sched_rt.c 42.1 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185
}

C
Cheng Xu 已提交
186 187 188 189 190 191 192 193
typedef struct task_group *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for (iter = list_entry_rcu(task_groups.next, typeof(*iter), list); \
	     (&iter->list != &task_groups) && \
	     (rt_rq = iter->rt_rq[cpu_of(rq)]); \
	     iter = list_entry_rcu(iter->list.next, typeof(*iter), list))

194 195 196 197 198 199 200 201 202 203 204
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
205
#define for_each_leaf_rt_rq(rt_rq, rq) \
206
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
207 208 209 210 211 212 213 214 215

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

216
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
217 218
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
219
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
220
{
221
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
222 223
	struct sched_rt_entity *rt_se;

224 225 226
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
227

228 229
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
230
			enqueue_rt_entity(rt_se, false);
231
		if (rt_rq->highest_prio.curr < curr->prio)
232
			resched_task(curr);
P
Peter Zijlstra 已提交
233 234 235
	}
}

P
Peter Zijlstra 已提交
236
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
237
{
238
	struct sched_rt_entity *rt_se;
239
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
240

241
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
242 243 244 245 246

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

264
#ifdef CONFIG_SMP
265
static inline const struct cpumask *sched_rt_period_mask(void)
266 267 268
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
269
#else
270
static inline const struct cpumask *sched_rt_period_mask(void)
271
{
272
	return cpu_online_mask;
273 274
}
#endif
P
Peter Zijlstra 已提交
275

276 277
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
278
{
279 280
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
281

P
Peter Zijlstra 已提交
282 283 284 285 286
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

287
#else /* !CONFIG_RT_GROUP_SCHED */
288 289 290

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
291 292 293 294 295 296
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
297 298
}

C
Cheng Xu 已提交
299 300 301 302 303
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

304 305 306 307 308 309 310 311
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
312 313 314 315 316 317 318 319 320 321 322
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
323
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
324
{
325 326
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
327 328
}

P
Peter Zijlstra 已提交
329
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
330 331 332
{
}

P
Peter Zijlstra 已提交
333 334 335 336
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
337

338
static inline const struct cpumask *sched_rt_period_mask(void)
339
{
340
	return cpu_online_mask;
341 342 343 344 345 346 347 348
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
349 350 351 352 353
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

354
#endif /* CONFIG_RT_GROUP_SCHED */
355

P
Peter Zijlstra 已提交
356
#ifdef CONFIG_SMP
357 358 359
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
360
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
361 362 363 364 365 366
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

367
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
368

369
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
370
	rt_period = ktime_to_ns(rt_b->rt_period);
371
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
372 373 374 375 376 377
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

378
		raw_spin_lock(&iter->rt_runtime_lock);
379 380 381 382 383
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
384 385 386
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

387 388 389 390
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
391 392
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
393
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
394 395 396 397 398 399
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
400
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
401 402 403
				break;
			}
		}
P
Peter Zijlstra 已提交
404
next:
405
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
406
	}
407
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
408 409 410

	return more;
}
P
Peter Zijlstra 已提交
411

412 413 414
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
415 416 417
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
418
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
419 420 421 422 423
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
424
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
425 426 427 428
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

429 430
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
431 432 433 434 435
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
436 437 438
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
439
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
440

441 442 443 444 445
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
446 447
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

448 449 450
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
451
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
452 453 454
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

455 456 457
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
458
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
459 460
				continue;

461
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
470
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
471 472 473 474 475

			if (!want)
				break;
		}

476
		raw_spin_lock(&rt_rq->rt_runtime_lock);
477 478 479 480
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
481 482
		BUG_ON(want);
balanced:
483 484 485 486
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
487
		rt_rq->rt_runtime = RUNTIME_INF;
488 489
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
490 491 492 493 494 495 496
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

497
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
498
	__disable_runtime(rq);
499
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
500 501 502 503
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
504
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

510 511 512
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
513
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
514 515
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

516 517
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
518 519
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
520
		rt_rq->rt_throttled = 0;
521 522
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
523 524 525 526 527 528 529
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

530
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
531
	__enable_runtime(rq);
532
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
533 534
}

535 536 537 538 539
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
540
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
541
		more = do_balance_runtime(rt_rq);
542
		raw_spin_lock(&rt_rq->rt_runtime_lock);
543 544 545 546
	}

	return more;
}
547
#else /* !CONFIG_SMP */
548 549 550 551
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
552
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
553

554 555 556
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
557
	const struct cpumask *span;
558

559
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
560 561 562
		return 1;

	span = sched_rt_period_mask();
563
	for_each_cpu(i, span) {
564 565 566 567
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

568
		raw_spin_lock(&rq->lock);
569 570 571
		if (rt_rq->rt_time) {
			u64 runtime;

572
			raw_spin_lock(&rt_rq->rt_runtime_lock);
573 574 575 576 577 578 579
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
580 581 582 583 584 585 586

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
587 588 589
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
590
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
591
		} else if (rt_rq->rt_nr_running) {
592
			idle = 0;
593 594 595
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
596 597 598

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
599
		raw_spin_unlock(&rq->lock);
600 601 602 603
	}

	return idle;
}
P
Peter Zijlstra 已提交
604

P
Peter Zijlstra 已提交
605 606
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
607
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
608 609 610
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
611
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
612 613 614 615 616
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
617
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
618
{
P
Peter Zijlstra 已提交
619
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
620 621

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
622
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
623

P
Peter Zijlstra 已提交
624 625 626
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

627 628 629 630
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
631

P
Peter Zijlstra 已提交
632
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
633
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
634
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
635
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
636 637
			return 1;
		}
P
Peter Zijlstra 已提交
638 639 640 641 642
	}

	return 0;
}

I
Ingo Molnar 已提交
643 644 645 646
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
647
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
648 649
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
650 651
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
652 653
	u64 delta_exec;

P
Peter Zijlstra 已提交
654
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
655 656
		return;

657
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
658 659
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
660

661
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
662 663

	curr->se.sum_exec_runtime += delta_exec;
664 665
	account_group_exec_runtime(curr, delta_exec);

666
	curr->se.exec_start = rq->clock_task;
667
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
668

669 670
	sched_rt_avg_update(rq, delta_exec);

671 672 673
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
674 675 676
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

677
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
678
			raw_spin_lock(&rt_rq->rt_runtime_lock);
679 680 681
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
682
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
683
		}
D
Dhaval Giani 已提交
684
	}
I
Ingo Molnar 已提交
685 686
}

687
#if defined CONFIG_SMP
688 689 690 691

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
692
{
693 694 695 696 697 698 699 700
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

701 702
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
703
{
G
Gregory Haskins 已提交
704
	struct rq *rq = rq_of_rt_rq(rt_rq);
705

706
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
707

708 709
		/*
		 * If the new task is higher in priority than anything on the
710 711
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
712
		 */
713
		rt_rq->highest_prio.next = prev_prio;
714 715

		if (rq->online)
G
Gregory Haskins 已提交
716
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
717

718 719 720 721 722 723 724 725 726 727 728 729
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
730
}
731

732 733 734 735
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
736

737 738 739 740 741
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
742 743
}

744 745
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
746
static inline
747 748 749 750 751
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
752

753
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
770
	if (rt_rq->rt_nr_running) {
771

772
		WARN_ON(prio < prev_prio);
773

774
		/*
775 776
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
777
		 */
778
		if (prio == prev_prio) {
779 780 781
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
782
				sched_find_first_bit(array->bitmap);
783 784
		}

785
	} else
786
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
787

788 789
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
790

791 792 793 794 795 796
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
797

798
#ifdef CONFIG_RT_GROUP_SCHED
799 800 801 802 803 804 805 806 807 808 809 810 811 812

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
813 814 815 816
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
855 856
}

857
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
858
{
P
Peter Zijlstra 已提交
859 860 861
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
862
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
863

864 865 866 867 868 869 870
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
871
		return;
872

873 874 875
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

876 877 878 879
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
880
	__set_bit(rt_se_prio(rt_se), array->bitmap);
881

P
Peter Zijlstra 已提交
882 883 884
	inc_rt_tasks(rt_se, rt_rq);
}

885
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
886 887 888 889 890 891 892 893 894
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
895 896
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
897 898 899 900 901 902
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
903
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
904
{
905
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
906

907 908 909 910 911 912 913
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
914 915 916 917
			__dequeue_rt_entity(rt_se);
	}
}

918
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
919 920 921
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
922
		__enqueue_rt_entity(rt_se, head);
923 924 925 926 927 928 929 930 931 932
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
933
			__enqueue_rt_entity(rt_se, false);
934
	}
I
Ingo Molnar 已提交
935 936 937 938 939
}

/*
 * Adding/removing a task to/from a priority array:
 */
940
static void
941
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
942 943 944
{
	struct sched_rt_entity *rt_se = &p->rt;

945
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
946 947
		rt_se->timeout = 0;

948
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
949

950 951
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
952 953
}

954
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
955
{
P
Peter Zijlstra 已提交
956
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
957

958
	update_curr_rt(rq);
959
	dequeue_rt_entity(rt_se);
960

961
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
962 963 964 965 966 967
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
968 969
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
970
{
971
	if (on_rt_rq(rt_se)) {
972 973 974 975 976 977 978
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
979
	}
P
Peter Zijlstra 已提交
980 981
}

982
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
983
{
P
Peter Zijlstra 已提交
984 985
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
986

P
Peter Zijlstra 已提交
987 988
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
989
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
990
	}
I
Ingo Molnar 已提交
991 992
}

P
Peter Zijlstra 已提交
993
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
994
{
995
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
996 997
}

998
#ifdef CONFIG_SMP
999 1000
static int find_lowest_rq(struct task_struct *task);

1001
static int
1002
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1003
{
1004 1005 1006 1007
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

1008
	if (sd_flag != SD_BALANCE_WAKE)
1009 1010
		return smp_processor_id();

1011 1012 1013 1014 1015 1016
	cpu = task_cpu(p);
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1017
	/*
1018
	 * If the current task on @p's runqueue is an RT task, then
1019 1020 1021 1022
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1023 1024 1025 1026 1027 1028 1029 1030 1031
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1032 1033 1034 1035 1036 1037
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1038
	 */
1039 1040 1041
	if (curr && unlikely(rt_task(curr)) &&
	    (curr->rt.nr_cpus_allowed < 2 ||
	     curr->prio < p->prio) &&
P
Peter Zijlstra 已提交
1042
	    (p->rt.nr_cpus_allowed > 1)) {
1043
		int target = find_lowest_rq(p);
1044

1045 1046
		if (target != -1)
			cpu = target;
1047
	}
1048
	rcu_read_unlock();
1049

1050
	return cpu;
1051
}
1052 1053 1054 1055 1056 1057

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1058
	if (p->rt.nr_cpus_allowed != 1
1059 1060
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1061

1062 1063
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1074 1075
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1076 1077 1078
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1079
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1080
{
1081
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1082
		resched_task(rq->curr);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1099
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1100
		check_preempt_equal_prio(rq, p);
1101
#endif
I
Ingo Molnar 已提交
1102 1103
}

P
Peter Zijlstra 已提交
1104 1105
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1106
{
P
Peter Zijlstra 已提交
1107 1108
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1109 1110 1111 1112
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1113
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1114 1115

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1116
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1117

P
Peter Zijlstra 已提交
1118 1119
	return next;
}
I
Ingo Molnar 已提交
1120

1121
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1122 1123 1124 1125
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1126

P
Peter Zijlstra 已提交
1127 1128 1129 1130 1131
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1132
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1133 1134 1135 1136
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1137
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1138 1139 1140 1141
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1142
	p->se.exec_start = rq->clock_task;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1155
#ifdef CONFIG_SMP
1156 1157 1158 1159 1160
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1161
#endif
1162

P
Peter Zijlstra 已提交
1163
	return p;
I
Ingo Molnar 已提交
1164 1165
}

1166
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1167
{
1168
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1169
	p->se.exec_start = 0;
1170 1171 1172 1173 1174

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
P
Peter Zijlstra 已提交
1175
	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1176
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1177 1178
}

1179
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1180

S
Steven Rostedt 已提交
1181 1182 1183 1184 1185
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1186 1187 1188
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1189
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1190
	    (p->rt.nr_cpus_allowed > 1))
1191 1192 1193 1194
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1195
/* Return the second highest RT task, NULL otherwise */
1196
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1197
{
P
Peter Zijlstra 已提交
1198 1199 1200 1201
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1202 1203
	int idx;

P
Peter Zijlstra 已提交
1204 1205 1206
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1207
next_idx:
P
Peter Zijlstra 已提交
1208 1209 1210 1211 1212
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1213 1214 1215 1216 1217 1218
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1228 1229
	}

S
Steven Rostedt 已提交
1230 1231 1232
	return next;
}

1233
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1234

G
Gregory Haskins 已提交
1235 1236 1237
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1238
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1239 1240
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1241

1242 1243
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1244

1245 1246
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1256
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1257 1258 1259 1260 1261 1262
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1263 1264
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1265

1266
	rcu_read_lock();
R
Rusty Russell 已提交
1267 1268 1269
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1270

R
Rusty Russell 已提交
1271 1272 1273 1274 1275
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1276 1277
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1278
				return this_cpu;
1279
			}
R
Rusty Russell 已提交
1280 1281 1282

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1283 1284
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1285
				return best_cpu;
1286
			}
G
Gregory Haskins 已提交
1287 1288
		}
	}
1289
	rcu_read_unlock();
G
Gregory Haskins 已提交
1290 1291 1292 1293 1294 1295

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1296 1297 1298 1299 1300 1301 1302
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1303 1304 1305
}

/* Will lock the rq it finds */
1306
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1307 1308 1309
{
	struct rq *lowest_rq = NULL;
	int tries;
1310
	int cpu;
S
Steven Rostedt 已提交
1311

1312 1313 1314
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1315
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1316 1317
			break;

1318 1319
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1320
		/* if the prio of this runqueue changed, try again */
1321
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1322 1323 1324 1325 1326 1327
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1328
			if (unlikely(task_rq(task) != rq ||
1329 1330
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1331
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1332
				     !task->on_rq)) {
1333

1334
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1335 1336 1337 1338 1339 1340
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1341
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1342 1343 1344
			break;

		/* try again */
1345
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1346 1347 1348 1349 1350 1351
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

P
Peter Zijlstra 已提交
1366
	BUG_ON(!p->on_rq);
1367 1368 1369 1370 1371
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1372 1373 1374 1375 1376
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1377
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1378 1379 1380 1381
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1382 1383 1384
	if (!rq->rt.overloaded)
		return 0;

1385
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1386 1387 1388
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1389
retry:
1390
	if (unlikely(next_task == rq->curr)) {
1391
		WARN_ON(1);
S
Steven Rostedt 已提交
1392
		return 0;
1393
	}
S
Steven Rostedt 已提交
1394 1395 1396 1397 1398 1399

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1400 1401
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1402 1403 1404
		return 0;
	}

1405
	/* We might release rq lock */
S
Steven Rostedt 已提交
1406 1407 1408
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1409
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1410 1411 1412
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1413
		 * find lock_lowest_rq releases rq->lock
1414 1415 1416 1417 1418
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1419
		 */
1420
		task = pick_next_pushable_task(rq);
1421 1422
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
L
Lucas De Marchi 已提交
1423
			 * If we get here, the task hasn't moved at all, but
1424 1425 1426 1427 1428 1429
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1430
		}
1431

1432 1433 1434 1435
		if (!task)
			/* No more tasks, just exit */
			goto out;

1436
		/*
1437
		 * Something has shifted, try again.
1438
		 */
1439 1440 1441
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1442 1443
	}

1444
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1445 1446 1447 1448 1449
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1450
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1451 1452 1453 1454

out:
	put_task_struct(next_task);

1455
	return 1;
S
Steven Rostedt 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1465 1466
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1467
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1468
	struct task_struct *p;
1469 1470
	struct rq *src_rq;

1471
	if (likely(!rt_overloaded(this_rq)))
1472 1473
		return 0;

1474
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1475 1476 1477 1478
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1491 1492 1493
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1494
		 * alter this_rq
1495
		 */
1496
		double_lock_balance(this_rq, src_rq);
1497 1498 1499 1500

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1501 1502
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1503 1504 1505 1506 1507 1508 1509

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1510
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1511
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1512
			WARN_ON(!p->on_rq);
1513 1514 1515 1516 1517 1518 1519

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1520
			 * current task on the run queue
1521
			 */
1522
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1523
				goto skip;
1524 1525 1526 1527 1528 1529 1530 1531 1532

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1533
			 * in another runqueue. (low likelihood
1534 1535 1536
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1537
skip:
1538
		double_unlock_balance(this_rq, src_rq);
1539 1540 1541 1542 1543
	}

	return ret;
}

1544
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1545 1546
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1547
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1548 1549 1550
		pull_rt_task(rq);
}

1551
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1552
{
1553
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1554 1555
}

1556 1557 1558 1559
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1560
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1561
{
1562
	if (!task_running(rq, p) &&
1563
	    !test_tsk_need_resched(rq->curr) &&
1564
	    has_pushable_tasks(rq) &&
1565
	    p->rt.nr_cpus_allowed > 1 &&
1566
	    rt_task(rq->curr) &&
1567 1568
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
	     rq->curr->prio < p->prio))
1569 1570 1571
		push_rt_tasks(rq);
}

1572
static void set_cpus_allowed_rt(struct task_struct *p,
1573
				const struct cpumask *new_mask)
1574
{
1575
	int weight = cpumask_weight(new_mask);
1576 1577 1578 1579 1580 1581 1582

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1583
	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1584 1585
		struct rq *rq = task_rq(p);

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1604
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1605
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1606
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1607 1608 1609 1610
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1611
		update_rt_migration(&rq->rt);
1612 1613
	}

1614
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1615
	p->rt.nr_cpus_allowed = weight;
1616
}
1617

1618
/* Assumes rq->lock is held */
1619
static void rq_online_rt(struct rq *rq)
1620 1621 1622
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1623

P
Peter Zijlstra 已提交
1624 1625
	__enable_runtime(rq);

1626
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1627 1628 1629
}

/* Assumes rq->lock is held */
1630
static void rq_offline_rt(struct rq *rq)
1631 1632 1633
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1634

P
Peter Zijlstra 已提交
1635 1636
	__disable_runtime(rq);

1637
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1638
}
1639 1640 1641 1642 1643

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1644
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1645 1646 1647 1648 1649 1650 1651 1652
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1653
	if (p->on_rq && !rq->rt.rt_nr_running)
1654 1655
		pull_rt_task(rq);
}
1656 1657 1658 1659 1660 1661

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1662
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1663
					GFP_KERNEL, cpu_to_node(i));
1664
}
1665 1666 1667 1668 1669 1670 1671
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1672
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1683
	if (p->on_rq && rq->curr != p) {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1699 1700
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1701
{
P
Peter Zijlstra 已提交
1702
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1703 1704 1705
		return;

	if (rq->curr == p) {
1706 1707 1708 1709 1710 1711 1712 1713 1714
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1715 1716 1717
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1718
		 */
1719
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1720 1721 1722 1723 1724
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1725
#endif /* CONFIG_SMP */
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1737 1738 1739 1740
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1741 1742 1743
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1744 1745 1746 1747 1748 1749

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1750
		if (p->rt.timeout > next)
1751
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1752 1753
	}
}
I
Ingo Molnar 已提交
1754

P
Peter Zijlstra 已提交
1755
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1756
{
1757 1758
	update_curr_rt(rq);

1759 1760
	watchdog(rq, p);

I
Ingo Molnar 已提交
1761 1762 1763 1764 1765 1766 1767
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1768
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1769 1770
		return;

P
Peter Zijlstra 已提交
1771
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1772

1773 1774 1775 1776
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1777
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1778
		requeue_task_rt(rq, p, 0);
1779 1780
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1781 1782
}

1783 1784 1785 1786
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1787
	p->se.exec_start = rq->clock_task;
1788 1789 1790

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1791 1792
}

1793
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1804
static const struct sched_class rt_sched_class = {
1805
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1815
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1816 1817
	.select_task_rq		= select_task_rq_rt,

1818
	.set_cpus_allowed       = set_cpus_allowed_rt,
1819 1820
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1821 1822
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1823
	.task_woken		= task_woken_rt,
1824
	.switched_from		= switched_from_rt,
1825
#endif
I
Ingo Molnar 已提交
1826

1827
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1828
	.task_tick		= task_tick_rt,
1829

1830 1831
	.get_rr_interval	= get_rr_interval_rt,

1832 1833
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1834
};
1835 1836 1837 1838 1839 1840

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
C
Cheng Xu 已提交
1841
	rt_rq_iter_t iter;
1842 1843 1844
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
1845
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1846 1847 1848
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1849
#endif /* CONFIG_SCHED_DEBUG */
1850