amd_iommu.c 62.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <asm/proto.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/dma.h>
34
#include <asm/amd_iommu_proto.h>
35
#include <asm/amd_iommu_types.h>
36
#include <asm/amd_iommu.h>
37 38 39

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

40
#define LOOP_TIMEOUT	100000
41

42 43
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

44 45 46 47
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

48 49 50 51 52 53
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

54 55
static struct iommu_ops amd_iommu_ops;

56 57 58
/*
 * general struct to manage commands send to an IOMMU
 */
59
struct iommu_cmd {
60 61 62
	u32 data[4];
};

63
static void update_domain(struct protection_domain *domain);
64

65 66 67 68 69 70 71 72 73 74 75 76 77
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

78 79 80 81 82
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

111 112 113 114 115 116 117 118 119 120 121 122
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
123
	if (dev->bus != &pci_bus_type)
124 125 126 127 128 129 130 131 132 133 134 135 136 137
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

138 139 140 141 142 143 144 145 146 147 148 149 150
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

151 152
	dev_data->dev = dev;

153 154 155 156 157
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;
158 159 160 161
	else {
		kfree(dev_data);
		return -ENOTSUPP;
	}
162

163 164
	atomic_set(&dev_data->bind, 0);

165 166 167 168 169 170
	dev->archdata.iommu = dev_data;


	return 0;
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

185 186 187 188
static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
214 215 216
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
217 218 219 220 221 222 223 224 225 226 227
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
228 229 230 231 232 233
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

234
DECLARE_STATS_COUNTER(compl_wait);
235
DECLARE_STATS_COUNTER(cnt_map_single);
236
DECLARE_STATS_COUNTER(cnt_unmap_single);
237
DECLARE_STATS_COUNTER(cnt_map_sg);
238
DECLARE_STATS_COUNTER(cnt_unmap_sg);
239
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
240
DECLARE_STATS_COUNTER(cnt_free_coherent);
241
DECLARE_STATS_COUNTER(cross_page);
242
DECLARE_STATS_COUNTER(domain_flush_single);
243
DECLARE_STATS_COUNTER(domain_flush_all);
244
DECLARE_STATS_COUNTER(alloced_io_mem);
245
DECLARE_STATS_COUNTER(total_map_requests);
246

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
267 268

	amd_iommu_stats_add(&compl_wait);
269
	amd_iommu_stats_add(&cnt_map_single);
270
	amd_iommu_stats_add(&cnt_unmap_single);
271
	amd_iommu_stats_add(&cnt_map_sg);
272
	amd_iommu_stats_add(&cnt_unmap_sg);
273
	amd_iommu_stats_add(&cnt_alloc_coherent);
274
	amd_iommu_stats_add(&cnt_free_coherent);
275
	amd_iommu_stats_add(&cross_page);
276
	amd_iommu_stats_add(&domain_flush_single);
277
	amd_iommu_stats_add(&domain_flush_all);
278
	amd_iommu_stats_add(&alloced_io_mem);
279
	amd_iommu_stats_add(&total_map_requests);
280 281 282 283
}

#endif

284 285 286 287 288 289
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

290 291 292 293 294 295 296 297 298
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

299 300 301 302 303 304 305 306 307
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

308
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
309 310 311 312 313 314 315 316
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

317
	printk(KERN_ERR "AMD-Vi: Event logged [");
318 319 320 321 322 323 324

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
325
		dump_dte_entry(devid);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
347
		dump_command(address);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
381
		iommu_print_event(iommu, iommu->evt_buf + head);
382 383 384 385 386 387 388 389
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

390
irqreturn_t amd_iommu_int_thread(int irq, void *data)
391
{
392 393
	struct amd_iommu *iommu;

394
	for_each_iommu(iommu)
395 396 397
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
398 399
}

400 401 402 403 404
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

405 406 407 408 409 410
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
431 432 433
{
	u8 *target;

434
	target = iommu->cmd_buf + tail;
435 436 437 438 439 440
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
441
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
442
}
443

444
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
445
{
446 447
	WARN_ON(address & 0x7ULL);

448
	memset(cmd, 0, sizeof(*cmd));
449 450 451
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
452 453 454
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

455 456 457 458 459 460 461
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

524 525 526 527
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
528 529
}

530 531
/*
 * Writes the command to the IOMMUs command buffer and informs the
532
 * hardware about the new command.
533
 */
534
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
535
{
536
	u32 left, tail, head, next_tail;
537 538
	unsigned long flags;

539
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
540 541

again:
542 543
	spin_lock_irqsave(&iommu->lock, flags);

544 545 546 547
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
548

549 550 551 552
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
553

554 555
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
556

557 558 559 560 561 562
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
563 564
	}

565 566 567
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
568
	iommu->need_sync = true;
569

570
	spin_unlock_irqrestore(&iommu->lock, flags);
571

572
	return 0;
573 574 575 576 577 578
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
579
static int iommu_completion_wait(struct amd_iommu *iommu)
580 581
{
	struct iommu_cmd cmd;
582
	volatile u64 sem = 0;
583
	int ret;
584

585
	if (!iommu->need_sync)
586
		return 0;
587

588
	build_completion_wait(&cmd, (u64)&sem);
589

590
	ret = iommu_queue_command(iommu, &cmd);
591
	if (ret)
592
		return ret;
593

594
	return wait_on_sem(&sem);
595 596
}

597
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
598
{
599
	struct iommu_cmd cmd;
600

601
	build_inv_dte(&cmd, devid);
602

603 604
	return iommu_queue_command(iommu, &cmd);
}
605

606 607 608
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
609

610 611
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
612

613 614
	iommu_completion_wait(iommu);
}
615

616 617 618 619 620 621 622
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
623

624 625 626 627 628 629
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
630

631
	iommu_completion_wait(iommu);
632 633
}

634
static void iommu_flush_all(struct amd_iommu *iommu)
635
{
636
	struct iommu_cmd cmd;
637

638
	build_inv_all(&cmd);
639

640 641 642 643
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

644 645
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
646 647 648 649 650
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
651 652 653
	}
}

654
/*
655
 * Command send function for flushing on-device TLB
656
 */
657
static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
658
{
659
	struct pci_dev *pdev = to_pci_dev(dev);
660
	struct amd_iommu *iommu;
661
	struct iommu_cmd cmd;
662
	u16 devid;
663
	int qdep;
664

665
	qdep  = pci_ats_queue_depth(pdev);
666 667 668
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

669
	build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
670 671

	return iommu_queue_command(iommu, &cmd);
672 673
}

674 675 676
/*
 * Command send function for invalidating a device table entry
 */
677
static int device_flush_dte(struct device *dev)
678
{
679
	struct amd_iommu *iommu;
680
	struct pci_dev *pdev;
681
	u16 devid;
682
	int ret;
683

684
	pdev  = to_pci_dev(dev);
685 686
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
687

688 689 690 691 692 693
	ret = iommu_flush_dte(iommu, devid);
	if (ret)
		return ret;

	if (pci_ats_enabled(pdev))
		ret = device_flush_iotlb(dev, 0, ~0UL);
694 695

	return ret;
696 697
}

698 699 700 701 702
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
703 704
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
705
{
706
	struct iommu_dev_data *dev_data;
707 708
	struct iommu_cmd cmd;
	int ret = 0, i;
709

710
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
711

712 713 714 715 716 717 718 719
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
720
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
721 722
	}

723 724 725 726 727 728 729 730 731
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct pci_dev *pdev = to_pci_dev(dev_data->dev);

		if (!pci_ats_enabled(pdev))
			continue;

		ret |= device_flush_iotlb(dev_data->dev, address, size);
	}

732
	WARN_ON(ret);
733 734
}

735 736
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
737
{
738
	__domain_flush_pages(domain, address, size, 0);
739
}
740

741
/* Flush the whole IO/TLB for a given protection domain */
742
static void domain_flush_tlb(struct protection_domain *domain)
743
{
744
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
745 746
}

747
/* Flush the whole IO/TLB for a given protection domain - including PDE */
748
static void domain_flush_tlb_pde(struct protection_domain *domain)
749
{
750
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
751 752
}

753
static void domain_flush_complete(struct protection_domain *domain)
754
{
755
	int i;
756

757 758 759
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
760

761 762 763 764 765
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
766
	}
767 768
}

769

770
/*
771
 * This function flushes the DTEs for all devices in domain
772
 */
773
static void domain_flush_devices(struct protection_domain *domain)
774
{
775
	struct iommu_dev_data *dev_data;
776 777
	unsigned long flags;

778
	spin_lock_irqsave(&domain->lock, flags);
779

780
	list_for_each_entry(dev_data, &domain->dev_list, list)
781
		device_flush_dte(dev_data->dev);
782

783
	spin_unlock_irqrestore(&domain->lock, flags);
784 785
}

786 787 788 789 790 791 792
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
822
		      unsigned long page_size,
823 824 825
		      u64 **pte_page,
		      gfp_t gfp)
{
826
	int level, end_lvl;
827
	u64 *pte, *page;
828 829

	BUG_ON(!is_power_of_2(page_size));
830 831 832 833

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

834 835 836 837
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
838 839 840 841 842 843 844 845 846

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

847 848 849 850
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
868
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
869 870 871 872
{
	int level;
	u64 *pte;

873 874 875 876 877
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
878

879 880 881
	while (level > 0) {

		/* Not Present */
882 883 884
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

904 905
		level -= 1;

906
		/* Walk to the next level */
907 908 909 910 911 912 913
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

914 915 916 917 918 919 920
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
921 922 923
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
924
			  int prot,
925
			  unsigned long page_size)
926
{
927
	u64 __pte, *pte;
928
	int i, count;
929

930
	if (!(prot & IOMMU_PROT_MASK))
931 932
		return -EINVAL;

933 934 935 936 937 938 939 940
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
941

942 943 944 945 946
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
947 948 949 950 951 952

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

953 954
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
955

956 957
	update_domain(dom);

958 959 960
	return 0;
}

961 962 963
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
964
{
965 966 967 968 969 970
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1001

1002
	return unmapped;
1003 1004
}

1005 1006 1007 1008
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1023 1024 1025 1026
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1027 1028 1029 1030 1031 1032 1033 1034
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1035
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1036
				     PAGE_SIZE);
1037 1038 1039 1040 1041 1042 1043
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1044
			__set_bit(addr >> PAGE_SHIFT,
1045
				  dma_dom->aperture[0]->bitmap);
1046 1047 1048 1049 1050
	}

	return 0;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1073 1074 1075
/*
 * Inits the unity mappings required for a specific device
 */
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1102

1103
/*
1104
 * The address allocator core functions.
1105 1106 1107
 *
 * called with domain->lock held
 */
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1129 1130 1131 1132 1133
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1134
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1135 1136 1137
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1138
	struct amd_iommu *iommu;
1139
	unsigned long i;
1140

1141 1142 1143 1144
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1164
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1177
	/* Initialize the exclusion range if necessary */
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1200
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1201 1202 1203 1204 1205 1206
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1207 1208
	update_domain(&dma_dom->domain);

1209 1210 1211
	return 0;

out_free:
1212 1213
	update_domain(&dma_dom->domain);

1214 1215 1216 1217 1218 1219 1220 1221
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1222 1223 1224 1225 1226 1227 1228
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1229
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1230 1231 1232 1233 1234 1235
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1236 1237
	next_bit >>= PAGE_SHIFT;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1256
			dom->next_address = address + (pages << PAGE_SHIFT);
1257 1258 1259 1260 1261 1262 1263 1264 1265
			break;
		}

		next_bit = 0;
	}

	return address;
}

1266 1267
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1268
					     unsigned int pages,
1269 1270
					     unsigned long align_mask,
					     u64 dma_mask)
1271 1272 1273
{
	unsigned long address;

1274 1275 1276 1277
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1278

1279
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1280
				     dma_mask, dom->next_address);
1281

1282
	if (address == -1) {
1283
		dom->next_address = 0;
1284 1285
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1286 1287
		dom->need_flush = true;
	}
1288

1289
	if (unlikely(address == -1))
1290
		address = DMA_ERROR_CODE;
1291 1292 1293 1294 1295 1296

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1297 1298 1299 1300 1301
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1302 1303 1304 1305
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1306 1307
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1308

1309 1310
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1311 1312 1313 1314
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1315

1316
	if (address >= dom->next_address)
1317
		dom->need_flush = true;
1318 1319

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1320

A
Akinobu Mita 已提交
1321
	bitmap_clear(range->bitmap, address, pages);
1322

1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1387
static void free_pagetable(struct protection_domain *domain)
1388 1389 1390 1391
{
	int i, j;
	u64 *p1, *p2, *p3;

1392
	p1 = domain->pt_root;
1393 1394 1395 1396 1397 1398 1399 1400 1401

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1402
		for (j = 0; j < 512; ++j) {
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1413 1414

	domain->pt_root = NULL;
1415 1416
}

1417 1418 1419 1420
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1421 1422
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1423 1424
	int i;

1425 1426 1427
	if (!dom)
		return;

1428 1429
	del_domain_from_list(&dom->domain);

1430
	free_pagetable(&dom->domain);
1431

1432 1433 1434 1435 1436 1437
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1438 1439 1440 1441

	kfree(dom);
}

1442 1443
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1444
 * It also initializes the page table and the address allocator data
1445 1446
 * structures required for the dma_ops interface
 */
1447
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1460
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1461
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1462
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1463
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1464 1465 1466 1467
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1468
	dma_dom->need_flush = false;
1469
	dma_dom->target_dev = 0xffff;
1470

1471 1472
	add_domain_to_list(&dma_dom->domain);

1473
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1474 1475
		goto free_dma_dom;

1476
	/*
1477 1478
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1479
	 */
1480
	dma_dom->aperture[0]->bitmap[0] = 1;
1481
	dma_dom->next_address = 0;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1501
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1502 1503
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1504
	u32 flags = 0;
1505

1506 1507 1508
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1509

1510 1511 1512 1513 1514 1515 1516
	if (ats)
		flags |= DTE_FLAG_IOTLB;

	amd_iommu_dev_table[devid].data[3] |= flags;
	amd_iommu_dev_table[devid].data[2]  = domain->id;
	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1527 1528 1529 1530 1531 1532
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
1533 1534
	struct pci_dev *pdev;
	bool ats = false;
1535 1536 1537 1538 1539
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1540 1541 1542 1543
	pdev     = to_pci_dev(dev);

	if (amd_iommu_iotlb_sup)
		ats = pci_ats_enabled(pdev);
1544 1545 1546 1547

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1548
	set_dte_entry(devid, domain, ats);
1549 1550 1551 1552 1553 1554

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1555
	device_flush_dte(dev);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1567 1568

	/* decrease reference counters */
1569 1570 1571 1572 1573 1574 1575
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1576

1577
	/* Flush the DTE entry */
1578
	device_flush_dte(dev);
1579 1580 1581 1582 1583 1584
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1585 1586
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1587
{
1588
	struct iommu_dev_data *dev_data, *alias_data;
1589
	int ret;
1590 1591 1592

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1593

1594 1595
	if (!alias_data)
		return -EINVAL;
1596

1597 1598 1599
	/* lock domain */
	spin_lock(&domain->lock);

1600
	/* Some sanity checks */
1601
	ret = -EBUSY;
1602 1603
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1604
		goto out_unlock;
1605

1606 1607
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1608
		goto out_unlock;
1609 1610

	/* Do real assignment */
1611 1612 1613 1614
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1615 1616

		atomic_inc(&alias_data->bind);
1617
	}
1618

1619 1620
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1621

1622 1623
	atomic_inc(&dev_data->bind);

1624 1625 1626 1627
	ret = 0;

out_unlock:

1628 1629
	/* ready */
	spin_unlock(&domain->lock);
1630

1631
	return ret;
1632
}
1633

1634 1635 1636 1637
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1638 1639
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1640
{
1641
	struct pci_dev *pdev = to_pci_dev(dev);
1642
	unsigned long flags;
1643
	int ret;
1644

1645 1646 1647
	if (amd_iommu_iotlb_sup)
		pci_enable_ats(pdev, PAGE_SHIFT);

1648
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1649
	ret = __attach_device(dev, domain);
1650 1651
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1652 1653 1654 1655 1656
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1657
	domain_flush_tlb_pde(domain);
1658 1659

	return ret;
1660 1661
}

1662 1663 1664
/*
 * Removes a device from a protection domain (unlocked)
 */
1665
static void __detach_device(struct device *dev)
1666
{
1667
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1668
	struct iommu_dev_data *alias_data;
1669
	struct protection_domain *domain;
1670
	unsigned long flags;
1671

1672
	BUG_ON(!dev_data->domain);
1673

1674 1675 1676
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1677

1678
	if (dev_data->alias != dev) {
1679
		alias_data = get_dev_data(dev_data->alias);
1680 1681
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1682 1683
	}

1684 1685 1686
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1687
	spin_unlock_irqrestore(&domain->lock, flags);
1688 1689 1690

	/*
	 * If we run in passthrough mode the device must be assigned to the
1691 1692
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1693
	 */
1694 1695
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1696
		__attach_device(dev, pt_domain);
1697 1698 1699 1700 1701
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1702
static void detach_device(struct device *dev)
1703
{
1704
	struct pci_dev *pdev = to_pci_dev(dev);
1705 1706 1707 1708
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1709
	__detach_device(dev);
1710
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1711 1712 1713

	if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
		pci_disable_ats(pdev);
1714
}
1715

1716 1717 1718 1719 1720 1721 1722
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1723
	struct iommu_dev_data *dev_data, *alias_data;
1724
	unsigned long flags;
1725
	u16 devid;
1726

1727 1728 1729 1730 1731
	devid      = get_device_id(dev);
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1732 1733

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1734
	dom = dev_data->domain;
1735
	if (dom == NULL &&
1736 1737 1738
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1739 1740 1741 1742 1743 1744 1745
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1746 1747 1748 1749
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1750
	u16 devid;
1751 1752 1753
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1754
	unsigned long flags;
1755

1756 1757
	if (!check_device(dev))
		return 0;
1758

1759 1760
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1761 1762

	switch (action) {
1763
	case BUS_NOTIFY_UNBOUND_DRIVER:
1764 1765 1766

		domain = domain_for_device(dev);

1767 1768
		if (!domain)
			goto out;
1769 1770
		if (iommu_pass_through)
			break;
1771
		detach_device(dev);
1772 1773
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1774 1775 1776 1777 1778

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1779 1780 1781 1782
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1783
		dma_domain = dma_ops_domain_alloc();
1784 1785 1786 1787 1788 1789 1790 1791
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1792
		break;
1793 1794 1795 1796
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

1807
static struct notifier_block device_nb = {
1808 1809
	.notifier_call = device_change_notifier,
};
1810

1811 1812 1813 1814 1815
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1829
static struct protection_domain *get_domain(struct device *dev)
1830
{
1831
	struct protection_domain *domain;
1832
	struct dma_ops_domain *dma_dom;
1833
	u16 devid = get_device_id(dev);
1834

1835
	if (!check_device(dev))
1836
		return ERR_PTR(-EINVAL);
1837

1838 1839 1840
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1841

1842 1843
	if (domain != NULL)
		return domain;
1844

1845
	/* Device not bount yet - bind it */
1846
	dma_dom = find_protection_domain(devid);
1847
	if (!dma_dom)
1848 1849
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1850
	DUMP_printk("Using protection domain %d for device %s\n",
1851
		    dma_dom->domain.id, dev_name(dev));
1852

1853
	return &dma_dom->domain;
1854 1855
}

1856 1857
static void update_device_table(struct protection_domain *domain)
{
1858
	struct iommu_dev_data *dev_data;
1859

1860
	list_for_each_entry(dev_data, &domain->dev_list, list) {
1861
		struct pci_dev *pdev = to_pci_dev(dev_data->dev);
1862
		u16 devid = get_device_id(dev_data->dev);
1863
		set_dte_entry(devid, domain, pci_ats_enabled(pdev));
1864 1865 1866 1867 1868 1869 1870 1871 1872
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1873 1874 1875

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1876 1877 1878 1879

	domain->updated = false;
}

1880 1881 1882 1883 1884 1885
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1886
	struct aperture_range *aperture;
1887 1888
	u64 *pte, *pte_page;

1889 1890 1891 1892 1893
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1894
	if (!pte) {
1895
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1896
				GFP_ATOMIC);
1897 1898
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1899
		pte += PM_LEVEL_INDEX(0, address);
1900

1901
	update_domain(&dom->domain);
1902 1903 1904 1905

	return pte;
}

1906 1907 1908 1909
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1910
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1921
	pte  = dma_ops_get_pte(dom, address);
1922
	if (!pte)
1923
		return DMA_ERROR_CODE;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1941 1942 1943
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1944
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1945 1946
				 unsigned long address)
{
1947
	struct aperture_range *aperture;
1948 1949 1950 1951 1952
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1953 1954 1955 1956 1957 1958 1959
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1960

1961
	pte += PM_LEVEL_INDEX(0, address);
1962 1963 1964 1965 1966 1967

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1968 1969
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1970 1971
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1972 1973
 * Must be called with the domain lock held.
 */
1974 1975 1976 1977
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1978
			       int dir,
1979 1980
			       bool align,
			       u64 dma_mask)
1981 1982
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1983
	dma_addr_t address, start, ret;
1984
	unsigned int pages;
1985
	unsigned long align_mask = 0;
1986 1987
	int i;

1988
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1989 1990
	paddr &= PAGE_MASK;

1991 1992
	INC_STATS_COUNTER(total_map_requests);

1993 1994 1995
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1996 1997 1998
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1999
retry:
2000 2001
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2002
	if (unlikely(address == DMA_ERROR_CODE)) {
2003 2004 2005 2006 2007 2008 2009
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2010
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2011 2012 2013
			goto out;

		/*
2014
		 * aperture was successfully enlarged by 128 MB, try
2015 2016 2017 2018
		 * allocation again
		 */
		goto retry;
	}
2019 2020 2021

	start = address;
	for (i = 0; i < pages; ++i) {
2022
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2023
		if (ret == DMA_ERROR_CODE)
2024 2025
			goto out_unmap;

2026 2027 2028 2029 2030
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2031 2032
	ADD_STATS_COUNTER(alloced_io_mem, size);

2033
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2034
		domain_flush_tlb(&dma_dom->domain);
2035
		dma_dom->need_flush = false;
2036
	} else if (unlikely(amd_iommu_np_cache))
2037
		domain_flush_pages(&dma_dom->domain, address, size);
2038

2039 2040
out:
	return address;
2041 2042 2043 2044 2045

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2046
		dma_ops_domain_unmap(dma_dom, start);
2047 2048 2049 2050
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2051
	return DMA_ERROR_CODE;
2052 2053
}

2054 2055 2056 2057
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2058
static void __unmap_single(struct dma_ops_domain *dma_dom,
2059 2060 2061 2062
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2063
	dma_addr_t flush_addr;
2064 2065 2066
	dma_addr_t i, start;
	unsigned int pages;

2067
	if ((dma_addr == DMA_ERROR_CODE) ||
2068
	    (dma_addr + size > dma_dom->aperture_size))
2069 2070
		return;

2071
	flush_addr = dma_addr;
2072
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2073 2074 2075 2076
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2077
		dma_ops_domain_unmap(dma_dom, start);
2078 2079 2080
		start += PAGE_SIZE;
	}

2081 2082
	SUB_STATS_COUNTER(alloced_io_mem, size);

2083
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2084

2085
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2086
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2087 2088
		dma_dom->need_flush = false;
	}
2089 2090
}

2091 2092 2093
/*
 * The exported map_single function for dma_ops.
 */
2094 2095 2096 2097
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2098 2099 2100 2101
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2102
	u64 dma_mask;
2103
	phys_addr_t paddr = page_to_phys(page) + offset;
2104

2105 2106
	INC_STATS_COUNTER(cnt_map_single);

2107 2108
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2109
		return (dma_addr_t)paddr;
2110 2111
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2112

2113 2114
	dma_mask = *dev->dma_mask;

2115
	spin_lock_irqsave(&domain->lock, flags);
2116

2117
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2118
			    dma_mask);
2119
	if (addr == DMA_ERROR_CODE)
2120 2121
		goto out;

2122
	domain_flush_complete(domain);
2123 2124 2125 2126 2127 2128 2129

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2130 2131 2132
/*
 * The exported unmap_single function for dma_ops.
 */
2133 2134
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2135 2136 2137 2138
{
	unsigned long flags;
	struct protection_domain *domain;

2139 2140
	INC_STATS_COUNTER(cnt_unmap_single);

2141 2142
	domain = get_domain(dev);
	if (IS_ERR(domain))
2143 2144
		return;

2145 2146
	spin_lock_irqsave(&domain->lock, flags);

2147
	__unmap_single(domain->priv, dma_addr, size, dir);
2148

2149
	domain_flush_complete(domain);
2150 2151 2152 2153

	spin_unlock_irqrestore(&domain->lock, flags);
}

2154 2155 2156 2157
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2172 2173 2174 2175
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2176
static int map_sg(struct device *dev, struct scatterlist *sglist,
2177 2178
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2179 2180 2181 2182 2183 2184 2185
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2186
	u64 dma_mask;
2187

2188 2189
	INC_STATS_COUNTER(cnt_map_sg);

2190 2191
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2192
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2193 2194
	else if (IS_ERR(domain))
		return 0;
2195

2196
	dma_mask = *dev->dma_mask;
2197 2198 2199 2200 2201 2202

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2203
		s->dma_address = __map_single(dev, domain->priv,
2204 2205
					      paddr, s->length, dir, false,
					      dma_mask);
2206 2207 2208 2209 2210 2211 2212 2213

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2214
	domain_flush_complete(domain);
2215 2216 2217 2218 2219 2220 2221 2222

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2223
			__unmap_single(domain->priv, s->dma_address,
2224 2225 2226 2227 2228 2229 2230 2231 2232
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2233 2234 2235 2236
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2237
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2238 2239
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2240 2241 2242 2243 2244 2245
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2246 2247
	INC_STATS_COUNTER(cnt_unmap_sg);

2248 2249
	domain = get_domain(dev);
	if (IS_ERR(domain))
2250 2251
		return;

2252 2253 2254
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2255
		__unmap_single(domain->priv, s->dma_address,
2256 2257 2258 2259
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2260
	domain_flush_complete(domain);
2261 2262 2263 2264

	spin_unlock_irqrestore(&domain->lock, flags);
}

2265 2266 2267
/*
 * The exported alloc_coherent function for dma_ops.
 */
2268 2269 2270 2271 2272 2273 2274
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2275
	u64 dma_mask = dev->coherent_dma_mask;
2276

2277 2278
	INC_STATS_COUNTER(cnt_alloc_coherent);

2279 2280
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2281 2282 2283
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2284 2285
	} else if (IS_ERR(domain))
		return NULL;
2286

2287 2288 2289
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2290 2291 2292

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2293
		return NULL;
2294 2295 2296

	paddr = virt_to_phys(virt_addr);

2297 2298 2299
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2300 2301
	spin_lock_irqsave(&domain->lock, flags);

2302
	*dma_addr = __map_single(dev, domain->priv, paddr,
2303
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2304

2305
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2306
		spin_unlock_irqrestore(&domain->lock, flags);
2307
		goto out_free;
J
Jiri Slaby 已提交
2308
	}
2309

2310
	domain_flush_complete(domain);
2311 2312 2313 2314

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2315 2316 2317 2318 2319 2320

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2321 2322
}

2323 2324 2325
/*
 * The exported free_coherent function for dma_ops.
 */
2326 2327 2328 2329 2330 2331
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2332 2333
	INC_STATS_COUNTER(cnt_free_coherent);

2334 2335
	domain = get_domain(dev);
	if (IS_ERR(domain))
2336 2337
		goto free_mem;

2338 2339
	spin_lock_irqsave(&domain->lock, flags);

2340
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2341

2342
	domain_flush_complete(domain);
2343 2344 2345 2346 2347 2348 2349

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2350 2351 2352 2353 2354 2355
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2356
	return check_device(dev);
2357 2358
}

2359
/*
2360 2361
 * The function for pre-allocating protection domains.
 *
2362 2363 2364 2365
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2366
static void prealloc_protection_domains(void)
2367 2368 2369
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2370
	u16 devid;
2371

2372
	for_each_pci_dev(dev) {
2373 2374 2375

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2376
			continue;
2377 2378

		/* Is there already any domain for it? */
2379
		if (domain_for_device(&dev->dev))
2380
			continue;
2381 2382 2383

		devid = get_device_id(&dev->dev);

2384
		dma_dom = dma_ops_domain_alloc();
2385 2386 2387
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2388 2389
		dma_dom->target_dev = devid;

2390
		attach_device(&dev->dev, &dma_dom->domain);
2391

2392
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2393 2394 2395
	}
}

2396
static struct dma_map_ops amd_iommu_dma_ops = {
2397 2398
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2399 2400
	.map_page = map_page,
	.unmap_page = unmap_page,
2401 2402
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2403
	.dma_supported = amd_iommu_dma_supported,
2404 2405
};

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static unsigned device_dma_ops_init(void)
{
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
	}

	return unhandled;
}

2423 2424 2425
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2426 2427 2428 2429 2430 2431

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2432 2433 2434
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2435
	int ret, unhandled;
2436

2437 2438 2439 2440 2441
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2442
	for_each_iommu(iommu) {
2443
		iommu->default_dom = dma_ops_domain_alloc();
2444 2445
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2446
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2447 2448 2449 2450 2451
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2452
	/*
2453
	 * Pre-allocate the protection domains for each device.
2454
	 */
2455
	prealloc_protection_domains();
2456 2457

	iommu_detected = 1;
2458
	swiotlb = 0;
2459

2460
	/* Make the driver finally visible to the drivers */
2461 2462 2463 2464 2465
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2466

2467 2468
	amd_iommu_stats_init();

2469 2470 2471 2472
	return 0;

free_domains:

2473
	for_each_iommu(iommu) {
2474 2475 2476 2477 2478 2479
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2493
	struct iommu_dev_data *dev_data, *next;
2494 2495 2496 2497
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2498 2499 2500
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2501
		__detach_device(dev);
2502 2503
		atomic_set(&dev_data->bind, 0);
	}
2504 2505 2506 2507

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2508 2509 2510 2511 2512
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2513 2514
	del_domain_from_list(domain);

2515 2516 2517 2518 2519 2520 2521
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2522 2523 2524 2525 2526
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2527
		return NULL;
2528 2529

	spin_lock_init(&domain->lock);
2530
	mutex_init(&domain->api_lock);
2531 2532
	domain->id = domain_id_alloc();
	if (!domain->id)
2533
		goto out_err;
2534
	INIT_LIST_HEAD(&domain->dev_list);
2535

2536 2537
	add_domain_to_list(domain);

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2552
		goto out_free;
2553 2554

	domain->mode    = PAGE_MODE_3_LEVEL;
2555 2556 2557 2558 2559 2560 2561 2562 2563
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2564
	protection_domain_free(domain);
2565 2566 2567 2568

	return -ENOMEM;
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2583
	protection_domain_free(domain);
2584 2585 2586 2587

	dom->priv = NULL;
}

2588 2589 2590
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2591
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2592 2593 2594
	struct amd_iommu *iommu;
	u16 devid;

2595
	if (!check_device(dev))
2596 2597
		return;

2598
	devid = get_device_id(dev);
2599

2600
	if (dev_data->domain != NULL)
2601
		detach_device(dev);
2602 2603 2604 2605 2606 2607 2608 2609

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2610 2611 2612 2613
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2614
	struct iommu_dev_data *dev_data;
2615
	struct amd_iommu *iommu;
2616
	int ret;
2617 2618
	u16 devid;

2619
	if (!check_device(dev))
2620 2621
		return -EINVAL;

2622 2623
	dev_data = dev->archdata.iommu;

2624
	devid = get_device_id(dev);
2625 2626 2627 2628 2629

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2630
	if (dev_data->domain)
2631
		detach_device(dev);
2632

2633
	ret = attach_device(dev, domain);
2634 2635 2636

	iommu_completion_wait(iommu);

2637
	return ret;
2638 2639
}

2640 2641
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2642
{
2643
	unsigned long page_size = 0x1000UL << gfp_order;
2644 2645 2646 2647 2648 2649 2650 2651 2652
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2653
	mutex_lock(&domain->api_lock);
2654
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2655 2656
	mutex_unlock(&domain->api_lock);

2657
	return ret;
2658 2659
}

2660 2661
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2662 2663
{
	struct protection_domain *domain = dom->priv;
2664
	unsigned long page_size, unmap_size;
2665

2666
	page_size  = 0x1000UL << gfp_order;
2667

2668
	mutex_lock(&domain->api_lock);
2669
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2670
	mutex_unlock(&domain->api_lock);
2671

2672
	domain_flush_tlb_pde(domain);
2673

2674
	return get_order(unmap_size);
2675 2676
}

2677 2678 2679 2680
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2681
	unsigned long offset_mask;
2682
	phys_addr_t paddr;
2683
	u64 *pte, __pte;
2684

2685
	pte = fetch_pte(domain, iova);
2686

2687
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2688 2689
		return 0;

2690 2691 2692 2693 2694 2695 2696
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2697 2698 2699 2700

	return paddr;
}

S
Sheng Yang 已提交
2701 2702 2703
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2704 2705 2706 2707 2708
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2709 2710 2711
	return 0;
}

2712 2713 2714 2715 2716
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2717 2718
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2719
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2720
	.domain_has_cap = amd_iommu_domain_has_cap,
2721 2722
};

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2735
	struct amd_iommu *iommu;
2736
	struct pci_dev *dev = NULL;
2737
	u16 devid;
2738

2739
	/* allocate passthrough domain */
2740 2741 2742 2743 2744 2745
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2746
	for_each_pci_dev(dev) {
2747
		if (!check_device(&dev->dev))
2748 2749
			continue;

2750 2751
		devid = get_device_id(&dev->dev);

2752
		iommu = amd_iommu_rlookup_table[devid];
2753 2754 2755
		if (!iommu)
			continue;

2756
		attach_device(&dev->dev, pt_domain);
2757 2758 2759 2760 2761 2762
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}