amd_iommu.c 53.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47 48 49
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

50 51 52 53
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

54 55 56
/*
 * general struct to manage commands send to an IOMMU
 */
57
struct iommu_cmd {
58 59 60
	u32 data[4];
};

61 62
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
63
static struct dma_ops_domain *find_protection_domain(u16 devid);
64 65 66
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
67 68 69
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
70

71 72 73 74
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

75 76 77 78 79 80
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

81
DECLARE_STATS_COUNTER(compl_wait);
82
DECLARE_STATS_COUNTER(cnt_map_single);
83
DECLARE_STATS_COUNTER(cnt_unmap_single);
84
DECLARE_STATS_COUNTER(cnt_map_sg);
85
DECLARE_STATS_COUNTER(cnt_unmap_sg);
86
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
87
DECLARE_STATS_COUNTER(cnt_free_coherent);
88
DECLARE_STATS_COUNTER(cross_page);
89
DECLARE_STATS_COUNTER(domain_flush_single);
90
DECLARE_STATS_COUNTER(domain_flush_all);
91
DECLARE_STATS_COUNTER(alloced_io_mem);
92
DECLARE_STATS_COUNTER(total_map_requests);
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
118 119

	amd_iommu_stats_add(&compl_wait);
120
	amd_iommu_stats_add(&cnt_map_single);
121
	amd_iommu_stats_add(&cnt_unmap_single);
122
	amd_iommu_stats_add(&cnt_map_sg);
123
	amd_iommu_stats_add(&cnt_unmap_sg);
124
	amd_iommu_stats_add(&cnt_alloc_coherent);
125
	amd_iommu_stats_add(&cnt_free_coherent);
126
	amd_iommu_stats_add(&cross_page);
127
	amd_iommu_stats_add(&domain_flush_single);
128
	amd_iommu_stats_add(&domain_flush_all);
129
	amd_iommu_stats_add(&alloced_io_mem);
130
	amd_iommu_stats_add(&total_map_requests);
131 132 133 134
}

#endif

135
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
136 137
static int iommu_has_npcache(struct amd_iommu *iommu)
{
138
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
139 140
}

141 142 143 144 145 146
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

227 228
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
229 230
	struct amd_iommu *iommu;

231
	for_each_iommu(iommu)
232 233 234
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
235 236
}

237 238 239 240 241 242 243 244 245 246
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
247
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
248 249 250 251 252
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
253
	target = iommu->cmd_buf + tail;
254 255 256 257 258 259 260 261 262 263
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

264 265 266 267
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
268
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
269 270 271 272 273 274
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
275
	if (!ret)
276
		iommu->need_sync = true;
277 278 279 280 281
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

282 283 284 285 286 287 288 289 290 291
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

292 293
	INC_STATS_COUNTER(compl_wait);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

324 325 326 327 328 329 330
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
331 332
static int iommu_completion_wait(struct amd_iommu *iommu)
{
333 334
	int ret = 0;
	unsigned long flags;
335

336 337
	spin_lock_irqsave(&iommu->lock, flags);

338 339 340
	if (!iommu->need_sync)
		goto out;

341
	ret = __iommu_completion_wait(iommu);
342

343
	iommu->need_sync = false;
344 345

	if (ret)
346
		goto out;
347

348
	__iommu_wait_for_completion(iommu);
349

350 351
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
352 353 354 355

	return 0;
}

356 357 358
/*
 * Command send function for invalidating a device table entry
 */
359 360
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
361
	struct iommu_cmd cmd;
362
	int ret;
363 364 365 366 367 368 369

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

370 371 372
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
373 374
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

390 391 392
/*
 * Generic command send function for invalidaing TLB entries
 */
393 394 395
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
396
	struct iommu_cmd cmd;
397
	int ret;
398

399
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
400

401 402 403
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
404 405
}

406 407 408 409 410
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
411 412 413
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
414
	int s = 0;
415
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
416 417 418

	address &= PAGE_MASK;

419 420 421 422 423 424 425
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
426 427
	}

428 429
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

430 431
	return 0;
}
432

433 434 435 436 437
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

438 439
	INC_STATS_COUNTER(domain_flush_single);

440 441 442
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

443 444 445 446 447 448 449 450 451 452
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

453 454 455 456 457 458 459 460 461 462
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

463 464
	INC_STATS_COUNTER(domain_flush_all);

465 466 467
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

468
	for_each_iommu(iommu) {
469 470 471 472 473 474 475 476
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

477 478 479 480 481 482 483 484 485 486 487
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
520 521 522 523
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
524
{
525
	u64 __pte, *pte;
526 527

	bus_addr  = PAGE_ALIGN(bus_addr);
528
	phys_addr = PAGE_ALIGN(phys_addr);
529 530 531 532 533

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

534
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

572 573 574 575
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
576 577 578 579 580 581 582 583 584 585 586 587 588 589
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

590 591 592 593 594 595
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

612 613 614 615
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
616 617 618 619 620 621 622 623
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
624
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
625 626 627 628 629 630 631
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
632
			__set_bit(addr >> PAGE_SHIFT,
633
				  dma_dom->aperture[0]->bitmap);
634 635 636 637 638
	}

	return 0;
}

639 640 641
/*
 * Inits the unity mappings required for a specific device
 */
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

659 660 661 662 663 664 665 666 667
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
668

669
/*
670
 * The address allocator core functions.
671 672 673
 *
 * called with domain->lock held
 */
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

701 702 703 704 705
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
706 707
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
708 709 710
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
711
	int i;
712

713 714 715 716
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

776 777 778 779 780 781 782 783 784 785 786
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

787 788 789 790 791 792 793
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
794
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
795 796 797 798 799 800
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

801 802
	next_bit >>= PAGE_SHIFT;

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
821
			dom->next_address = address + (pages << PAGE_SHIFT);
822 823 824 825 826 827 828 829 830
			break;
		}

		next_bit = 0;
	}

	return address;
}

831 832
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
833
					     unsigned int pages,
834 835
					     unsigned long align_mask,
					     u64 dma_mask)
836 837 838
{
	unsigned long address;

839 840 841 842
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
843

844
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
845
				     dma_mask, dom->next_address);
846

847
	if (address == -1) {
848
		dom->next_address = 0;
849 850
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
851 852
		dom->need_flush = true;
	}
853

854
	if (unlikely(address == -1))
855 856 857 858 859 860 861
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

862 863 864 865 866
/*
 * The address free function.
 *
 * called with domain->lock held
 */
867 868 869 870
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
871 872
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
873

874 875
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

876 877 878 879
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
880

881
	if (address >= dom->next_address)
882
		dom->need_flush = true;
883 884

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
885

886 887
	iommu_area_free(range->bitmap, address, pages);

888 889
}

890 891 892 893 894 895 896 897 898 899
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

917 918 919 920 921 922 923 924 925 926
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

927 928 929 930
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
931 932 933 934
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
935
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
936 937 938 939

	if (start_page + pages > last_page)
		pages = last_page - start_page;

940 941 942 943 944
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
945 946
}

947
static void free_pagetable(struct protection_domain *domain)
948 949 950 951
{
	int i, j;
	u64 *p1, *p2, *p3;

952
	p1 = domain->pt_root;
953 954 955 956 957 958 959 960 961

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
962
		for (j = 0; j < 512; ++j) {
963 964 965 966 967 968 969 970 971 972
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
973 974

	domain->pt_root = NULL;
975 976
}

977 978 979 980
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
981 982
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
983 984
	int i;

985 986 987
	if (!dom)
		return;

988
	free_pagetable(&dom->domain);
989

990 991 992 993 994 995
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
996 997 998 999

	kfree(dom);
}

1000 1001 1002 1003 1004
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1005
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1020
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1021 1022 1023 1024
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1025
	dma_dom->need_flush = false;
1026
	dma_dom->target_dev = 0xffff;
1027

1028
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1029 1030
		goto free_dma_dom;

1031
	/*
1032 1033
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1034
	 */
1035
	dma_dom->aperture[0]->bitmap[0] = 1;
1036
	dma_dom->next_address = 0;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1056 1057 1058 1059
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1072 1073 1074 1075
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1076 1077 1078
static void __attach_device(struct amd_iommu *iommu,
			    struct protection_domain *domain,
			    u16 devid)
1079 1080 1081 1082
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1083 1084
	domain->dev_cnt += 1;

1085 1086 1087
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1088 1089 1090

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	amd_iommu_dev_table[devid].data[2] = domain->id;
1091 1092
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1093 1094 1095

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1096
}
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
{
	__attach_device(iommu, domain, devid);

	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1109
	iommu_queue_inv_dev_entry(iommu, devid);
1110
	iommu_flush_tlb_pde(iommu, domain->id);
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1159
	unsigned long flags;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1177
	case BUS_NOTIFY_UNBOUND_DRIVER:
1178 1179 1180
		if (!domain)
			goto out;
		detach_device(domain, devid);
1181 1182 1183 1184 1185 1186
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1187
		dma_domain = dma_ops_domain_alloc(iommu);
1188 1189 1190 1191 1192 1193 1194 1195
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1208
static struct notifier_block device_nb = {
1209 1210
	.notifier_call = device_change_notifier,
};
1211

1212 1213 1214 1215 1216 1217
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1256 1257 1258 1259 1260 1261 1262
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1263 1264 1265 1266 1267 1268 1269 1270 1271
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1272 1273 1274 1275 1276 1277
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1278 1279

	pcidev = to_pci_dev(dev);
1280
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1281

1282
	/* device not translated by any IOMMU in the system? */
1283
	if (_bdf > amd_iommu_last_bdf)
1284 1285 1286 1287 1288 1289 1290 1291 1292
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1293 1294 1295
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1296
		*domain = &dma_dom->domain;
1297
		attach_device(*iommu, *domain, *bdf);
1298 1299
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1300 1301
	}

1302
	if (domain_for_device(_bdf) == NULL)
1303
		attach_device(*iommu, *domain, _bdf);
1304

1305 1306 1307
	return 1;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1351
	struct aperture_range *aperture;
1352 1353
	u64 *pte, *pte_page;

1354 1355 1356 1357 1358
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1359 1360
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1361 1362 1363
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1364 1365 1366 1367

	return pte;
}

1368 1369 1370 1371
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1384
	pte  = dma_ops_get_pte(dom, address);
1385 1386
	if (!pte)
		return bad_dma_address;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1404 1405 1406
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1407 1408 1409 1410
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1411
	struct aperture_range *aperture;
1412 1413 1414 1415 1416
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1417 1418 1419 1420 1421 1422 1423
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1424 1425 1426 1427 1428 1429 1430 1431

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1432 1433
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1434 1435
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1436 1437
 * Must be called with the domain lock held.
 */
1438 1439 1440 1441 1442
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1443
			       int dir,
1444 1445
			       bool align,
			       u64 dma_mask)
1446 1447
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1448
	dma_addr_t address, start, ret;
1449
	unsigned int pages;
1450
	unsigned long align_mask = 0;
1451 1452
	int i;

1453
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1454 1455
	paddr &= PAGE_MASK;

1456 1457
	INC_STATS_COUNTER(total_map_requests);

1458 1459 1460
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1461 1462 1463
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1464
retry:
1465 1466
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1484 1485 1486

	start = address;
	for (i = 0; i < pages; ++i) {
1487 1488 1489 1490
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1491 1492 1493 1494 1495
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1496 1497
	ADD_STATS_COUNTER(alloced_io_mem, size);

1498
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1499 1500 1501
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1502 1503
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1504 1505
out:
	return address;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1517 1518
}

1519 1520 1521 1522
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1523 1524 1525 1526 1527 1528 1529 1530 1531
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1532 1533
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1534 1535
		return;

1536
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1537 1538 1539 1540 1541 1542 1543 1544
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1545 1546
	SUB_STATS_COUNTER(alloced_io_mem, size);

1547
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1548

1549
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1550
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1551 1552
		dma_dom->need_flush = false;
	}
1553 1554
}

1555 1556 1557
/*
 * The exported map_single function for dma_ops.
 */
1558 1559 1560 1561
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1562 1563 1564 1565 1566 1567
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1568
	u64 dma_mask;
1569
	phys_addr_t paddr = page_to_phys(page) + offset;
1570

1571 1572
	INC_STATS_COUNTER(cnt_map_single);

1573 1574 1575
	if (!check_device(dev))
		return bad_dma_address;

1576
	dma_mask = *dev->dma_mask;
1577 1578 1579 1580

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1581
		/* device not handled by any AMD IOMMU */
1582 1583
		return (dma_addr_t)paddr;

1584 1585 1586
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1587
	spin_lock_irqsave(&domain->lock, flags);
1588 1589
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1590 1591 1592
	if (addr == bad_dma_address)
		goto out;

1593
	iommu_completion_wait(iommu);
1594 1595 1596 1597 1598 1599 1600

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1601 1602 1603
/*
 * The exported unmap_single function for dma_ops.
 */
1604 1605
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1606 1607 1608 1609 1610 1611
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1612 1613
	INC_STATS_COUNTER(cnt_unmap_single);

1614 1615
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1616
		/* device not handled by any AMD IOMMU */
1617 1618
		return;

1619 1620 1621
	if (!dma_ops_domain(domain))
		return;

1622 1623 1624 1625
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1626
	iommu_completion_wait(iommu);
1627 1628 1629 1630

	spin_unlock_irqrestore(&domain->lock, flags);
}

1631 1632 1633 1634
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1649 1650 1651 1652
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1653
static int map_sg(struct device *dev, struct scatterlist *sglist,
1654 1655
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1665
	u64 dma_mask;
1666

1667 1668
	INC_STATS_COUNTER(cnt_map_sg);

1669 1670 1671
	if (!check_device(dev))
		return 0;

1672
	dma_mask = *dev->dma_mask;
1673 1674 1675 1676 1677 1678

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1679 1680 1681
	if (!dma_ops_domain(domain))
		return 0;

1682 1683 1684 1685 1686 1687
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1688 1689
					      paddr, s->length, dir, false,
					      dma_mask);
1690 1691 1692 1693 1694 1695 1696 1697

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1698
	iommu_completion_wait(iommu);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1717 1718 1719 1720
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1721
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1722 1723
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1724 1725 1726 1727 1728 1729 1730 1731
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1732 1733
	INC_STATS_COUNTER(cnt_unmap_sg);

1734 1735
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1736 1737
		return;

1738 1739 1740
	if (!dma_ops_domain(domain))
		return;

1741 1742 1743 1744 1745 1746 1747 1748
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1749
	iommu_completion_wait(iommu);
1750 1751 1752 1753

	spin_unlock_irqrestore(&domain->lock, flags);
}

1754 1755 1756
/*
 * The exported alloc_coherent function for dma_ops.
 */
1757 1758 1759 1760 1761 1762 1763 1764 1765
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1766
	u64 dma_mask = dev->coherent_dma_mask;
1767

1768 1769
	INC_STATS_COUNTER(cnt_alloc_coherent);

1770 1771
	if (!check_device(dev))
		return NULL;
1772

1773 1774
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1775

1776
	flag |= __GFP_ZERO;
1777 1778
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1779
		return NULL;
1780 1781 1782 1783 1784 1785 1786 1787

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1788 1789 1790
	if (!dma_ops_domain(domain))
		goto out_free;

1791 1792 1793
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1794 1795 1796
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1797
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1798

J
Jiri Slaby 已提交
1799 1800
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1801
		goto out_free;
J
Jiri Slaby 已提交
1802
	}
1803

1804
	iommu_completion_wait(iommu);
1805 1806 1807 1808

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1809 1810 1811 1812 1813 1814

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1815 1816
}

1817 1818 1819
/*
 * The exported free_coherent function for dma_ops.
 */
1820 1821 1822 1823 1824 1825 1826 1827
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1828 1829
	INC_STATS_COUNTER(cnt_free_coherent);

1830 1831 1832
	if (!check_device(dev))
		return;

1833 1834 1835 1836 1837
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1838 1839 1840
	if (!dma_ops_domain(domain))
		goto free_mem;

1841 1842 1843 1844
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1845
	iommu_completion_wait(iommu);
1846 1847 1848 1849 1850 1851 1852

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1877
/*
1878 1879
 * The function for pre-allocating protection domains.
 *
1880 1881 1882 1883
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1884
static void prealloc_protection_domains(void)
1885 1886 1887 1888 1889 1890 1891
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1892
		devid = calc_devid(dev->bus->number, dev->devfn);
1893
		if (devid > amd_iommu_last_bdf)
1894 1895 1896 1897 1898 1899 1900
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1901
		dma_dom = dma_ops_domain_alloc(iommu);
1902 1903 1904
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1905 1906 1907
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1908 1909 1910
	}
}

1911
static struct dma_map_ops amd_iommu_dma_ops = {
1912 1913
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1914 1915
	.map_page = map_page,
	.unmap_page = unmap_page,
1916 1917
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1918
	.dma_supported = amd_iommu_dma_supported,
1919 1920
};

1921 1922 1923
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1924 1925 1926 1927 1928
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1929 1930 1931 1932 1933
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1934
	for_each_iommu(iommu) {
1935
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1936 1937
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1938
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1939 1940 1941 1942 1943
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1944 1945 1946 1947
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1948 1949 1950 1951 1952 1953
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1954
#ifdef CONFIG_GART_IOMMU
1955 1956
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1957
#endif
1958

1959
	/* Make the driver finally visible to the drivers */
1960 1961
	dma_ops = &amd_iommu_dma_ops;

1962 1963
	register_iommu(&amd_iommu_ops);

1964 1965
	bus_register_notifier(&pci_bus_type, &device_nb);

1966 1967
	amd_iommu_stats_init();

1968 1969 1970 1971
	return 0;

free_domains:

1972
	for_each_iommu(iommu) {
1973 1974 1975 1976 1977 1978
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2016 2017 2018 2019 2020
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2021
		return NULL;
2022 2023 2024 2025

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		goto out_err;

	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2042
		goto out_free;
2043 2044

	domain->mode    = PAGE_MODE_3_LEVEL;
2045 2046 2047 2048 2049 2050 2051 2052 2053
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2054
	protection_domain_free(domain);
2055 2056 2057 2058

	return -ENOMEM;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2132
		detach_device(old_domain, devid);
2133 2134 2135 2136 2137 2138 2139 2140

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2218 2219 2220 2221 2222 2223
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2224 2225 2226 2227 2228 2229 2230 2231
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2232
	.domain_has_cap = amd_iommu_domain_has_cap,
2233 2234
};

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
	struct pci_dev *dev = NULL;
	u16 devid, devid2;

	/* allocate passthroug domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		struct amd_iommu *iommu;

		devid = calc_devid(dev->bus->number, dev->devfn);
		if (devid > amd_iommu_last_bdf)
			continue;

		devid2 = amd_iommu_alias_table[devid];

		iommu = amd_iommu_rlookup_table[devid2];
		if (!iommu)
			continue;

		__attach_device(iommu, pt_domain, devid);
		__attach_device(iommu, pt_domain, devid2);
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}