amd_iommu.c 56.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

131 132 133 134 135 136
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

137
DECLARE_STATS_COUNTER(compl_wait);
138
DECLARE_STATS_COUNTER(cnt_map_single);
139
DECLARE_STATS_COUNTER(cnt_unmap_single);
140
DECLARE_STATS_COUNTER(cnt_map_sg);
141
DECLARE_STATS_COUNTER(cnt_unmap_sg);
142
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
143
DECLARE_STATS_COUNTER(cnt_free_coherent);
144
DECLARE_STATS_COUNTER(cross_page);
145
DECLARE_STATS_COUNTER(domain_flush_single);
146
DECLARE_STATS_COUNTER(domain_flush_all);
147
DECLARE_STATS_COUNTER(alloced_io_mem);
148
DECLARE_STATS_COUNTER(total_map_requests);
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
174 175

	amd_iommu_stats_add(&compl_wait);
176
	amd_iommu_stats_add(&cnt_map_single);
177
	amd_iommu_stats_add(&cnt_unmap_single);
178
	amd_iommu_stats_add(&cnt_map_sg);
179
	amd_iommu_stats_add(&cnt_unmap_sg);
180
	amd_iommu_stats_add(&cnt_alloc_coherent);
181
	amd_iommu_stats_add(&cnt_free_coherent);
182
	amd_iommu_stats_add(&cross_page);
183
	amd_iommu_stats_add(&domain_flush_single);
184
	amd_iommu_stats_add(&domain_flush_all);
185
	amd_iommu_stats_add(&alloced_io_mem);
186
	amd_iommu_stats_add(&total_map_requests);
187 188 189 190
}

#endif

191 192 193 194 195 196
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

197 198 199 200 201 202 203 204 205
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

206 207 208 209 210 211 212 213 214
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

215
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
216 217 218 219 220 221 222 223
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

224
	printk(KERN_ERR "AMD-Vi: Event logged [");
225 226 227 228 229 230 231

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
232
		dump_dte_entry(devid);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
254
		reset_iommu_command_buffer(iommu);
255
		dump_command(address);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
289
		iommu_print_event(iommu, iommu->evt_buf + head);
290 291 292 293 294 295 296 297
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

298 299
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
300 301
	struct amd_iommu *iommu;

302
	for_each_iommu(iommu)
303 304 305
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
306 307
}

308 309 310 311 312 313 314 315 316 317
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
318
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
319 320 321 322 323
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
324
	target = iommu->cmd_buf + tail;
325 326 327 328 329 330 331 332 333 334
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

335 336 337 338
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
339
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
340 341 342 343 344 345
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
346
	if (!ret)
347
		iommu->need_sync = true;
348 349 350 351 352
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

353 354 355 356 357 358 359 360 361 362
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

363 364
	INC_STATS_COUNTER(compl_wait);

365 366 367 368 369 370 371 372 373 374 375
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

376 377 378 379 380
	if (unlikely(i == EXIT_LOOP_COUNT)) {
		spin_unlock(&iommu->lock);
		reset_iommu_command_buffer(iommu);
		spin_lock(&iommu->lock);
	}
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

398 399 400 401 402 403 404
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
405 406
static int iommu_completion_wait(struct amd_iommu *iommu)
{
407 408
	int ret = 0;
	unsigned long flags;
409

410 411
	spin_lock_irqsave(&iommu->lock, flags);

412 413 414
	if (!iommu->need_sync)
		goto out;

415
	ret = __iommu_completion_wait(iommu);
416

417
	iommu->need_sync = false;
418 419

	if (ret)
420
		goto out;
421

422
	__iommu_wait_for_completion(iommu);
423

424 425
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
426 427 428 429

	return 0;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

446 447 448
/*
 * Command send function for invalidating a device table entry
 */
449 450
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
451
	struct iommu_cmd cmd;
452
	int ret;
453 454 455 456 457 458 459

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

460 461 462
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

480 481 482
/*
 * Generic command send function for invalidaing TLB entries
 */
483 484 485
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
486
	struct iommu_cmd cmd;
487
	int ret;
488

489
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
490

491 492 493
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
494 495
}

496 497 498 499 500
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
501 502
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
503
{
504
	int s = 0, i;
505
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
506 507 508

	address &= PAGE_MASK;

509 510 511 512 513 514 515
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
516 517
	}

518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
538
}
539

540
/* Flush the whole IO/TLB for a given protection domain */
541
static void iommu_flush_tlb(struct protection_domain *domain)
542
{
543
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
544 545
}

546
/* Flush the whole IO/TLB for a given protection domain - including PDE */
547
static void iommu_flush_tlb_pde(struct protection_domain *domain)
548
{
549
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
550 551
}

552
/*
553
 * This function flushes all domains that have devices on the given IOMMU
554
 */
555
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
556
{
557 558
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
	struct protection_domain *domain;
559
	unsigned long flags;
560

561
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
562

563 564
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
		if (domain->dev_iommu[iommu->index] == 0)
565
			continue;
566 567 568 569 570

		spin_lock(&domain->lock);
		iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1);
		iommu_flush_complete(domain);
		spin_unlock(&domain->lock);
571
	}
572

573
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
574 575
}

576 577 578 579
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
580
void amd_iommu_flush_all_domains(void)
581
{
582
	struct protection_domain *domain;
583 584 585
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
586

587
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
588
		spin_lock(&domain->lock);
589 590
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
591
		spin_unlock(&domain->lock);
592
	}
593 594

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
595 596
}

597
static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
598 599 600
{
	int i;

601 602
	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (iommu != amd_iommu_rlookup_table[i])
603
			continue;
604 605 606

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
607 608 609
	}
}

610
static void flush_devices_by_domain(struct protection_domain *domain)
611 612 613 614 615
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
616 617
		if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
		    (amd_iommu_pd_table[i] != domain))
618 619 620 621 622 623 624 625 626 627 628
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

629 630 631 632
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

633 634 635 636 637
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

	iommu->reset_in_progress = true;

638 639 640
	amd_iommu_reset_cmd_buffer(iommu);
	flush_all_devices_for_iommu(iommu);
	flush_all_domains_on_iommu(iommu);
641 642

	iommu->reset_in_progress = false;
643 644
}

645 646 647 648 649
void amd_iommu_flush_all_devices(void)
{
	flush_devices_by_domain(NULL);
}

650 651 652 653 654 655 656
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
		      int end_lvl,
		      u64 **pte_page,
		      gfp_t gfp)
{
	u64 *pte, *page;
	int level;

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address, int map_size)
{
	int level;
	u64 *pte;

	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];

	while (level > map_size) {
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];

		if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
			pte = NULL;
			break;
		}
	}

	return pte;
}

751 752 753 754 755 756 757
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
758 759 760
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
761 762
			  int prot,
			  int map_size)
763
{
764
	u64 __pte, *pte;
765 766

	bus_addr  = PAGE_ALIGN(bus_addr);
767
	phys_addr = PAGE_ALIGN(phys_addr);
768

769 770 771
	BUG_ON(!PM_ALIGNED(map_size, bus_addr));
	BUG_ON(!PM_ALIGNED(map_size, phys_addr));

772
	if (!(prot & IOMMU_PROT_MASK))
773 774
		return -EINVAL;

775
	pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
776 777 778 779 780 781 782 783 784 785 786 787

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

788 789
	update_domain(dom);

790 791 792
	return 0;
}

793
static void iommu_unmap_page(struct protection_domain *dom,
794
			     unsigned long bus_addr, int map_size)
795
{
796
	u64 *pte = fetch_pte(dom, bus_addr, map_size);
797

798 799
	if (pte)
		*pte = 0;
800 801
}

802 803 804 805
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

820 821 822 823
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
824 825 826 827 828 829 830 831
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
832 833
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
				     PM_MAP_4k);
834 835 836 837 838 839 840
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
841
			__set_bit(addr >> PAGE_SHIFT,
842
				  dma_dom->aperture[0]->bitmap);
843 844 845 846 847
	}

	return 0;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

870 871 872
/*
 * Inits the unity mappings required for a specific device
 */
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

890 891 892 893 894 895 896 897 898
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
899

900
/*
901
 * The address allocator core functions.
902 903 904
 *
 * called with domain->lock held
 */
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

926 927 928 929 930
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
931
static int alloc_new_range(struct dma_ops_domain *dma_dom,
932 933 934
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
935
	struct amd_iommu *iommu;
936
	int i;
937

938 939 940 941
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
961
			pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
962 963 964 965 966 967 968 969 970 971 972 973
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

974
	/* Intialize the exclusion range if necessary */
975 976 977 978 979 980 981 982 983 984 985
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
986 987 988 989 990 991 992 993 994 995 996
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
997
		u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
998 999 1000 1001 1002 1003
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1004 1005
	update_domain(&dma_dom->domain);

1006 1007 1008
	return 0;

out_free:
1009 1010
	update_domain(&dma_dom->domain);

1011 1012 1013 1014 1015 1016 1017 1018
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1019 1020 1021 1022 1023 1024 1025
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1026
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1027 1028 1029 1030 1031 1032
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1033 1034
	next_bit >>= PAGE_SHIFT;

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1053
			dom->next_address = address + (pages << PAGE_SHIFT);
1054 1055 1056 1057 1058 1059 1060 1061 1062
			break;
		}

		next_bit = 0;
	}

	return address;
}

1063 1064
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1065
					     unsigned int pages,
1066 1067
					     unsigned long align_mask,
					     u64 dma_mask)
1068 1069 1070
{
	unsigned long address;

1071 1072 1073 1074
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1075

1076
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1077
				     dma_mask, dom->next_address);
1078

1079
	if (address == -1) {
1080
		dom->next_address = 0;
1081 1082
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1083 1084
		dom->need_flush = true;
	}
1085

1086
	if (unlikely(address == -1))
1087
		address = DMA_ERROR_CODE;
1088 1089 1090 1091 1092 1093

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1094 1095 1096 1097 1098
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1099 1100 1101 1102
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1103 1104
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1105

1106 1107
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1108 1109 1110 1111
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1112

1113
	if (address >= dom->next_address)
1114
		dom->need_flush = true;
1115 1116

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1117

1118 1119
	iommu_area_free(range->bitmap, address, pages);

1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1184
static void free_pagetable(struct protection_domain *domain)
1185 1186 1187 1188
{
	int i, j;
	u64 *p1, *p2, *p3;

1189
	p1 = domain->pt_root;
1190 1191 1192 1193 1194 1195 1196 1197 1198

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1199
		for (j = 0; j < 512; ++j) {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1210 1211

	domain->pt_root = NULL;
1212 1213
}

1214 1215 1216 1217
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1218 1219
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1220 1221
	int i;

1222 1223 1224
	if (!dom)
		return;

1225 1226
	del_domain_from_list(&dom->domain);

1227
	free_pagetable(&dom->domain);
1228

1229 1230 1231 1232 1233 1234
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1235 1236 1237 1238

	kfree(dom);
}

1239 1240 1241 1242 1243
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1244
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1257
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1258
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1259
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1260 1261 1262 1263
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1264
	dma_dom->need_flush = false;
1265
	dma_dom->target_dev = 0xffff;
1266

1267 1268
	add_domain_to_list(&dma_dom->domain);

1269
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1270 1271
		goto free_dma_dom;

1272
	/*
1273 1274
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1275
	 */
1276
	dma_dom->aperture[0]->bitmap[0] = 1;
1277
	dma_dom->next_address = 0;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1297
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1298
{
1299
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1300
	u64 pte_root = virt_to_phys(domain->pt_root);
1301

1302 1303
	BUG_ON(amd_iommu_pd_table[devid] != NULL);

1304 1305 1306
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1307 1308

	amd_iommu_dev_table[devid].data[2] = domain->id;
1309 1310
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1311 1312

	amd_iommu_pd_table[devid] = domain;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the changes DTE entry */
	iommu_queue_inv_dev_entry(iommu, devid);
}

static void clear_dte_entry(u16 devid)
{
	struct protection_domain *domain = amd_iommu_pd_table[devid];
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	BUG_ON(domain == NULL);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);

	/* decrease reference counters */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;

	iommu_queue_inv_dev_entry(iommu, devid);
1344 1345 1346 1347 1348 1349
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1350 1351
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1352
{
1353 1354 1355
	u16 devid = get_device_id(dev);
	u16 alias = amd_iommu_alias_table[devid];

1356 1357 1358
	/* lock domain */
	spin_lock(&domain->lock);

1359 1360 1361 1362
	/* Some sanity checks */
	if (amd_iommu_pd_table[alias] != NULL &&
	    amd_iommu_pd_table[alias] != domain)
		return -EBUSY;
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (amd_iommu_pd_table[devid] != NULL &&
	    amd_iommu_pd_table[devid] != domain)
		return -EBUSY;

	/* Do real assignment */
	if (alias != devid &&
	    amd_iommu_pd_table[alias] == NULL)
		set_dte_entry(alias, domain);

	if (amd_iommu_pd_table[devid] == NULL)
		set_dte_entry(devid, domain);
1375 1376 1377

	/* ready */
	spin_unlock(&domain->lock);
1378 1379

	return 0;
1380
}
1381

1382 1383 1384 1385
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1386 1387
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1388
{
1389
	unsigned long flags;
1390
	int ret;
1391 1392

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1393
	ret = __attach_device(dev, domain);
1394 1395
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1396 1397 1398 1399 1400
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1401
	iommu_flush_tlb_pde(domain);
1402 1403

	return ret;
1404 1405
}

1406 1407 1408
/*
 * Removes a device from a protection domain (unlocked)
 */
1409
static void __detach_device(struct device *dev)
1410
{
1411
	u16 devid = get_device_id(dev);
1412 1413 1414
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	BUG_ON(!iommu);
1415

1416
	clear_dte_entry(devid);
1417 1418 1419 1420 1421

	/*
	 * If we run in passthrough mode the device must be assigned to the
	 * passthrough domain if it is detached from any other domain
	 */
1422 1423
	if (iommu_pass_through)
		__attach_device(dev, pt_domain);
1424 1425 1426 1427 1428
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1429
static void detach_device(struct device *dev)
1430 1431 1432 1433 1434
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1435
	__detach_device(dev);
1436 1437
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
	unsigned long flags;
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	if (dom == NULL &&
	    amd_iommu_pd_table[alias] != NULL) {
		__attach_device(dev, amd_iommu_pd_table[alias]);
		dom = amd_iommu_pd_table[devid];
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1465 1466 1467 1468
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1469
	u16 devid;
1470 1471 1472
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1473
	unsigned long flags;
1474

1475 1476
	if (!check_device(dev))
		return 0;
1477

1478 1479
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1480
	domain = domain_for_device(dev);
1481 1482 1483 1484 1485 1486

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1487
	case BUS_NOTIFY_UNBOUND_DRIVER:
1488 1489
		if (!domain)
			goto out;
1490 1491
		if (iommu_pass_through)
			break;
1492
		detach_device(dev);
1493 1494 1495 1496 1497 1498
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1499
		dma_domain = dma_ops_domain_alloc();
1500 1501 1502 1503 1504 1505 1506 1507
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1520
static struct notifier_block device_nb = {
1521 1522
	.notifier_call = device_change_notifier,
};
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1537
static struct protection_domain *get_domain(struct device *dev)
1538
{
1539
	struct protection_domain *domain;
1540
	struct dma_ops_domain *dma_dom;
1541
	u16 devid = get_device_id(dev);
1542

1543
	if (!check_device(dev))
1544
		return ERR_PTR(-EINVAL);
1545

1546 1547 1548
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1549

1550 1551
	if (domain != NULL)
		return domain;
1552

1553
	/* Device not bount yet - bind it */
1554
	dma_dom = find_protection_domain(devid);
1555
	if (!dma_dom)
1556 1557
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1558
	DUMP_printk("Using protection domain %d for device %s\n",
1559
		    dma_dom->domain.id, dev_name(dev));
1560

1561
	return &dma_dom->domain;
1562 1563
}

1564 1565
static void update_device_table(struct protection_domain *domain)
{
1566
	unsigned long flags;
1567 1568 1569 1570 1571
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] != domain)
			continue;
1572
		write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1573
		set_dte_entry(i, domain);
1574
		write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
	flush_devices_by_domain(domain);
1585
	iommu_flush_tlb_pde(domain);
1586 1587 1588 1589

	domain->updated = false;
}

1590 1591 1592 1593 1594 1595
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1596
	struct aperture_range *aperture;
1597 1598
	u64 *pte, *pte_page;

1599 1600 1601 1602 1603
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1604
	if (!pte) {
1605 1606
		pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
				GFP_ATOMIC);
1607 1608
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1609
		pte += PM_LEVEL_INDEX(0, address);
1610

1611
	update_domain(&dom->domain);
1612 1613 1614 1615

	return pte;
}

1616 1617 1618 1619
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1620
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1631
	pte  = dma_ops_get_pte(dom, address);
1632
	if (!pte)
1633
		return DMA_ERROR_CODE;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1651 1652 1653
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1654
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1655 1656
				 unsigned long address)
{
1657
	struct aperture_range *aperture;
1658 1659 1660 1661 1662
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1663 1664 1665 1666 1667 1668 1669
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1670

1671
	pte += PM_LEVEL_INDEX(0, address);
1672 1673 1674 1675 1676 1677

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1678 1679
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1680 1681
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1682 1683
 * Must be called with the domain lock held.
 */
1684 1685 1686 1687
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1688
			       int dir,
1689 1690
			       bool align,
			       u64 dma_mask)
1691 1692
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1693
	dma_addr_t address, start, ret;
1694
	unsigned int pages;
1695
	unsigned long align_mask = 0;
1696 1697
	int i;

1698
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1699 1700
	paddr &= PAGE_MASK;

1701 1702
	INC_STATS_COUNTER(total_map_requests);

1703 1704 1705
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1706 1707 1708
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1709
retry:
1710 1711
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1712
	if (unlikely(address == DMA_ERROR_CODE)) {
1713 1714 1715 1716 1717 1718 1719
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1720
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1721 1722 1723 1724 1725 1726 1727 1728
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1729 1730 1731

	start = address;
	for (i = 0; i < pages; ++i) {
1732
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1733
		if (ret == DMA_ERROR_CODE)
1734 1735
			goto out_unmap;

1736 1737 1738 1739 1740
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1741 1742
	ADD_STATS_COUNTER(alloced_io_mem, size);

1743
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1744
		iommu_flush_tlb(&dma_dom->domain);
1745
		dma_dom->need_flush = false;
1746
	} else if (unlikely(amd_iommu_np_cache))
1747
		iommu_flush_pages(&dma_dom->domain, address, size);
1748

1749 1750
out:
	return address;
1751 1752 1753 1754 1755

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1756
		dma_ops_domain_unmap(dma_dom, start);
1757 1758 1759 1760
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1761
	return DMA_ERROR_CODE;
1762 1763
}

1764 1765 1766 1767
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1768
static void __unmap_single(struct dma_ops_domain *dma_dom,
1769 1770 1771 1772 1773 1774 1775
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1776
	if ((dma_addr == DMA_ERROR_CODE) ||
1777
	    (dma_addr + size > dma_dom->aperture_size))
1778 1779
		return;

1780
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1781 1782 1783 1784
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1785
		dma_ops_domain_unmap(dma_dom, start);
1786 1787 1788
		start += PAGE_SIZE;
	}

1789 1790
	SUB_STATS_COUNTER(alloced_io_mem, size);

1791
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1792

1793
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1794
		iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1795 1796
		dma_dom->need_flush = false;
	}
1797 1798
}

1799 1800 1801
/*
 * The exported map_single function for dma_ops.
 */
1802 1803 1804 1805
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1806 1807 1808 1809
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1810
	u64 dma_mask;
1811
	phys_addr_t paddr = page_to_phys(page) + offset;
1812

1813 1814
	INC_STATS_COUNTER(cnt_map_single);

1815 1816
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1817
		return (dma_addr_t)paddr;
1818 1819
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
1820

1821 1822
	dma_mask = *dev->dma_mask;

1823
	spin_lock_irqsave(&domain->lock, flags);
1824

1825
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
1826
			    dma_mask);
1827
	if (addr == DMA_ERROR_CODE)
1828 1829
		goto out;

1830
	iommu_flush_complete(domain);
1831 1832 1833 1834 1835 1836 1837

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1838 1839 1840
/*
 * The exported unmap_single function for dma_ops.
 */
1841 1842
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1843 1844 1845 1846
{
	unsigned long flags;
	struct protection_domain *domain;

1847 1848
	INC_STATS_COUNTER(cnt_unmap_single);

1849 1850
	domain = get_domain(dev);
	if (IS_ERR(domain))
1851 1852
		return;

1853 1854
	spin_lock_irqsave(&domain->lock, flags);

1855
	__unmap_single(domain->priv, dma_addr, size, dir);
1856

1857
	iommu_flush_complete(domain);
1858 1859 1860 1861

	spin_unlock_irqrestore(&domain->lock, flags);
}

1862 1863 1864 1865
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1880 1881 1882 1883
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1884
static int map_sg(struct device *dev, struct scatterlist *sglist,
1885 1886
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1887 1888 1889 1890 1891 1892 1893
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1894
	u64 dma_mask;
1895

1896 1897
	INC_STATS_COUNTER(cnt_map_sg);

1898 1899
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1900
		return map_sg_no_iommu(dev, sglist, nelems, dir);
1901 1902
	else if (IS_ERR(domain))
		return 0;
1903

1904
	dma_mask = *dev->dma_mask;
1905 1906 1907 1908 1909 1910

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

1911
		s->dma_address = __map_single(dev, domain->priv,
1912 1913
					      paddr, s->length, dir, false,
					      dma_mask);
1914 1915 1916 1917 1918 1919 1920 1921

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1922
	iommu_flush_complete(domain);
1923 1924 1925 1926 1927 1928 1929 1930

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
1931
			__unmap_single(domain->priv, s->dma_address,
1932 1933 1934 1935 1936 1937 1938 1939 1940
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1941 1942 1943 1944
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1945
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1946 1947
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1948 1949 1950 1951 1952 1953
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

1954 1955
	INC_STATS_COUNTER(cnt_unmap_sg);

1956 1957
	domain = get_domain(dev);
	if (IS_ERR(domain))
1958 1959
		return;

1960 1961 1962
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
1963
		__unmap_single(domain->priv, s->dma_address,
1964 1965 1966 1967
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1968
	iommu_flush_complete(domain);
1969 1970 1971 1972

	spin_unlock_irqrestore(&domain->lock, flags);
}

1973 1974 1975
/*
 * The exported alloc_coherent function for dma_ops.
 */
1976 1977 1978 1979 1980 1981 1982
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
1983
	u64 dma_mask = dev->coherent_dma_mask;
1984

1985 1986
	INC_STATS_COUNTER(cnt_alloc_coherent);

1987 1988
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
1989 1990 1991
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
1992 1993
	} else if (IS_ERR(domain))
		return NULL;
1994

1995 1996 1997
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
1998 1999 2000

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2001
		return NULL;
2002 2003 2004

	paddr = virt_to_phys(virt_addr);

2005 2006 2007
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2008 2009
	spin_lock_irqsave(&domain->lock, flags);

2010
	*dma_addr = __map_single(dev, domain->priv, paddr,
2011
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2012

2013
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2014
		spin_unlock_irqrestore(&domain->lock, flags);
2015
		goto out_free;
J
Jiri Slaby 已提交
2016
	}
2017

2018
	iommu_flush_complete(domain);
2019 2020 2021 2022

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2023 2024 2025 2026 2027 2028

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2029 2030
}

2031 2032 2033
/*
 * The exported free_coherent function for dma_ops.
 */
2034 2035 2036 2037 2038 2039
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2040 2041
	INC_STATS_COUNTER(cnt_free_coherent);

2042 2043
	domain = get_domain(dev);
	if (IS_ERR(domain))
2044 2045
		goto free_mem;

2046 2047
	spin_lock_irqsave(&domain->lock, flags);

2048
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2049

2050
	iommu_flush_complete(domain);
2051 2052 2053 2054 2055 2056 2057

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2058 2059 2060 2061 2062 2063
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2064
	return check_device(dev);
2065 2066
}

2067
/*
2068 2069
 * The function for pre-allocating protection domains.
 *
2070 2071 2072 2073
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2074
static void prealloc_protection_domains(void)
2075 2076 2077
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2078
	u16 devid;
2079 2080

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2081 2082 2083

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2084
			continue;
2085 2086

		/* Is there already any domain for it? */
2087
		if (domain_for_device(&dev->dev))
2088
			continue;
2089 2090 2091

		devid = get_device_id(&dev->dev);

2092
		dma_dom = dma_ops_domain_alloc();
2093 2094 2095
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2096 2097
		dma_dom->target_dev = devid;

2098
		attach_device(&dev->dev, &dma_dom->domain);
2099

2100
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2101 2102 2103
	}
}

2104
static struct dma_map_ops amd_iommu_dma_ops = {
2105 2106
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2107 2108
	.map_page = map_page,
	.unmap_page = unmap_page,
2109 2110
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2111
	.dma_supported = amd_iommu_dma_supported,
2112 2113
};

2114 2115 2116
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2117 2118 2119 2120 2121
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2122 2123 2124 2125 2126
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2127
	for_each_iommu(iommu) {
2128
		iommu->default_dom = dma_ops_domain_alloc();
2129 2130
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2131
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2132 2133 2134 2135 2136
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2137 2138 2139 2140
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
2141 2142 2143 2144
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
2145
	swiotlb = 0;
I
Ingo Molnar 已提交
2146
#ifdef CONFIG_GART_IOMMU
2147 2148
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2149
#endif
2150

2151
	/* Make the driver finally visible to the drivers */
2152 2153
	dma_ops = &amd_iommu_dma_ops;

2154 2155
	register_iommu(&amd_iommu_ops);

2156 2157
	bus_register_notifier(&pci_bus_type, &device_nb);

2158 2159
	amd_iommu_stats_init();

2160 2161 2162 2163
	return 0;

free_domains:

2164
	for_each_iommu(iommu) {
2165 2166 2167 2168 2169 2170
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
2191
			clear_dte_entry(devid);
2192 2193 2194 2195

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2196 2197 2198 2199 2200
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2201 2202
	del_domain_from_list(domain);

2203 2204 2205 2206 2207 2208 2209
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2210 2211 2212 2213 2214
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2215
		return NULL;
2216 2217 2218 2219

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2220 2221
		goto out_err;

2222 2223
	add_domain_to_list(domain);

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2238
		goto out_free;
2239 2240

	domain->mode    = PAGE_MODE_3_LEVEL;
2241 2242 2243 2244 2245 2246 2247 2248 2249
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2250
	protection_domain_free(domain);
2251 2252 2253 2254

	return -ENOMEM;
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2276 2277 2278 2279 2280 2281
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct amd_iommu *iommu;
	u16 devid;

2282
	if (!check_device(dev))
2283 2284
		return;

2285
	devid = get_device_id(dev);
2286

2287
	if (amd_iommu_pd_table[devid] != NULL)
2288
		detach_device(dev);
2289 2290 2291 2292 2293 2294 2295 2296 2297

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2298 2299 2300 2301 2302 2303
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
2304
	int ret;
2305 2306
	u16 devid;

2307
	if (!check_device(dev))
2308 2309
		return -EINVAL;

2310
	devid = get_device_id(dev);
2311 2312 2313 2314 2315

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2316
	old_domain = amd_iommu_pd_table[devid];
2317
	if (old_domain)
2318
		detach_device(dev);
2319

2320
	ret = attach_device(dev, domain);
2321 2322 2323

	iommu_completion_wait(iommu);

2324
	return ret;
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2345
		ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2366
		iommu_unmap_page(domain, iova, PM_MAP_4k);
2367 2368 2369
		iova  += PAGE_SIZE;
	}

2370
	iommu_flush_tlb_pde(domain);
2371 2372
}

2373 2374 2375 2376 2377 2378 2379 2380
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2381
	pte = fetch_pte(domain, iova, PM_MAP_4k);
2382

2383
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2384 2385 2386 2387 2388 2389 2390 2391
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2392 2393 2394 2395 2396 2397
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2398 2399 2400 2401 2402 2403 2404 2405
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2406
	.domain_has_cap = amd_iommu_domain_has_cap,
2407 2408
};

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2421
	struct amd_iommu *iommu;
2422
	struct pci_dev *dev = NULL;
2423
	u16 devid;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	/* allocate passthroug domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {

2434
		if (!check_device(&dev->dev))
2435 2436
			continue;

2437 2438
		devid = get_device_id(&dev->dev);

2439
		iommu = amd_iommu_rlookup_table[devid];
2440 2441 2442
		if (!iommu)
			continue;

2443
		attach_device(&dev->dev, pt_domain);
2444 2445 2446 2447 2448 2449
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}