
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
333
		return;
334

P
Peter Zijlstra 已提交
335 336
	list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
	__set_bit(rt_se_prio(rt_se), array->bitmap);
337

P
Peter Zijlstra 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 *
 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
 *      doesn't matter much for now, as h=2 for GROUP_SCHED.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
	struct sched_rt_entity *rt_se, *top_se;

	/*
	 * dequeue all, top - down.
	 */
	do {
		rt_se = &p->rt;
		top_se = NULL;
		for_each_sched_rt_entity(rt_se) {
			if (on_rt_rq(rt_se))
				top_se = rt_se;
		}
		if (top_se)
			dequeue_rt_entity(top_se);
	} while (top_se);
I
Ingo Molnar 已提交
377 378 379 380 381
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);

	inc_cpu_load(rq, p->se.load.weight);
}

400
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
401
{
P
Peter Zijlstra 已提交
402 403
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
404

405
	update_curr_rt(rq);
I
Ingo Molnar 已提交
406

P
Peter Zijlstra 已提交
407 408 409 410 411 412 413 414 415 416
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
417

P
Peter Zijlstra 已提交
418
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
419 420 421 422 423 424
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
425 426 427 428 429 430 431 432
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

	list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
}

I
Ingo Molnar 已提交
433 434
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
435 436
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
437

P
Peter Zijlstra 已提交
438 439 440 441
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
442 443
}

P
Peter Zijlstra 已提交
444
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
445
{
446
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
447 448
}

449
#ifdef CONFIG_SMP
450 451
static int find_lowest_rq(struct task_struct *task);

452 453
static int select_task_rq_rt(struct task_struct *p, int sync)
{
454 455 456
	struct rq *rq = task_rq(p);

	/*
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
472
	 */
473
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
474
	    (p->rt.nr_cpus_allowed > 1)) {
475 476 477 478 479 480 481 482 483
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
484 485 486 487
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
488 489 490 491 492 493 494 495 496
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

P
Peter Zijlstra 已提交
497 498
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
499
{
P
Peter Zijlstra 已提交
500 501
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
502 503 504 505
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
506
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
507 508

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
509
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
510

P
Peter Zijlstra 已提交
511 512
	return next;
}
I
Ingo Molnar 已提交
513

P
Peter Zijlstra 已提交
514 515 516 517 518
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
519

P
Peter Zijlstra 已提交
520 521 522 523 524
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
525
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
526 527 528 529
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
530
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
531 532 533 534 535 536
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
537 538
}

539
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
540
{
541
	update_curr_rt(rq);
I
Ingo Molnar 已提交
542 543 544
	p->se.exec_start = 0;
}

545
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
546

S
Steven Rostedt 已提交
547 548 549 550 551 552
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

553 554 555
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
556
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
557
	    (p->rt.nr_cpus_allowed > 1))
558 559 560 561
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
562
/* Return the second highest RT task, NULL otherwise */
563
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
564
{
P
Peter Zijlstra 已提交
565 566 567 568
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
569 570
	int idx;

P
Peter Zijlstra 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
590 591
	}

S
Steven Rostedt 已提交
592 593 594 595 596
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
597
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
598
{
G
Gregory Haskins 已提交
599
	int       lowest_prio = -1;
600
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
601
	int       count       = 0;
602
	int       cpu;
S
Steven Rostedt 已提交
603

604
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
605

606 607 608
	/*
	 * Scan each rq for the lowest prio.
	 */
609
	for_each_cpu_mask(cpu, *lowest_mask) {
610
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
611

612 613
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
614 615 616 617 618 619 620 621 622
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
623
				cpus_clear(*lowest_mask);
624 625
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
626
			return 1;
627 628 629
		}

		/* no locking for now */
G
Gregory Haskins 已提交
630 631 632 633 634
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
635 636
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
637
			}
G
Gregory Haskins 已提交
638
			count++;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
658
		}
659 660
	}

G
Gregory Haskins 已提交
661
	return count;
G
Gregory Haskins 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
685 686 687 688
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
689

G
Gregory Haskins 已提交
690 691 692 693 694 695
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
735 736 737
}

/* Will lock the rq it finds */
738
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
739 740 741
{
	struct rq *lowest_rq = NULL;
	int tries;
742
	int cpu;
S
Steven Rostedt 已提交
743

744 745 746
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

747
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
748 749
			break;

750 751
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
752
		/* if the prio of this runqueue changed, try again */
753
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
754 755 756 757 758 759
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
760
			if (unlikely(task_rq(task) != rq ||
761 762
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
763
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
764
				     !task->se.on_rq)) {
765

S
Steven Rostedt 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
789
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
790 791 792 793 794 795
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
796 797 798
	if (!rq->rt.overloaded)
		return 0;

799
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
800 801 802 803
	if (!next_task)
		return 0;

 retry:
804
	if (unlikely(next_task == rq->curr)) {
805
		WARN_ON(1);
S
Steven Rostedt 已提交
806
		return 0;
807
	}
S
Steven Rostedt 已提交
808 809 810 811 812 813

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
814 815
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
816 817 818
		return 0;
	}

819
	/* We might release rq lock */
S
Steven Rostedt 已提交
820 821 822
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
823
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
824 825 826
	if (!lowest_rq) {
		struct task_struct *task;
		/*
827
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
828 829 830
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
831
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
832 833 834 835 836 837 838 839
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

840
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

872 873
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
874 875
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
876 877
	struct rq *src_rq;

878
	if (likely(!rt_overloaded(this_rq)))
879 880 881 882
		return 0;

	next = pick_next_task_rt(this_rq);

883
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
884 885 886 887 888 889 890 891 892 893 894 895 896
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
897

898 899 900 901 902 903 904 905
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
906 907
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
931
				goto skip;
932 933 934 935 936 937 938 939 940 941 942

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
943
			 *
944 945 946 947 948 949 950
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
951
 skip:
952 953 954 955 956 957
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

958
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
959 960
{
	/* Try to pull RT tasks here if we lower this rq's prio */
961
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
962 963 964
		pull_rt_task(rq);
}

965
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
966 967 968 969 970 971 972 973
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
974
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
975 976 977 978 979 980
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

981

982
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
983
{
984
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
985 986
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
987 988 989
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
990
static unsigned long
I
Ingo Molnar 已提交
991
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
992 993 994
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
995
{
996 997
	/* don't touch RT tasks */
	return 0;
998 999 1000 1001 1002 1003
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1004 1005
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1006
}
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1018
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1019 1020
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1021
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1022
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1023
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1024 1025 1026 1027 1028 1029 1030 1031
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1032
	p->rt.nr_cpus_allowed = weight;
1033
}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1122
#endif /* CONFIG_SMP */
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1149
		if (p->rt.timeout > next)
1150 1151 1152
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1153

P
Peter Zijlstra 已提交
1154
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1155
{
1156 1157
	update_curr_rt(rq);

1158 1159
	watchdog(rq, p);

I
Ingo Molnar 已提交
1160 1161 1162 1163 1164 1165 1166
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1167
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1168 1169
		return;

P
Peter Zijlstra 已提交
1170
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1171

1172 1173 1174 1175
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1176
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1177 1178 1179
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1180 1181
}

1182 1183 1184 1185 1186 1187 1188
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1189 1190
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1191 1192 1193
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1194 1195 1196
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1197 1198 1199 1200 1201 1202

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1203
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1204
	.load_balance		= load_balance_rt,
1205
	.move_one_task		= move_one_task_rt,
1206
	.set_cpus_allowed       = set_cpus_allowed_rt,
1207 1208
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
1209 1210 1211
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1212
	.switched_from		= switched_from_rt,
1213
#endif
I
Ingo Molnar 已提交
1214

1215
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1216
	.task_tick		= task_tick_rt,
1217 1218 1219

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1220
};