amd_iommu.c 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64 65
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address);
66

67 68 69 70
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

71 72 73 74 75 76
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

77
DECLARE_STATS_COUNTER(compl_wait);
78
DECLARE_STATS_COUNTER(cnt_map_single);
79
DECLARE_STATS_COUNTER(cnt_unmap_single);
80
DECLARE_STATS_COUNTER(cnt_map_sg);
81
DECLARE_STATS_COUNTER(cnt_unmap_sg);
82
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
83
DECLARE_STATS_COUNTER(cnt_free_coherent);
84
DECLARE_STATS_COUNTER(cross_page);
85
DECLARE_STATS_COUNTER(domain_flush_single);
86
DECLARE_STATS_COUNTER(domain_flush_all);
87
DECLARE_STATS_COUNTER(alloced_io_mem);
88
DECLARE_STATS_COUNTER(total_map_requests);
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
114 115

	amd_iommu_stats_add(&compl_wait);
116
	amd_iommu_stats_add(&cnt_map_single);
117
	amd_iommu_stats_add(&cnt_unmap_single);
118
	amd_iommu_stats_add(&cnt_map_sg);
119
	amd_iommu_stats_add(&cnt_unmap_sg);
120
	amd_iommu_stats_add(&cnt_alloc_coherent);
121
	amd_iommu_stats_add(&cnt_free_coherent);
122
	amd_iommu_stats_add(&cross_page);
123
	amd_iommu_stats_add(&domain_flush_single);
124
	amd_iommu_stats_add(&domain_flush_all);
125
	amd_iommu_stats_add(&alloced_io_mem);
126
	amd_iommu_stats_add(&total_map_requests);
127 128 129 130
}

#endif

131
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
132 133
static int iommu_has_npcache(struct amd_iommu *iommu)
{
134
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
135 136
}

137 138 139 140 141 142
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

223 224
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
225 226
	struct amd_iommu *iommu;

227
	for_each_iommu(iommu)
228 229 230
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
231 232
}

233 234 235 236 237 238 239 240 241 242
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
243
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
244 245 246 247 248
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
249
	target = iommu->cmd_buf + tail;
250 251 252 253 254 255 256 257 258 259
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

260 261 262 263
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
264
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
265 266 267 268 269 270
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
271
	if (!ret)
272
		iommu->need_sync = true;
273 274 275 276 277
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

278 279 280 281 282 283 284 285 286 287
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

288 289
	INC_STATS_COUNTER(compl_wait);

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

320 321 322 323 324 325 326
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
327 328
static int iommu_completion_wait(struct amd_iommu *iommu)
{
329 330
	int ret = 0;
	unsigned long flags;
331

332 333
	spin_lock_irqsave(&iommu->lock, flags);

334 335 336
	if (!iommu->need_sync)
		goto out;

337
	ret = __iommu_completion_wait(iommu);
338

339
	iommu->need_sync = false;
340 341

	if (ret)
342
		goto out;
343

344
	__iommu_wait_for_completion(iommu);
345

346 347
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
348 349 350 351

	return 0;
}

352 353 354
/*
 * Command send function for invalidating a device table entry
 */
355 356
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
357
	struct iommu_cmd cmd;
358
	int ret;
359 360 361 362 363 364 365

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

366 367 368
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

386 387 388
/*
 * Generic command send function for invalidaing TLB entries
 */
389 390 391
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
392
	struct iommu_cmd cmd;
393
	int ret;
394

395
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
396

397 398 399
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
400 401
}

402 403 404 405 406
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
407 408 409
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
410
	int s = 0;
411
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
412 413 414

	address &= PAGE_MASK;

415 416 417 418 419 420 421
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
422 423
	}

424 425
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

426 427
	return 0;
}
428

429 430 431 432 433
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

434 435
	INC_STATS_COUNTER(domain_flush_single);

436 437 438
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

439 440 441 442 443 444 445 446 447 448
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

449 450 451 452 453 454 455 456 457 458
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

459 460
	INC_STATS_COUNTER(domain_flush_all);

461 462 463
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

464
	for_each_iommu(iommu) {
465 466 467 468 469 470 471 472
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

473 474 475 476 477 478 479 480 481 482 483
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

484
static void flush_devices_by_domain(struct protection_domain *domain)
485 486 487 488 489
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
490 491
		if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
		    (amd_iommu_pd_table[i] != domain))
492 493 494 495 496 497 498 499 500 501 502
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

503 504 505 506 507
void amd_iommu_flush_all_devices(void)
{
	flush_devices_by_domain(NULL);
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
522 523 524 525
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
526
{
527
	u64 __pte, *pte;
528 529

	bus_addr  = PAGE_ALIGN(bus_addr);
530
	phys_addr = PAGE_ALIGN(phys_addr);
531 532 533 534 535

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

536
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

552 553 554
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
555
	u64 *pte = fetch_pte(dom, bus_addr);
556

557 558
	if (pte)
		*pte = 0;
559 560
}

561 562 563 564
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
565 566 567 568 569 570 571 572 573 574 575 576 577 578
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

579 580 581 582 583 584
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

601 602 603 604
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
605 606 607 608 609 610 611 612
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
613
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
614 615 616 617 618 619 620
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
621
			__set_bit(addr >> PAGE_SHIFT,
622
				  dma_dom->aperture[0]->bitmap);
623 624 625 626 627
	}

	return 0;
}

628 629 630
/*
 * Inits the unity mappings required for a specific device
 */
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

648 649 650 651 652 653 654 655 656
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
657

658
/*
659
 * The address allocator core functions.
660 661 662
 *
 * called with domain->lock held
 */
663

664 665 666 667
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
668
static u64 *fetch_pte(struct protection_domain *domain,
669 670
		      unsigned long address)
{
671
	int level;
672 673
	u64 *pte;

674 675
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
676

677 678 679
	while (level > 0) {
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;
680

681
		level -= 1;
682

683 684 685
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}
686 687 688 689

	return pte;
}

690 691 692 693 694
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
695 696
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
697 698 699
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
700
	int i;
701

702 703 704 705
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

765 766 767 768 769 770 771 772 773 774 775
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

776 777 778 779 780 781 782
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
783
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
784 785 786 787 788 789
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

790 791
	next_bit >>= PAGE_SHIFT;

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
810
			dom->next_address = address + (pages << PAGE_SHIFT);
811 812 813 814 815 816 817 818 819
			break;
		}

		next_bit = 0;
	}

	return address;
}

820 821
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
822
					     unsigned int pages,
823 824
					     unsigned long align_mask,
					     u64 dma_mask)
825 826 827
{
	unsigned long address;

828 829 830 831
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
832

833
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
834
				     dma_mask, dom->next_address);
835

836
	if (address == -1) {
837
		dom->next_address = 0;
838 839
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
840 841
		dom->need_flush = true;
	}
842

843
	if (unlikely(address == -1))
844 845 846 847 848 849 850
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

851 852 853 854 855
/*
 * The address free function.
 *
 * called with domain->lock held
 */
856 857 858 859
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
860 861
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
862

863 864
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

865 866 867 868
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
869

870
	if (address >= dom->next_address)
871
		dom->need_flush = true;
872 873

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
874

875 876
	iommu_area_free(range->bitmap, address, pages);

877 878
}

879 880 881 882 883 884 885 886 887 888
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

906 907 908 909 910 911 912 913 914 915
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

916 917 918 919
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
920 921 922 923
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
924
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
925 926 927 928

	if (start_page + pages > last_page)
		pages = last_page - start_page;

929 930 931 932 933
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
934 935
}

936
static void free_pagetable(struct protection_domain *domain)
937 938 939 940
{
	int i, j;
	u64 *p1, *p2, *p3;

941
	p1 = domain->pt_root;
942 943 944 945 946 947 948 949 950

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
951
		for (j = 0; j < 512; ++j) {
952 953 954 955 956 957 958 959 960 961
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
962 963

	domain->pt_root = NULL;
964 965
}

966 967 968 969
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
970 971
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
972 973
	int i;

974 975 976
	if (!dom)
		return;

977
	free_pagetable(&dom->domain);
978

979 980 981 982 983 984
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
985 986 987 988

	kfree(dom);
}

989 990 991 992 993
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
994
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1009
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1010 1011 1012 1013
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1014
	dma_dom->need_flush = false;
1015
	dma_dom->target_dev = 0xffff;
1016

1017
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1018 1019
		goto free_dma_dom;

1020
	/*
1021 1022
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1023
	 */
1024
	dma_dom->aperture[0]->bitmap[0] = 1;
1025
	dma_dom->next_address = 0;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1045 1046 1047 1048
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1061
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1062 1063
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1064
	unsigned long flags;
1065

1066 1067 1068
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1069 1070

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1071 1072
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1073 1074 1075 1076
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
{
	/* set the DTE entry */
	set_dte_entry(devid, domain);

	/* increase reference counter */
	domain->dev_cnt += 1;
1092

1093 1094 1095 1096 1097
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1098
	iommu_queue_inv_dev_entry(iommu, devid);
1099
	iommu_flush_tlb_pde(iommu, domain->id);
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1148
	unsigned long flags;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1166
	case BUS_NOTIFY_UNBOUND_DRIVER:
1167 1168 1169
		if (!domain)
			goto out;
		detach_device(domain, devid);
1170 1171 1172 1173 1174 1175
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1176
		dma_domain = dma_ops_domain_alloc(iommu);
1177 1178 1179 1180 1181 1182 1183 1184
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1197
static struct notifier_block device_nb = {
1198 1199
	.notifier_call = device_change_notifier,
};
1200

1201 1202 1203 1204 1205 1206
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1245 1246 1247 1248 1249 1250 1251
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1252 1253 1254 1255 1256 1257 1258 1259 1260
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1261 1262 1263 1264 1265 1266
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1267 1268

	pcidev = to_pci_dev(dev);
1269
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1270

1271
	/* device not translated by any IOMMU in the system? */
1272
	if (_bdf > amd_iommu_last_bdf)
1273 1274 1275 1276 1277 1278 1279 1280 1281
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1282 1283 1284
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1285
		*domain = &dma_dom->domain;
1286
		attach_device(*iommu, *domain, *bdf);
1287 1288
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1289 1290
	}

1291
	if (domain_for_device(_bdf) == NULL)
1292
		attach_device(*iommu, *domain, _bdf);
1293

1294 1295 1296
	return 1;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1340
	struct aperture_range *aperture;
1341 1342
	u64 *pte, *pte_page;

1343 1344 1345 1346 1347
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1348 1349
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1350 1351 1352
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1353 1354 1355 1356

	return pte;
}

1357 1358 1359 1360
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1373
	pte  = dma_ops_get_pte(dom, address);
1374 1375
	if (!pte)
		return bad_dma_address;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1393 1394 1395
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1396 1397 1398 1399
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1400
	struct aperture_range *aperture;
1401 1402 1403 1404 1405
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1406 1407 1408 1409 1410 1411 1412
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1413 1414 1415 1416 1417 1418 1419 1420

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1421 1422
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1423 1424
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1425 1426
 * Must be called with the domain lock held.
 */
1427 1428 1429 1430 1431
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1432
			       int dir,
1433 1434
			       bool align,
			       u64 dma_mask)
1435 1436
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1437
	dma_addr_t address, start, ret;
1438
	unsigned int pages;
1439
	unsigned long align_mask = 0;
1440 1441
	int i;

1442
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1443 1444
	paddr &= PAGE_MASK;

1445 1446
	INC_STATS_COUNTER(total_map_requests);

1447 1448 1449
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1450 1451 1452
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1453
retry:
1454 1455
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1473 1474 1475

	start = address;
	for (i = 0; i < pages; ++i) {
1476 1477 1478 1479
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1480 1481 1482 1483 1484
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1485 1486
	ADD_STATS_COUNTER(alloced_io_mem, size);

1487
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1488 1489 1490
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1491 1492
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1493 1494
out:
	return address;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1506 1507
}

1508 1509 1510 1511
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1512 1513 1514 1515 1516 1517 1518 1519 1520
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1521 1522
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1523 1524
		return;

1525
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1526 1527 1528 1529 1530 1531 1532 1533
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1534 1535
	SUB_STATS_COUNTER(alloced_io_mem, size);

1536
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1537

1538
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1539
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1540 1541
		dma_dom->need_flush = false;
	}
1542 1543
}

1544 1545 1546
/*
 * The exported map_single function for dma_ops.
 */
1547 1548 1549 1550
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1551 1552 1553 1554 1555 1556
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1557
	u64 dma_mask;
1558
	phys_addr_t paddr = page_to_phys(page) + offset;
1559

1560 1561
	INC_STATS_COUNTER(cnt_map_single);

1562 1563 1564
	if (!check_device(dev))
		return bad_dma_address;

1565
	dma_mask = *dev->dma_mask;
1566 1567 1568 1569

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1570
		/* device not handled by any AMD IOMMU */
1571 1572
		return (dma_addr_t)paddr;

1573 1574 1575
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1576
	spin_lock_irqsave(&domain->lock, flags);
1577 1578
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1579 1580 1581
	if (addr == bad_dma_address)
		goto out;

1582
	iommu_completion_wait(iommu);
1583 1584 1585 1586 1587 1588 1589

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1590 1591 1592
/*
 * The exported unmap_single function for dma_ops.
 */
1593 1594
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1595 1596 1597 1598 1599 1600
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1601 1602
	INC_STATS_COUNTER(cnt_unmap_single);

1603 1604
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1605
		/* device not handled by any AMD IOMMU */
1606 1607
		return;

1608 1609 1610
	if (!dma_ops_domain(domain))
		return;

1611 1612 1613 1614
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1615
	iommu_completion_wait(iommu);
1616 1617 1618 1619

	spin_unlock_irqrestore(&domain->lock, flags);
}

1620 1621 1622 1623
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1638 1639 1640 1641
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1642
static int map_sg(struct device *dev, struct scatterlist *sglist,
1643 1644
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1645 1646 1647 1648 1649 1650 1651 1652 1653
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1654
	u64 dma_mask;
1655

1656 1657
	INC_STATS_COUNTER(cnt_map_sg);

1658 1659 1660
	if (!check_device(dev))
		return 0;

1661
	dma_mask = *dev->dma_mask;
1662 1663 1664 1665 1666 1667

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1668 1669 1670
	if (!dma_ops_domain(domain))
		return 0;

1671 1672 1673 1674 1675 1676
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1677 1678
					      paddr, s->length, dir, false,
					      dma_mask);
1679 1680 1681 1682 1683 1684 1685 1686

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1687
	iommu_completion_wait(iommu);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1706 1707 1708 1709
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1710
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1711 1712
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1713 1714 1715 1716 1717 1718 1719 1720
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1721 1722
	INC_STATS_COUNTER(cnt_unmap_sg);

1723 1724
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1725 1726
		return;

1727 1728 1729
	if (!dma_ops_domain(domain))
		return;

1730 1731 1732 1733 1734 1735 1736 1737
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1738
	iommu_completion_wait(iommu);
1739 1740 1741 1742

	spin_unlock_irqrestore(&domain->lock, flags);
}

1743 1744 1745
/*
 * The exported alloc_coherent function for dma_ops.
 */
1746 1747 1748 1749 1750 1751 1752 1753 1754
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1755
	u64 dma_mask = dev->coherent_dma_mask;
1756

1757 1758
	INC_STATS_COUNTER(cnt_alloc_coherent);

1759 1760
	if (!check_device(dev))
		return NULL;
1761

1762 1763
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1764

1765
	flag |= __GFP_ZERO;
1766 1767
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1768
		return NULL;
1769 1770 1771 1772 1773 1774 1775 1776

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1777 1778 1779
	if (!dma_ops_domain(domain))
		goto out_free;

1780 1781 1782
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1783 1784 1785
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1786
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1787

J
Jiri Slaby 已提交
1788 1789
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1790
		goto out_free;
J
Jiri Slaby 已提交
1791
	}
1792

1793
	iommu_completion_wait(iommu);
1794 1795 1796 1797

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1798 1799 1800 1801 1802 1803

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1804 1805
}

1806 1807 1808
/*
 * The exported free_coherent function for dma_ops.
 */
1809 1810 1811 1812 1813 1814 1815 1816
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1817 1818
	INC_STATS_COUNTER(cnt_free_coherent);

1819 1820 1821
	if (!check_device(dev))
		return;

1822 1823 1824 1825 1826
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1827 1828 1829
	if (!dma_ops_domain(domain))
		goto free_mem;

1830 1831 1832 1833
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1834
	iommu_completion_wait(iommu);
1835 1836 1837 1838 1839 1840 1841

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1866
/*
1867 1868
 * The function for pre-allocating protection domains.
 *
1869 1870 1871 1872
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1873
static void prealloc_protection_domains(void)
1874 1875 1876 1877 1878 1879 1880
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1881
		devid = calc_devid(dev->bus->number, dev->devfn);
1882
		if (devid > amd_iommu_last_bdf)
1883 1884 1885 1886 1887 1888 1889
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1890
		dma_dom = dma_ops_domain_alloc(iommu);
1891 1892 1893
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1894 1895 1896
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1897 1898 1899
	}
}

1900
static struct dma_map_ops amd_iommu_dma_ops = {
1901 1902
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1903 1904
	.map_page = map_page,
	.unmap_page = unmap_page,
1905 1906
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1907
	.dma_supported = amd_iommu_dma_supported,
1908 1909
};

1910 1911 1912
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1913 1914 1915 1916 1917
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1918 1919 1920 1921 1922
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1923
	for_each_iommu(iommu) {
1924
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1925 1926
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1927
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1928 1929 1930 1931 1932
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1933 1934 1935 1936
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1937 1938 1939 1940 1941 1942
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1943
#ifdef CONFIG_GART_IOMMU
1944 1945
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1946
#endif
1947

1948
	/* Make the driver finally visible to the drivers */
1949 1950
	dma_ops = &amd_iommu_dma_ops;

1951 1952
	register_iommu(&amd_iommu_ops);

1953 1954
	bus_register_notifier(&pci_bus_type, &device_nb);

1955 1956
	amd_iommu_stats_init();

1957 1958 1959 1960
	return 0;

free_domains:

1961
	for_each_iommu(iommu) {
1962 1963 1964 1965 1966 1967
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2093
		detach_device(old_domain, devid);
2094 2095 2096 2097 2098 2099 2100 2101

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2148 2149 2150 2151 2152 2153 2154 2155
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2156
	pte = fetch_pte(domain, iova);
2157

2158
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2159 2160 2161 2162 2163 2164 2165 2166
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2167 2168 2169 2170 2171 2172
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2173 2174 2175 2176 2177 2178 2179 2180
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2181
	.domain_has_cap = amd_iommu_domain_has_cap,
2182 2183
};