amd_iommu.c 59.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
A
Akinobu Mita 已提交
21
#include <linux/bitmap.h>
22
#include <linux/slab.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <linux/delay.h>
29
#include <asm/proto.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32
#include <asm/amd_iommu_proto.h>
33
#include <asm/amd_iommu_types.h>
34
#include <asm/amd_iommu.h>
35 36 37

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

38
#define LOOP_TIMEOUT	100000
39

40 41
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

42 43 44 45
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

46 47 48 49 50 51
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

52 53
static struct iommu_ops amd_iommu_ops;

54 55 56
/*
 * general struct to manage commands send to an IOMMU
 */
57
struct iommu_cmd {
58 59 60
	u32 data[4];
};

61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
121
	if (dev->bus != &pci_bus_type)
122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		dump_command(address);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
359
		iommu_print_event(iommu, iommu->evt_buf + head);
360 361 362 363 364 365 366 367
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

368 369
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
370 371
	struct amd_iommu *iommu;

372
	for_each_iommu(iommu)
373 374 375
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
376 377
}

378 379 380 381 382 383
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
{
	u8 *target;

	target = iommu->cmd_buf + tail;
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}

417
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
418
{
419 420
	WARN_ON(address & 0x7ULL);

421
	memset(cmd, 0, sizeof(*cmd));
422 423 424
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
425 426 427
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

428 429 430 431 432 433 434
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

466 467
/*
 * Writes the command to the IOMMUs command buffer and informs the
468
 * hardware about the new command.
469
 */
470
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
471
{
472
	u32 left, tail, head, next_tail;
473
	unsigned long flags;
474

475
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
476 477

again:
478
	spin_lock_irqsave(&iommu->lock, flags);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;

	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;

		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);

		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
	}

	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
504
	iommu->need_sync = true;
505

506 507
	spin_unlock_irqrestore(&iommu->lock, flags);

508
	return 0;
509 510 511 512 513 514
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
515 516
static int iommu_completion_wait(struct amd_iommu *iommu)
{
517 518
	struct iommu_cmd cmd;
	volatile u64 sem = 0;
519
	int ret;
520

521
	if (!iommu->need_sync)
522
		return 0;
523

524
	build_completion_wait(&cmd, (u64)&sem);
525

526
	ret = iommu_queue_command(iommu, &cmd);
527
	if (ret)
528
		return ret;
529

530
	return wait_on_sem(&sem);
531 532
}

533 534 535 536 537 538 539 540 541
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_dte(&cmd, devid);

	return iommu_queue_command(iommu, &cmd);
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);

	iommu_completion_wait(iommu);
}

/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;

	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}

	iommu_completion_wait(iommu);
}

void iommu_flush_all_caches(struct amd_iommu *iommu)
{
	iommu_flush_dte_all(iommu);
	iommu_flush_tlb_all(iommu);
}

576 577 578
/*
 * Command send function for invalidating a device table entry
 */
579
static int device_flush_dte(struct device *dev)
580 581 582 583 584 585 586
{
	struct amd_iommu *iommu;
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

587
	return iommu_flush_dte(iommu, devid);
588 589
}

590 591 592 593 594
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
595 596
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
597
{
598 599
	struct iommu_cmd cmd;
	int ret = 0, i;
600

601
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
602

603 604 605 606 607 608 609 610
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
611
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
612 613
	}

614
	WARN_ON(ret);
615 616
}

617 618
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
619
{
620
	__domain_flush_pages(domain, address, size, 0);
621
}
622

623
/* Flush the whole IO/TLB for a given protection domain */
624
static void domain_flush_tlb(struct protection_domain *domain)
625
{
626
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
627 628
}

629
/* Flush the whole IO/TLB for a given protection domain - including PDE */
630
static void domain_flush_tlb_pde(struct protection_domain *domain)
631
{
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
}

static void domain_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
649 650
}

651

652
/*
653
 * This function flushes the DTEs for all devices in domain
654
 */
655
static void domain_flush_devices(struct protection_domain *domain)
656 657 658 659 660 661 662
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
663
		device_flush_dte(dev_data->dev);
664 665 666 667

	spin_unlock_irqrestore(&domain->lock, flags);
}

668 669 670 671 672 673 674
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
704
		      unsigned long page_size,
705 706 707
		      u64 **pte_page,
		      gfp_t gfp)
{
708
	int level, end_lvl;
709
	u64 *pte, *page;
710 711

	BUG_ON(!is_power_of_2(page_size));
712 713 714 715

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

716 717 718 719
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
720 721 722 723 724 725 726 727 728

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

729 730 731 732
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
750
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
751 752 753 754
{
	int level;
	u64 *pte;

755 756 757 758 759
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
760

761 762 763
	while (level > 0) {

		/* Not Present */
764 765 766
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

786 787
		level -= 1;

788
		/* Walk to the next level */
789 790 791 792 793 794 795
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

796 797 798 799 800 801 802
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
803 804 805
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
806
			  int prot,
807
			  unsigned long page_size)
808
{
809
	u64 __pte, *pte;
810
	int i, count;
811

812
	if (!(prot & IOMMU_PROT_MASK))
813 814
		return -EINVAL;

815 816 817 818 819 820 821 822
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
823

824 825 826 827 828
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
829 830 831 832 833 834

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

835 836
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
837

838 839
	update_domain(dom);

840 841 842
	return 0;
}

843 844 845
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
846
{
847 848 849 850 851 852
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
883

884
	return unmapped;
885 886
}

887 888 889 890
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
891 892 893 894 895 896 897 898 899 900 901 902 903 904
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

905 906 907 908
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
909 910 911 912 913 914 915 916
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
917
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
918
				     PAGE_SIZE);
919 920 921 922 923 924 925
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
926
			__set_bit(addr >> PAGE_SHIFT,
927
				  dma_dom->aperture[0]->bitmap);
928 929 930 931 932
	}

	return 0;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

955 956 957
/*
 * Inits the unity mappings required for a specific device
 */
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

975 976 977 978 979 980 981 982 983
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
984

985
/*
986
 * The address allocator core functions.
987 988 989
 *
 * called with domain->lock held
 */
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1011 1012 1013 1014 1015
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1016
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1017 1018 1019
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1020
	struct amd_iommu *iommu;
1021
	unsigned long i;
1022

1023 1024 1025 1026
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1046
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1059
	/* Initialize the exclusion range if necessary */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1082
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1083 1084 1085 1086 1087 1088
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1089 1090
	update_domain(&dma_dom->domain);

1091 1092 1093
	return 0;

out_free:
1094 1095
	update_domain(&dma_dom->domain);

1096 1097 1098 1099 1100 1101 1102 1103
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1104 1105 1106 1107 1108 1109 1110
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1111
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1112 1113 1114 1115 1116 1117
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1118 1119
	next_bit >>= PAGE_SHIFT;

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1138
			dom->next_address = address + (pages << PAGE_SHIFT);
1139 1140 1141 1142 1143 1144 1145 1146 1147
			break;
		}

		next_bit = 0;
	}

	return address;
}

1148 1149
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1150
					     unsigned int pages,
1151 1152
					     unsigned long align_mask,
					     u64 dma_mask)
1153 1154 1155
{
	unsigned long address;

1156 1157 1158 1159
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1160

1161
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1162
				     dma_mask, dom->next_address);
1163

1164
	if (address == -1) {
1165
		dom->next_address = 0;
1166 1167
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1168 1169
		dom->need_flush = true;
	}
1170

1171
	if (unlikely(address == -1))
1172
		address = DMA_ERROR_CODE;
1173 1174 1175 1176 1177 1178

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1179 1180 1181 1182 1183
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1184 1185 1186 1187
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1188 1189
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1190

1191 1192
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1193 1194 1195 1196
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1197

1198
	if (address >= dom->next_address)
1199
		dom->need_flush = true;
1200 1201

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1202

A
Akinobu Mita 已提交
1203
	bitmap_clear(range->bitmap, address, pages);
1204

1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1269
static void free_pagetable(struct protection_domain *domain)
1270 1271 1272 1273
{
	int i, j;
	u64 *p1, *p2, *p3;

1274
	p1 = domain->pt_root;
1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1284
		for (j = 0; j < 512; ++j) {
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1295 1296

	domain->pt_root = NULL;
1297 1298
}

1299 1300 1301 1302
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1303 1304
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1305 1306
	int i;

1307 1308 1309
	if (!dom)
		return;

1310 1311
	del_domain_from_list(&dom->domain);

1312
	free_pagetable(&dom->domain);
1313

1314 1315 1316 1317 1318 1319
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1320 1321 1322 1323

	kfree(dom);
}

1324 1325
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1326
 * It also initializes the page table and the address allocator data
1327 1328
 * structures required for the dma_ops interface
 */
1329
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1342
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1343
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1344
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1345
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1346 1347 1348 1349
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1350
	dma_dom->need_flush = false;
1351
	dma_dom->target_dev = 0xffff;
1352

1353 1354
	add_domain_to_list(&dma_dom->domain);

1355
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1356 1357
		goto free_dma_dom;

1358
	/*
1359 1360
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1361
	 */
1362
	dma_dom->aperture[0]->bitmap[0] = 1;
1363
	dma_dom->next_address = 0;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1383
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1384 1385
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1386

1387 1388 1389
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1390 1391

	amd_iommu_dev_table[devid].data[2] = domain->id;
1392 1393
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1426
	device_flush_dte(dev);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1438 1439

	/* decrease reference counters */
1440 1441 1442 1443 1444 1445 1446
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1447

1448
	/* Flush the DTE entry */
1449
	device_flush_dte(dev);
1450 1451 1452 1453 1454 1455
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1456 1457
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1458
{
1459
	struct iommu_dev_data *dev_data, *alias_data;
1460
	int ret;
1461 1462 1463

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1464

1465 1466
	if (!alias_data)
		return -EINVAL;
1467

1468 1469 1470
	/* lock domain */
	spin_lock(&domain->lock);

1471
	/* Some sanity checks */
1472
	ret = -EBUSY;
1473 1474
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1475
		goto out_unlock;
1476

1477 1478
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1479
		goto out_unlock;
1480 1481

	/* Do real assignment */
1482 1483 1484 1485
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1486 1487

		atomic_inc(&alias_data->bind);
1488
	}
1489

1490 1491
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1492

1493 1494
	atomic_inc(&dev_data->bind);

1495 1496 1497 1498
	ret = 0;

out_unlock:

1499 1500
	/* ready */
	spin_unlock(&domain->lock);
1501

1502
	return ret;
1503
}
1504

1505 1506 1507 1508
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1509 1510
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1511
{
1512
	unsigned long flags;
1513
	int ret;
1514 1515

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1516
	ret = __attach_device(dev, domain);
1517 1518
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1519 1520 1521 1522 1523
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1524
	domain_flush_tlb_pde(domain);
1525 1526

	return ret;
1527 1528
}

1529 1530 1531
/*
 * Removes a device from a protection domain (unlocked)
 */
1532
static void __detach_device(struct device *dev)
1533
{
1534
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1535
	struct iommu_dev_data *alias_data;
1536
	struct protection_domain *domain;
1537
	unsigned long flags;
1538

1539
	BUG_ON(!dev_data->domain);
1540

1541 1542 1543
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1544

1545
	if (dev_data->alias != dev) {
1546
		alias_data = get_dev_data(dev_data->alias);
1547 1548
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1549 1550
	}

1551 1552 1553
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1554
	spin_unlock_irqrestore(&domain->lock, flags);
1555 1556 1557

	/*
	 * If we run in passthrough mode the device must be assigned to the
1558 1559
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1560
	 */
1561 1562
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1563
		__attach_device(dev, pt_domain);
1564 1565 1566 1567 1568
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1569
static void detach_device(struct device *dev)
1570 1571 1572 1573 1574
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1575
	__detach_device(dev);
1576 1577
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1578

1579 1580 1581 1582 1583 1584 1585
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1586
	struct iommu_dev_data *dev_data, *alias_data;
1587 1588 1589
	unsigned long flags;
	u16 devid, alias;

1590 1591 1592 1593 1594 1595
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1596 1597

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1598
	dom = dev_data->domain;
1599
	if (dom == NULL &&
1600 1601 1602
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1603 1604 1605 1606 1607 1608 1609
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1610 1611 1612 1613
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1614
	u16 devid;
1615 1616 1617
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1618
	unsigned long flags;
1619

1620 1621
	if (!check_device(dev))
		return 0;
1622

1623 1624
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1625 1626

	switch (action) {
1627
	case BUS_NOTIFY_UNBOUND_DRIVER:
1628 1629 1630

		domain = domain_for_device(dev);

1631 1632
		if (!domain)
			goto out;
1633 1634
		if (iommu_pass_through)
			break;
1635
		detach_device(dev);
1636 1637
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1638 1639 1640 1641 1642

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1643 1644 1645 1646
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1647
		dma_domain = dma_ops_domain_alloc();
1648 1649 1650 1651 1652 1653 1654 1655
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1656
		break;
1657 1658 1659 1660
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1661 1662 1663 1664
	default:
		goto out;
	}

1665
	device_flush_dte(dev);
1666 1667 1668 1669 1670 1671
	iommu_completion_wait(iommu);

out:
	return 0;
}

1672
static struct notifier_block device_nb = {
1673 1674
	.notifier_call = device_change_notifier,
};
1675

1676 1677 1678 1679 1680
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1694
static struct protection_domain *get_domain(struct device *dev)
1695
{
1696
	struct protection_domain *domain;
1697
	struct dma_ops_domain *dma_dom;
1698
	u16 devid = get_device_id(dev);
1699

1700
	if (!check_device(dev))
1701
		return ERR_PTR(-EINVAL);
1702

1703 1704 1705
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1706

1707 1708
	if (domain != NULL)
		return domain;
1709

1710
	/* Device not bount yet - bind it */
1711
	dma_dom = find_protection_domain(devid);
1712
	if (!dma_dom)
1713 1714
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1715
	DUMP_printk("Using protection domain %d for device %s\n",
1716
		    dma_dom->domain.id, dev_name(dev));
1717

1718
	return &dma_dom->domain;
1719 1720
}

1721 1722
static void update_device_table(struct protection_domain *domain)
{
1723
	struct iommu_dev_data *dev_data;
1724

1725 1726 1727
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1728 1729 1730 1731 1732 1733 1734 1735 1736
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1737 1738 1739

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1740 1741 1742 1743

	domain->updated = false;
}

1744 1745 1746 1747 1748 1749
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1750
	struct aperture_range *aperture;
1751 1752
	u64 *pte, *pte_page;

1753 1754 1755 1756 1757
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1758
	if (!pte) {
1759
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1760
				GFP_ATOMIC);
1761 1762
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1763
		pte += PM_LEVEL_INDEX(0, address);
1764

1765
	update_domain(&dom->domain);
1766 1767 1768 1769

	return pte;
}

1770 1771 1772 1773
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1774
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1785
	pte  = dma_ops_get_pte(dom, address);
1786
	if (!pte)
1787
		return DMA_ERROR_CODE;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1805 1806 1807
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1808
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1809 1810
				 unsigned long address)
{
1811
	struct aperture_range *aperture;
1812 1813 1814 1815 1816
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1817 1818 1819 1820 1821 1822 1823
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1824

1825
	pte += PM_LEVEL_INDEX(0, address);
1826 1827 1828 1829 1830 1831

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1832 1833
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1834 1835
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1836 1837
 * Must be called with the domain lock held.
 */
1838 1839 1840 1841
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1842
			       int dir,
1843 1844
			       bool align,
			       u64 dma_mask)
1845 1846
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1847
	dma_addr_t address, start, ret;
1848
	unsigned int pages;
1849
	unsigned long align_mask = 0;
1850 1851
	int i;

1852
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1853 1854
	paddr &= PAGE_MASK;

1855 1856
	INC_STATS_COUNTER(total_map_requests);

1857 1858 1859
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1860 1861 1862
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1863
retry:
1864 1865
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1866
	if (unlikely(address == DMA_ERROR_CODE)) {
1867 1868 1869 1870 1871 1872 1873
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1874
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1875 1876 1877
			goto out;

		/*
1878
		 * aperture was successfully enlarged by 128 MB, try
1879 1880 1881 1882
		 * allocation again
		 */
		goto retry;
	}
1883 1884 1885

	start = address;
	for (i = 0; i < pages; ++i) {
1886
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1887
		if (ret == DMA_ERROR_CODE)
1888 1889
			goto out_unmap;

1890 1891 1892 1893 1894
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1895 1896
	ADD_STATS_COUNTER(alloced_io_mem, size);

1897
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1898
		domain_flush_tlb(&dma_dom->domain);
1899
		dma_dom->need_flush = false;
1900
	} else if (unlikely(amd_iommu_np_cache))
1901
		domain_flush_pages(&dma_dom->domain, address, size);
1902

1903 1904
out:
	return address;
1905 1906 1907 1908 1909

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1910
		dma_ops_domain_unmap(dma_dom, start);
1911 1912 1913 1914
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1915
	return DMA_ERROR_CODE;
1916 1917
}

1918 1919 1920 1921
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1922
static void __unmap_single(struct dma_ops_domain *dma_dom,
1923 1924 1925 1926
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
1927
	dma_addr_t flush_addr;
1928 1929 1930
	dma_addr_t i, start;
	unsigned int pages;

1931
	if ((dma_addr == DMA_ERROR_CODE) ||
1932
	    (dma_addr + size > dma_dom->aperture_size))
1933 1934
		return;

1935
	flush_addr = dma_addr;
1936
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1937 1938 1939 1940
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1941
		dma_ops_domain_unmap(dma_dom, start);
1942 1943 1944
		start += PAGE_SIZE;
	}

1945 1946
	SUB_STATS_COUNTER(alloced_io_mem, size);

1947
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1948

1949
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1950
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
1951 1952
		dma_dom->need_flush = false;
	}
1953 1954
}

1955 1956 1957
/*
 * The exported map_single function for dma_ops.
 */
1958 1959 1960 1961
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1962 1963 1964 1965
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1966
	u64 dma_mask;
1967
	phys_addr_t paddr = page_to_phys(page) + offset;
1968

1969 1970
	INC_STATS_COUNTER(cnt_map_single);

1971 1972
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1973
		return (dma_addr_t)paddr;
1974 1975
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
1976

1977 1978
	dma_mask = *dev->dma_mask;

1979
	spin_lock_irqsave(&domain->lock, flags);
1980

1981
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
1982
			    dma_mask);
1983
	if (addr == DMA_ERROR_CODE)
1984 1985
		goto out;

1986
	domain_flush_complete(domain);
1987 1988 1989 1990 1991 1992 1993

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1994 1995 1996
/*
 * The exported unmap_single function for dma_ops.
 */
1997 1998
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1999 2000 2001 2002
{
	unsigned long flags;
	struct protection_domain *domain;

2003 2004
	INC_STATS_COUNTER(cnt_unmap_single);

2005 2006
	domain = get_domain(dev);
	if (IS_ERR(domain))
2007 2008
		return;

2009 2010
	spin_lock_irqsave(&domain->lock, flags);

2011
	__unmap_single(domain->priv, dma_addr, size, dir);
2012

2013
	domain_flush_complete(domain);
2014 2015 2016 2017

	spin_unlock_irqrestore(&domain->lock, flags);
}

2018 2019 2020 2021
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2036 2037 2038 2039
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2040
static int map_sg(struct device *dev, struct scatterlist *sglist,
2041 2042
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2043 2044 2045 2046 2047 2048 2049
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2050
	u64 dma_mask;
2051

2052 2053
	INC_STATS_COUNTER(cnt_map_sg);

2054 2055
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2056
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2057 2058
	else if (IS_ERR(domain))
		return 0;
2059

2060
	dma_mask = *dev->dma_mask;
2061 2062 2063 2064 2065 2066

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2067
		s->dma_address = __map_single(dev, domain->priv,
2068 2069
					      paddr, s->length, dir, false,
					      dma_mask);
2070 2071 2072 2073 2074 2075 2076 2077

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2078
	domain_flush_complete(domain);
2079 2080 2081 2082 2083 2084 2085 2086

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2087
			__unmap_single(domain->priv, s->dma_address,
2088 2089 2090 2091 2092 2093 2094 2095 2096
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2097 2098 2099 2100
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2101
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2102 2103
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2104 2105 2106 2107 2108 2109
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2110 2111
	INC_STATS_COUNTER(cnt_unmap_sg);

2112 2113
	domain = get_domain(dev);
	if (IS_ERR(domain))
2114 2115
		return;

2116 2117 2118
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2119
		__unmap_single(domain->priv, s->dma_address,
2120 2121 2122 2123
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2124
	domain_flush_complete(domain);
2125 2126 2127 2128

	spin_unlock_irqrestore(&domain->lock, flags);
}

2129 2130 2131
/*
 * The exported alloc_coherent function for dma_ops.
 */
2132 2133 2134 2135 2136 2137 2138
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2139
	u64 dma_mask = dev->coherent_dma_mask;
2140

2141 2142
	INC_STATS_COUNTER(cnt_alloc_coherent);

2143 2144
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2145 2146 2147
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2148 2149
	} else if (IS_ERR(domain))
		return NULL;
2150

2151 2152 2153
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2154 2155 2156

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2157
		return NULL;
2158 2159 2160

	paddr = virt_to_phys(virt_addr);

2161 2162 2163
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2164 2165
	spin_lock_irqsave(&domain->lock, flags);

2166
	*dma_addr = __map_single(dev, domain->priv, paddr,
2167
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2168

2169
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2170
		spin_unlock_irqrestore(&domain->lock, flags);
2171
		goto out_free;
J
Jiri Slaby 已提交
2172
	}
2173

2174
	domain_flush_complete(domain);
2175 2176 2177 2178

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2179 2180 2181 2182 2183 2184

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2185 2186
}

2187 2188 2189
/*
 * The exported free_coherent function for dma_ops.
 */
2190 2191 2192 2193 2194 2195
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2196 2197
	INC_STATS_COUNTER(cnt_free_coherent);

2198 2199
	domain = get_domain(dev);
	if (IS_ERR(domain))
2200 2201
		goto free_mem;

2202 2203
	spin_lock_irqsave(&domain->lock, flags);

2204
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2205

2206
	domain_flush_complete(domain);
2207 2208 2209 2210 2211 2212 2213

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2214 2215 2216 2217 2218 2219
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2220
	return check_device(dev);
2221 2222
}

2223
/*
2224 2225
 * The function for pre-allocating protection domains.
 *
2226 2227 2228 2229
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2230
static void prealloc_protection_domains(void)
2231 2232 2233
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2234
	u16 devid;
2235

2236
	for_each_pci_dev(dev) {
2237 2238 2239

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2240
			continue;
2241 2242

		/* Is there already any domain for it? */
2243
		if (domain_for_device(&dev->dev))
2244
			continue;
2245 2246 2247

		devid = get_device_id(&dev->dev);

2248
		dma_dom = dma_ops_domain_alloc();
2249 2250 2251
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2252 2253
		dma_dom->target_dev = devid;

2254
		attach_device(&dev->dev, &dma_dom->domain);
2255

2256
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2257 2258 2259
	}
}

2260
static struct dma_map_ops amd_iommu_dma_ops = {
2261 2262
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2263 2264
	.map_page = map_page,
	.unmap_page = unmap_page,
2265 2266
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2267
	.dma_supported = amd_iommu_dma_supported,
2268 2269
};

2270 2271 2272
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2273 2274 2275 2276 2277 2278

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2279 2280 2281 2282 2283
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2284 2285 2286 2287 2288
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2289
	for_each_iommu(iommu) {
2290
		iommu->default_dom = dma_ops_domain_alloc();
2291 2292
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2293
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2294 2295 2296 2297 2298
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2299
	/*
2300
	 * Pre-allocate the protection domains for each device.
2301
	 */
2302
	prealloc_protection_domains();
2303 2304

	iommu_detected = 1;
2305
	swiotlb = 0;
2306

2307
	/* Make the driver finally visible to the drivers */
2308 2309
	dma_ops = &amd_iommu_dma_ops;

2310 2311
	amd_iommu_stats_init();

2312 2313 2314 2315
	return 0;

free_domains:

2316
	for_each_iommu(iommu) {
2317 2318 2319 2320 2321 2322
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2336
	struct iommu_dev_data *dev_data, *next;
2337 2338 2339 2340
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2341 2342 2343
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2344
		__detach_device(dev);
2345 2346
		atomic_set(&dev_data->bind, 0);
	}
2347 2348 2349 2350

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2351 2352 2353 2354 2355
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2356 2357
	del_domain_from_list(domain);

2358 2359 2360 2361 2362 2363 2364
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2365 2366 2367 2368 2369
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2370
		return NULL;
2371 2372

	spin_lock_init(&domain->lock);
2373
	mutex_init(&domain->api_lock);
2374 2375
	domain->id = domain_id_alloc();
	if (!domain->id)
2376
		goto out_err;
2377
	INIT_LIST_HEAD(&domain->dev_list);
2378

2379 2380
	add_domain_to_list(domain);

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2395
		goto out_free;
2396 2397

	domain->mode    = PAGE_MODE_3_LEVEL;
2398 2399 2400 2401 2402 2403 2404 2405 2406
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2407
	protection_domain_free(domain);
2408 2409 2410 2411

	return -ENOMEM;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2426
	protection_domain_free(domain);
2427 2428 2429 2430

	dom->priv = NULL;
}

2431 2432 2433
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2434
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2435 2436 2437
	struct amd_iommu *iommu;
	u16 devid;

2438
	if (!check_device(dev))
2439 2440
		return;

2441
	devid = get_device_id(dev);
2442

2443
	if (dev_data->domain != NULL)
2444
		detach_device(dev);
2445 2446 2447 2448 2449

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2450
	device_flush_dte(dev);
2451 2452 2453
	iommu_completion_wait(iommu);
}

2454 2455 2456 2457
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2458
	struct iommu_dev_data *dev_data;
2459
	struct amd_iommu *iommu;
2460
	int ret;
2461 2462
	u16 devid;

2463
	if (!check_device(dev))
2464 2465
		return -EINVAL;

2466 2467
	dev_data = dev->archdata.iommu;

2468
	devid = get_device_id(dev);
2469 2470 2471 2472 2473

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2474
	if (dev_data->domain)
2475
		detach_device(dev);
2476

2477
	ret = attach_device(dev, domain);
2478 2479 2480

	iommu_completion_wait(iommu);

2481
	return ret;
2482 2483
}

2484 2485
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2486
{
2487
	unsigned long page_size = 0x1000UL << gfp_order;
2488 2489 2490 2491 2492 2493 2494 2495 2496
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2497
	mutex_lock(&domain->api_lock);
2498
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2499 2500
	mutex_unlock(&domain->api_lock);

2501
	return ret;
2502 2503
}

2504 2505
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2506 2507
{
	struct protection_domain *domain = dom->priv;
2508
	unsigned long page_size, unmap_size;
2509

2510
	page_size  = 0x1000UL << gfp_order;
2511

2512
	mutex_lock(&domain->api_lock);
2513
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2514
	mutex_unlock(&domain->api_lock);
2515

2516
	domain_flush_tlb_pde(domain);
2517

2518
	return get_order(unmap_size);
2519 2520
}

2521 2522 2523 2524
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2525
	unsigned long offset_mask;
2526
	phys_addr_t paddr;
2527
	u64 *pte, __pte;
2528

2529
	pte = fetch_pte(domain, iova);
2530

2531
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2532 2533
		return 0;

2534 2535 2536 2537 2538 2539 2540
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2541 2542 2543 2544

	return paddr;
}

S
Sheng Yang 已提交
2545 2546 2547
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2548 2549 2550 2551 2552
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2553 2554 2555
	return 0;
}

2556 2557 2558 2559 2560
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2561 2562
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2563
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2564
	.domain_has_cap = amd_iommu_domain_has_cap,
2565 2566
};

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2579
	struct amd_iommu *iommu;
2580
	struct pci_dev *dev = NULL;
2581
	u16 devid;
2582

2583
	/* allocate passthrough domain */
2584 2585 2586 2587 2588 2589
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2590
	for_each_pci_dev(dev) {
2591
		if (!check_device(&dev->dev))
2592 2593
			continue;

2594 2595
		devid = get_device_id(&dev->dev);

2596
		iommu = amd_iommu_rlookup_table[devid];
2597 2598 2599
		if (!iommu)
			continue;

2600
		attach_device(&dev->dev, pt_domain);
2601 2602 2603 2604 2605 2606
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}