amd_iommu.c 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64

65 66 67 68
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

69 70 71 72 73 74
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

75
DECLARE_STATS_COUNTER(compl_wait);
76
DECLARE_STATS_COUNTER(cnt_map_single);
77
DECLARE_STATS_COUNTER(cnt_unmap_single);
78
DECLARE_STATS_COUNTER(cnt_map_sg);
79
DECLARE_STATS_COUNTER(cnt_unmap_sg);
80
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
81
DECLARE_STATS_COUNTER(cnt_free_coherent);
82
DECLARE_STATS_COUNTER(cross_page);
83
DECLARE_STATS_COUNTER(domain_flush_single);
84
DECLARE_STATS_COUNTER(domain_flush_all);
85
DECLARE_STATS_COUNTER(alloced_io_mem);
86
DECLARE_STATS_COUNTER(total_map_requests);
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
112 113

	amd_iommu_stats_add(&compl_wait);
114
	amd_iommu_stats_add(&cnt_map_single);
115
	amd_iommu_stats_add(&cnt_unmap_single);
116
	amd_iommu_stats_add(&cnt_map_sg);
117
	amd_iommu_stats_add(&cnt_unmap_sg);
118
	amd_iommu_stats_add(&cnt_alloc_coherent);
119
	amd_iommu_stats_add(&cnt_free_coherent);
120
	amd_iommu_stats_add(&cross_page);
121
	amd_iommu_stats_add(&domain_flush_single);
122
	amd_iommu_stats_add(&domain_flush_all);
123
	amd_iommu_stats_add(&alloced_io_mem);
124
	amd_iommu_stats_add(&total_map_requests);
125 126 127 128
}

#endif

129
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
130 131
static int iommu_has_npcache(struct amd_iommu *iommu)
{
132
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
133 134
}

135 136 137 138 139 140
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

221 222
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
223 224
	struct amd_iommu *iommu;

225
	for_each_iommu(iommu)
226 227 228
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
229 230
}

231 232 233 234 235 236 237 238 239 240
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
241
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
242 243 244 245 246
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
247
	target = iommu->cmd_buf + tail;
248 249 250 251 252 253 254 255 256 257
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

258 259 260 261
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
262
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
263 264 265 266 267 268
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
269
	if (!ret)
270
		iommu->need_sync = true;
271 272 273 274 275
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

276 277 278 279 280 281 282 283 284 285
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

286 287
	INC_STATS_COUNTER(compl_wait);

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

318 319 320 321 322 323 324
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
325 326
static int iommu_completion_wait(struct amd_iommu *iommu)
{
327 328
	int ret = 0;
	unsigned long flags;
329

330 331
	spin_lock_irqsave(&iommu->lock, flags);

332 333 334
	if (!iommu->need_sync)
		goto out;

335
	ret = __iommu_completion_wait(iommu);
336

337
	iommu->need_sync = false;
338 339

	if (ret)
340
		goto out;
341

342
	__iommu_wait_for_completion(iommu);
343

344 345
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
346 347 348 349

	return 0;
}

350 351 352
/*
 * Command send function for invalidating a device table entry
 */
353 354
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
355
	struct iommu_cmd cmd;
356
	int ret;
357 358 359 360 361 362 363

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

364 365 366
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

384 385 386
/*
 * Generic command send function for invalidaing TLB entries
 */
387 388 389
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
390
	struct iommu_cmd cmd;
391
	int ret;
392

393
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
394

395 396 397
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
398 399
}

400 401 402 403 404
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
405 406 407
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
408
	int s = 0;
409
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
410 411 412

	address &= PAGE_MASK;

413 414 415 416 417 418 419
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
420 421
	}

422 423
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

424 425
	return 0;
}
426

427 428 429 430 431
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

432 433
	INC_STATS_COUNTER(domain_flush_single);

434 435 436
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

437 438 439 440 441 442 443 444 445 446
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

447 448
	INC_STATS_COUNTER(domain_flush_all);

449 450 451
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

452
	for_each_iommu(iommu) {
453 454 455 456 457 458 459 460
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

461 462 463 464 465 466 467 468 469 470 471
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
504 505 506 507
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
508
{
509
	u64 __pte, *pte;
510 511

	bus_addr  = PAGE_ALIGN(bus_addr);
512
	phys_addr = PAGE_ALIGN(phys_addr);
513 514 515 516 517

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

518
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

556 557 558 559
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
560 561 562 563 564 565 566 567 568 569 570 571 572 573
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

574 575 576 577 578 579
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

596 597 598 599
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
600 601 602 603 604 605 606 607
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
608
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
609 610 611 612 613 614 615
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
616
			__set_bit(addr >> PAGE_SHIFT,
617
				  dma_dom->aperture[0]->bitmap);
618 619 620 621 622
	}

	return 0;
}

623 624 625
/*
 * Inits the unity mappings required for a specific device
 */
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

643 644 645 646 647 648 649 650 651
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
652

653
/*
654
 * The address allocator core functions.
655 656 657
 *
 * called with domain->lock held
 */
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

685 686 687 688 689
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
690 691
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
692 693 694
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
695
	int i;
696

697 698 699 700
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

760 761 762 763 764 765 766 767 768 769 770
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

771 772 773 774 775 776 777
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
778
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
779 780 781 782 783 784
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

785 786
	next_bit >>= PAGE_SHIFT;

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
805
			dom->next_address = address + (pages << PAGE_SHIFT);
806 807 808 809 810 811 812 813 814
			break;
		}

		next_bit = 0;
	}

	return address;
}

815 816
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
817
					     unsigned int pages,
818 819
					     unsigned long align_mask,
					     u64 dma_mask)
820 821 822
{
	unsigned long address;

823 824 825 826
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
827

828
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
829
				     dma_mask, dom->next_address);
830

831
	if (address == -1) {
832
		dom->next_address = 0;
833 834
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
835 836
		dom->need_flush = true;
	}
837

838
	if (unlikely(address == -1))
839 840 841 842 843 844 845
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

846 847 848 849 850
/*
 * The address free function.
 *
 * called with domain->lock held
 */
851 852 853 854
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
855 856
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
857

858 859
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

860 861 862 863
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
864

865
	if (address >= dom->next_address)
866
		dom->need_flush = true;
867 868

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
869

870 871
	iommu_area_free(range->bitmap, address, pages);

872 873
}

874 875 876 877 878 879 880 881 882 883
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

901 902 903 904 905 906 907 908 909 910
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

911 912 913 914
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
915 916 917 918
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
919
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
920 921 922 923

	if (start_page + pages > last_page)
		pages = last_page - start_page;

924 925 926 927 928
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
929 930
}

931
static void free_pagetable(struct protection_domain *domain)
932 933 934 935
{
	int i, j;
	u64 *p1, *p2, *p3;

936
	p1 = domain->pt_root;
937 938 939 940 941 942 943 944 945

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
946
		for (j = 0; j < 512; ++j) {
947 948 949 950 951 952 953 954 955 956
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
957 958

	domain->pt_root = NULL;
959 960
}

961 962 963 964
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
965 966
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
967 968
	int i;

969 970 971
	if (!dom)
		return;

972
	free_pagetable(&dom->domain);
973

974 975 976 977 978 979
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
980 981 982 983

	kfree(dom);
}

984 985 986 987 988
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
989
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1004
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1005 1006 1007 1008
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1009
	dma_dom->need_flush = false;
1010
	dma_dom->target_dev = 0xffff;
1011

1012
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1013 1014
		goto free_dma_dom;

1015
	/*
1016 1017
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1018
	 */
1019
	dma_dom->aperture[0]->bitmap[0] = 1;
1020
	dma_dom->next_address = 0;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1040 1041 1042 1043
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1056 1057 1058 1059
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1060 1061 1062
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1063 1064 1065 1066
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1067 1068
	domain->dev_cnt += 1;

1069 1070 1071
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1072 1073

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1074 1075
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1076 1077 1078 1079 1080 1081 1082 1083
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1130
	unsigned long flags;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1148
	case BUS_NOTIFY_UNBOUND_DRIVER:
1149 1150 1151
		if (!domain)
			goto out;
		detach_device(domain, devid);
1152 1153 1154 1155 1156 1157
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1158
		dma_domain = dma_ops_domain_alloc(iommu);
1159 1160 1161 1162 1163 1164 1165 1166
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

struct notifier_block device_nb = {
	.notifier_call = device_change_notifier,
};
1182

1183 1184 1185 1186 1187 1188
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1227 1228 1229 1230 1231 1232 1233
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1234 1235 1236 1237 1238 1239 1240 1241 1242
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1243 1244 1245 1246 1247 1248
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1249 1250

	pcidev = to_pci_dev(dev);
1251
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1252

1253
	/* device not translated by any IOMMU in the system? */
1254
	if (_bdf > amd_iommu_last_bdf)
1255 1256 1257 1258 1259 1260 1261 1262 1263
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1264 1265 1266
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1267
		*domain = &dma_dom->domain;
1268
		attach_device(*iommu, *domain, *bdf);
1269 1270
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1271 1272
	}

1273
	if (domain_for_device(_bdf) == NULL)
1274
		attach_device(*iommu, *domain, _bdf);
1275

1276 1277 1278
	return 1;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1322
	struct aperture_range *aperture;
1323 1324
	u64 *pte, *pte_page;

1325 1326 1327 1328 1329
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1330 1331
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1332 1333 1334
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1335 1336 1337 1338

	return pte;
}

1339 1340 1341 1342
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1355
	pte  = dma_ops_get_pte(dom, address);
1356 1357
	if (!pte)
		return bad_dma_address;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1375 1376 1377
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1378 1379 1380 1381
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1382
	struct aperture_range *aperture;
1383 1384 1385 1386 1387
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1388 1389 1390 1391 1392 1393 1394
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1395 1396 1397 1398 1399 1400 1401 1402

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1403 1404
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1405 1406
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1407 1408
 * Must be called with the domain lock held.
 */
1409 1410 1411 1412 1413
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1414
			       int dir,
1415 1416
			       bool align,
			       u64 dma_mask)
1417 1418
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1419
	dma_addr_t address, start, ret;
1420
	unsigned int pages;
1421
	unsigned long align_mask = 0;
1422 1423
	int i;

1424
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1425 1426
	paddr &= PAGE_MASK;

1427 1428
	INC_STATS_COUNTER(total_map_requests);

1429 1430 1431
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1432 1433 1434
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1435
retry:
1436 1437
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1455 1456 1457

	start = address;
	for (i = 0; i < pages; ++i) {
1458 1459 1460 1461
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1462 1463 1464 1465 1466
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1467 1468
	ADD_STATS_COUNTER(alloced_io_mem, size);

1469
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1470 1471 1472
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1473 1474
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1475 1476
out:
	return address;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1488 1489
}

1490 1491 1492 1493
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1494 1495 1496 1497 1498 1499 1500 1501 1502
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1503 1504
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1505 1506
		return;

1507
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1508 1509 1510 1511 1512 1513 1514 1515
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1516 1517
	SUB_STATS_COUNTER(alloced_io_mem, size);

1518
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1519

1520
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1521
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1522 1523
		dma_dom->need_flush = false;
	}
1524 1525
}

1526 1527 1528
/*
 * The exported map_single function for dma_ops.
 */
1529 1530 1531 1532
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1533 1534 1535 1536 1537 1538
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1539
	u64 dma_mask;
1540
	phys_addr_t paddr = page_to_phys(page) + offset;
1541

1542 1543
	INC_STATS_COUNTER(cnt_map_single);

1544 1545 1546
	if (!check_device(dev))
		return bad_dma_address;

1547
	dma_mask = *dev->dma_mask;
1548 1549 1550 1551

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1552
		/* device not handled by any AMD IOMMU */
1553 1554
		return (dma_addr_t)paddr;

1555 1556 1557
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1558
	spin_lock_irqsave(&domain->lock, flags);
1559 1560
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1561 1562 1563
	if (addr == bad_dma_address)
		goto out;

1564
	iommu_completion_wait(iommu);
1565 1566 1567 1568 1569 1570 1571

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1572 1573 1574
/*
 * The exported unmap_single function for dma_ops.
 */
1575 1576
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1577 1578 1579 1580 1581 1582
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1583 1584
	INC_STATS_COUNTER(cnt_unmap_single);

1585 1586
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1587
		/* device not handled by any AMD IOMMU */
1588 1589
		return;

1590 1591 1592
	if (!dma_ops_domain(domain))
		return;

1593 1594 1595 1596
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1597
	iommu_completion_wait(iommu);
1598 1599 1600 1601

	spin_unlock_irqrestore(&domain->lock, flags);
}

1602 1603 1604 1605
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1620 1621 1622 1623
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1624
static int map_sg(struct device *dev, struct scatterlist *sglist,
1625 1626
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1627 1628 1629 1630 1631 1632 1633 1634 1635
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1636
	u64 dma_mask;
1637

1638 1639
	INC_STATS_COUNTER(cnt_map_sg);

1640 1641 1642
	if (!check_device(dev))
		return 0;

1643
	dma_mask = *dev->dma_mask;
1644 1645 1646 1647 1648 1649

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1650 1651 1652
	if (!dma_ops_domain(domain))
		return 0;

1653 1654 1655 1656 1657 1658
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1659 1660
					      paddr, s->length, dir, false,
					      dma_mask);
1661 1662 1663 1664 1665 1666 1667 1668

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1669
	iommu_completion_wait(iommu);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1688 1689 1690 1691
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1692
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1693 1694
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1695 1696 1697 1698 1699 1700 1701 1702
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1703 1704
	INC_STATS_COUNTER(cnt_unmap_sg);

1705 1706
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1707 1708
		return;

1709 1710 1711
	if (!dma_ops_domain(domain))
		return;

1712 1713 1714 1715 1716 1717 1718 1719
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1720
	iommu_completion_wait(iommu);
1721 1722 1723 1724

	spin_unlock_irqrestore(&domain->lock, flags);
}

1725 1726 1727
/*
 * The exported alloc_coherent function for dma_ops.
 */
1728 1729 1730 1731 1732 1733 1734 1735 1736
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1737
	u64 dma_mask = dev->coherent_dma_mask;
1738

1739 1740
	INC_STATS_COUNTER(cnt_alloc_coherent);

1741 1742
	if (!check_device(dev))
		return NULL;
1743

1744 1745
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1746

1747
	flag |= __GFP_ZERO;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1759 1760 1761
	if (!dma_ops_domain(domain))
		goto out_free;

1762 1763 1764
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1765 1766 1767
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1768
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1769

J
Jiri Slaby 已提交
1770 1771
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1772
		goto out_free;
J
Jiri Slaby 已提交
1773
	}
1774

1775
	iommu_completion_wait(iommu);
1776 1777 1778 1779

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1780 1781 1782 1783 1784 1785

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1786 1787
}

1788 1789 1790
/*
 * The exported free_coherent function for dma_ops.
 */
1791 1792 1793 1794 1795 1796 1797 1798
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1799 1800
	INC_STATS_COUNTER(cnt_free_coherent);

1801 1802 1803
	if (!check_device(dev))
		return;

1804 1805 1806 1807 1808
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1809 1810 1811
	if (!dma_ops_domain(domain))
		goto free_mem;

1812 1813 1814 1815
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1816
	iommu_completion_wait(iommu);
1817 1818 1819 1820 1821 1822 1823

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1848
/*
1849 1850
 * The function for pre-allocating protection domains.
 *
1851 1852 1853 1854
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1855
static void prealloc_protection_domains(void)
1856 1857 1858 1859 1860 1861 1862
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1863
		devid = calc_devid(dev->bus->number, dev->devfn);
1864
		if (devid > amd_iommu_last_bdf)
1865 1866 1867 1868 1869 1870 1871
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1872
		dma_dom = dma_ops_domain_alloc(iommu);
1873 1874 1875
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1876 1877 1878
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1879 1880 1881
	}
}

1882
static struct dma_map_ops amd_iommu_dma_ops = {
1883 1884
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1885 1886
	.map_page = map_page,
	.unmap_page = unmap_page,
1887 1888
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1889
	.dma_supported = amd_iommu_dma_supported,
1890 1891
};

1892 1893 1894
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1895 1896 1897 1898 1899
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1900 1901 1902 1903 1904
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1905
	for_each_iommu(iommu) {
1906
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1907 1908
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1909
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1910 1911 1912 1913 1914
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1915 1916 1917 1918
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1919 1920 1921 1922 1923 1924
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1925
#ifdef CONFIG_GART_IOMMU
1926 1927
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1928
#endif
1929

1930
	/* Make the driver finally visible to the drivers */
1931 1932
	dma_ops = &amd_iommu_dma_ops;

1933 1934
	register_iommu(&amd_iommu_ops);

1935 1936
	bus_register_notifier(&pci_bus_type, &device_nb);

1937 1938
	amd_iommu_stats_init();

1939 1940 1941 1942
	return 0;

free_domains:

1943
	for_each_iommu(iommu) {
1944 1945 1946 1947 1948 1949
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2075
		detach_device(old_domain, devid);
2076 2077 2078 2079 2080 2081 2082 2083

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2161 2162 2163 2164 2165 2166
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2167 2168 2169 2170 2171 2172 2173 2174
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2175
	.domain_has_cap = amd_iommu_domain_has_cap,
2176 2177
};