sched_rt.c 28.1 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
48
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
49
{
P
Peter Zijlstra 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

#ifdef CONFIG_FAIR_GROUP_SCHED

static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
{
	if (!rt_rq->tg)
		return SCHED_RT_FRAC;

	return rt_rq->tg->rt_ratio;
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 98
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;

P
Peter Zijlstra 已提交
99
		enqueue_rt_entity(rt_se);
100 101
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
102 103 104 105 106 107 108 109 110 111 112
	}
}

static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

P
Peter Zijlstra 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#else

static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
{
	return sysctl_sched_rt_ratio;
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
{
}

static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
169 170 171 172
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
P
Peter Zijlstra 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#endif

static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
{
	unsigned int rt_ratio = sched_rt_ratio(rt_rq);
P
Peter Zijlstra 已提交
190 191
	u64 period, ratio;

P
Peter Zijlstra 已提交
192
	if (rt_ratio == SCHED_RT_FRAC)
P
Peter Zijlstra 已提交
193 194 195
		return 0;

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
196
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
197 198

	period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
P
Peter Zijlstra 已提交
199
	ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
P
Peter Zijlstra 已提交
200 201

	if (rt_rq->rt_time > ratio) {
P
Peter Zijlstra 已提交
202 203 204
		struct rq *rq = rq_of_rt_rq(rt_rq);

		rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
205
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
206

P
Peter Zijlstra 已提交
207 208 209 210
		if (rt_rq_throttled(rt_rq)) {
			sched_rt_ratio_dequeue(rt_rq);
			return 1;
		}
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217
	}

	return 0;
}

static void update_sched_rt_period(struct rq *rq)
{
P
Peter Zijlstra 已提交
218 219
	struct rt_rq *rt_rq;
	u64 period;
P
Peter Zijlstra 已提交
220

P
Peter Zijlstra 已提交
221
	while (rq->clock > rq->rt_period_expire) {
P
Peter Zijlstra 已提交
222 223 224
		period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
		rq->rt_period_expire += period;

P
Peter Zijlstra 已提交
225 226 227 228 229 230 231 232 233 234 235 236
		for_each_leaf_rt_rq(rt_rq, rq) {
			unsigned long rt_ratio = sched_rt_ratio(rt_rq);
			u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;

			rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
			if (rt_rq->rt_throttled) {
				rt_rq->rt_throttled = 0;
				sched_rt_ratio_enqueue(rt_rq);
			}
		}

		rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
237 238 239
	}
}

I
Ingo Molnar 已提交
240 241 242 243
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
244
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
245 246
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
247 248
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
249 250 251 252 253
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

254
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
255 256
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
257 258

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
259 260

	curr->se.sum_exec_runtime += delta_exec;
261
	curr->se.exec_start = rq->clock;
262
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
263

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270
	rt_rq->rt_time += delta_exec;
	/*
	 * might make it a tad more accurate:
	 *
	 * update_sched_rt_period(rq);
	 */
	if (sched_rt_ratio_exceeded(rt_rq))
P
Peter Zijlstra 已提交
271
		resched_task(curr);
I
Ingo Molnar 已提交
272 273
}

P
Peter Zijlstra 已提交
274 275
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276
{
P
Peter Zijlstra 已提交
277 278 279 280 281 282
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_se_prio(rt_se) < rt_rq->highest_prio)
		rt_rq->highest_prio = rt_se_prio(rt_se);
#endif
283
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
284 285
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
286
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
287
	}
288

P
Peter Zijlstra 已提交
289 290
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
P
Peter Zijlstra 已提交
291 292 293 294
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
#endif
295 296
}

P
Peter Zijlstra 已提交
297 298
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
299
{
P
Peter Zijlstra 已提交
300 301 302 303 304
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
	if (rt_rq->rt_nr_running) {
305 306
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
307 308
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
309
			/* recalculate */
P
Peter Zijlstra 已提交
310 311
			array = &rt_rq->active;
			rt_rq->highest_prio =
312 313 314
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
315 316 317 318 319
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
320
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
321
	}
322

P
Peter Zijlstra 已提交
323
	update_rt_migration(rq_of_rt_rq(rt_rq));
324
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
325 326 327 328 329 330
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
331 332
}

P
Peter Zijlstra 已提交
333
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
334
{
P
Peter Zijlstra 已提交
335 336 337
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
I
Ingo Molnar 已提交
338

P
Peter Zijlstra 已提交
339
	if (group_rq && rt_rq_throttled(group_rq))
P
Peter Zijlstra 已提交
340
		return;
341

P
Peter Zijlstra 已提交
342 343
	list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
	__set_bit(rt_se_prio(rt_se), array->bitmap);
344

P
Peter Zijlstra 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	inc_rt_tasks(rt_se, rt_rq);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 *
 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
 *      doesn't matter much for now, as h=2 for GROUP_SCHED.
 */
static void dequeue_rt_stack(struct task_struct *p)
{
	struct sched_rt_entity *rt_se, *top_se;

	/*
	 * dequeue all, top - down.
	 */
	do {
		rt_se = &p->rt;
		top_se = NULL;
		for_each_sched_rt_entity(rt_se) {
			if (on_rt_rq(rt_se))
				top_se = rt_se;
		}
		if (top_se)
			dequeue_rt_entity(top_se);
	} while (top_se);
I
Ingo Molnar 已提交
384 385 386 387 388
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

	dequeue_rt_stack(p);

	/*
	 * enqueue everybody, bottom - up.
	 */
	for_each_sched_rt_entity(rt_se)
		enqueue_rt_entity(rt_se);

	inc_cpu_load(rq, p->se.load.weight);
}

407
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
408
{
P
Peter Zijlstra 已提交
409 410
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
411

412
	update_curr_rt(rq);
I
Ingo Molnar 已提交
413

P
Peter Zijlstra 已提交
414 415 416 417 418 419 420 421 422 423
	dequeue_rt_stack(p);

	/*
	 * re-enqueue all non-empty rt_rq entities.
	 */
	for_each_sched_rt_entity(rt_se) {
		rt_rq = group_rt_rq(rt_se);
		if (rt_rq && rt_rq->rt_nr_running)
			enqueue_rt_entity(rt_se);
	}
424

P
Peter Zijlstra 已提交
425
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
426 427 428 429 430 431
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
P
Peter Zijlstra 已提交
432 433 434 435 436 437 438 439
static
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
	struct rt_prio_array *array = &rt_rq->active;

	list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
}

I
Ingo Molnar 已提交
440 441
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
442 443
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
444

P
Peter Zijlstra 已提交
445 446 447 448
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
		requeue_rt_entity(rt_rq, rt_se);
	}
I
Ingo Molnar 已提交
449 450
}

P
Peter Zijlstra 已提交
451
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
452
{
453
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
454 455
}

456
#ifdef CONFIG_SMP
457 458
static int find_lowest_rq(struct task_struct *task);

459 460
static int select_task_rq_rt(struct task_struct *p, int sync)
{
461 462 463
	struct rq *rq = task_rq(p);

	/*
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
479
	 */
480
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
481
	    (p->rt.nr_cpus_allowed > 1)) {
482 483 484 485 486 487 488 489 490
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
491 492 493 494
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

P
Peter Zijlstra 已提交
504 505
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
506
{
P
Peter Zijlstra 已提交
507 508
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
509 510 511 512
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
513
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
514 515

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
516
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
517

P
Peter Zijlstra 已提交
518 519
	return next;
}
I
Ingo Molnar 已提交
520

P
Peter Zijlstra 已提交
521 522 523 524 525
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
526

P
Peter Zijlstra 已提交
527 528 529 530 531
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
532
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
533 534 535 536
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
537
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
538 539 540 541 542 543
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
544 545
}

546
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
547
{
548
	update_curr_rt(rq);
I
Ingo Molnar 已提交
549 550 551
	p->se.exec_start = 0;
}

552
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
553

S
Steven Rostedt 已提交
554 555 556 557 558 559
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

560 561 562
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
563
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
564
	    (p->rt.nr_cpus_allowed > 1))
565 566 567 568
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
569
/* Return the second highest RT task, NULL otherwise */
570
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
571
{
P
Peter Zijlstra 已提交
572 573 574 575
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
576 577
	int idx;

P
Peter Zijlstra 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
597 598
	}

S
Steven Rostedt 已提交
599 600 601 602 603
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
604
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
605
{
G
Gregory Haskins 已提交
606
	int       lowest_prio = -1;
607
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
608
	int       count       = 0;
609
	int       cpu;
S
Steven Rostedt 已提交
610

611
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
612

613 614 615
	/*
	 * Scan each rq for the lowest prio.
	 */
616
	for_each_cpu_mask(cpu, *lowest_mask) {
617
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
618

619 620
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
621 622 623 624 625 626 627 628 629
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
630
				cpus_clear(*lowest_mask);
631 632
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
633
			return 1;
634 635 636
		}

		/* no locking for now */
G
Gregory Haskins 已提交
637 638 639 640 641
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
642 643
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
644
			}
G
Gregory Haskins 已提交
645
			count++;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
665
		}
666 667
	}

G
Gregory Haskins 已提交
668
	return count;
G
Gregory Haskins 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
692 693 694 695
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
696

G
Gregory Haskins 已提交
697 698 699 700 701 702
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
742 743 744
}

/* Will lock the rq it finds */
745
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
746 747 748
{
	struct rq *lowest_rq = NULL;
	int tries;
749
	int cpu;
S
Steven Rostedt 已提交
750

751 752 753
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

754
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
755 756
			break;

757 758
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
759
		/* if the prio of this runqueue changed, try again */
760
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
761 762 763 764 765 766
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
767
			if (unlikely(task_rq(task) != rq ||
768 769
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
770
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
771
				     !task->se.on_rq)) {
772

S
Steven Rostedt 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
796
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
797 798 799 800 801 802
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
803 804 805
	if (!rq->rt.overloaded)
		return 0;

806
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
807 808 809 810
	if (!next_task)
		return 0;

 retry:
811
	if (unlikely(next_task == rq->curr)) {
812
		WARN_ON(1);
S
Steven Rostedt 已提交
813
		return 0;
814
	}
S
Steven Rostedt 已提交
815 816 817 818 819 820

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
821 822
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
823 824 825
		return 0;
	}

826
	/* We might release rq lock */
S
Steven Rostedt 已提交
827 828 829
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
830
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
831 832 833
	if (!lowest_rq) {
		struct task_struct *task;
		/*
834
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
835 836 837
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
838
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
839 840 841 842 843 844 845 846
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

847
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

879 880
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
881 882
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
883 884
	struct rq *src_rq;

885
	if (likely(!rt_overloaded(this_rq)))
886 887 888 889
		return 0;

	next = pick_next_task_rt(this_rq);

890
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
891 892 893 894 895 896 897 898 899 900 901 902 903
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
904

905 906 907 908 909 910 911 912
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
913 914
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
938
				goto skip;
939 940 941 942 943 944 945 946 947 948 949

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
950
			 *
951 952 953 954 955 956 957
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
958
 skip:
959 960 961 962 963 964
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

965
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
966 967
{
	/* Try to pull RT tasks here if we lower this rq's prio */
968
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
969 970 971
		pull_rt_task(rq);
}

972
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
973 974 975 976 977 978 979 980
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
981
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
982 983 984 985 986 987
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

988

989
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
990
{
991
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
992 993
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
994 995 996
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
997
static unsigned long
I
Ingo Molnar 已提交
998
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
999 1000 1001
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1002
{
1003 1004
	/* don't touch RT tasks */
	return 0;
1005 1006 1007 1008 1009 1010
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1011 1012
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1013
}
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1025
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1026 1027
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1028
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1029
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1030
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1031 1032 1033 1034 1035 1036 1037 1038
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1039
	p->rt.nr_cpus_allowed = weight;
1040
}
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1129
#endif /* CONFIG_SMP */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1156
		if (p->rt.timeout > next)
1157 1158 1159
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
1160

P
Peter Zijlstra 已提交
1161
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1162
{
1163 1164
	update_curr_rt(rq);

1165 1166
	watchdog(rq, p);

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1174
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1175 1176
		return;

P
Peter Zijlstra 已提交
1177
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1178

1179 1180 1181 1182
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1183
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1184 1185 1186
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1187 1188
}

1189 1190 1191 1192 1193 1194 1195
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1196 1197
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1198 1199 1200
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
1201 1202 1203
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1204 1205 1206 1207 1208 1209

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1210
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1211
	.load_balance		= load_balance_rt,
1212
	.move_one_task		= move_one_task_rt,
1213
	.set_cpus_allowed       = set_cpus_allowed_rt,
1214 1215
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
1216 1217 1218
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1219
	.switched_from		= switched_from_rt,
1220
#endif
I
Ingo Molnar 已提交
1221

1222
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1223
	.task_tick		= task_tick_rt,
1224 1225 1226

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1227
};