amd_iommu.c 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64

65 66 67 68 69 70
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

71
DECLARE_STATS_COUNTER(compl_wait);
72
DECLARE_STATS_COUNTER(cnt_map_single);
73
DECLARE_STATS_COUNTER(cnt_unmap_single);
74
DECLARE_STATS_COUNTER(cnt_map_sg);
75
DECLARE_STATS_COUNTER(cnt_unmap_sg);
76
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
77
DECLARE_STATS_COUNTER(cnt_free_coherent);
78
DECLARE_STATS_COUNTER(cross_page);
79
DECLARE_STATS_COUNTER(domain_flush_single);
80
DECLARE_STATS_COUNTER(domain_flush_all);
81
DECLARE_STATS_COUNTER(alloced_io_mem);
82
DECLARE_STATS_COUNTER(total_map_requests);
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
108 109

	amd_iommu_stats_add(&compl_wait);
110
	amd_iommu_stats_add(&cnt_map_single);
111
	amd_iommu_stats_add(&cnt_unmap_single);
112
	amd_iommu_stats_add(&cnt_map_sg);
113
	amd_iommu_stats_add(&cnt_unmap_sg);
114
	amd_iommu_stats_add(&cnt_alloc_coherent);
115
	amd_iommu_stats_add(&cnt_free_coherent);
116
	amd_iommu_stats_add(&cross_page);
117
	amd_iommu_stats_add(&domain_flush_single);
118
	amd_iommu_stats_add(&domain_flush_all);
119
	amd_iommu_stats_add(&alloced_io_mem);
120
	amd_iommu_stats_add(&total_map_requests);
121 122 123 124
}

#endif

125
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
126 127
static int iommu_has_npcache(struct amd_iommu *iommu)
{
128
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
129 130
}

131 132 133 134 135 136
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

217 218
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
219 220 221 222 223 224
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
225 226
}

227 228 229 230 231 232 233 234 235 236
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
237
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
238 239 240 241 242
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
243
	target = iommu->cmd_buf + tail;
244 245 246 247 248 249 250 251 252 253
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

254 255 256 257
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
258
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
259 260 261 262 263 264
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
265
	if (!ret)
266
		iommu->need_sync = true;
267 268 269 270 271
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

272 273 274 275 276 277 278 279 280 281
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

282 283
	INC_STATS_COUNTER(compl_wait);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

314 315 316 317 318 319 320
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
321 322
static int iommu_completion_wait(struct amd_iommu *iommu)
{
323 324
	int ret = 0;
	unsigned long flags;
325

326 327
	spin_lock_irqsave(&iommu->lock, flags);

328 329 330
	if (!iommu->need_sync)
		goto out;

331
	ret = __iommu_completion_wait(iommu);
332

333
	iommu->need_sync = false;
334 335

	if (ret)
336
		goto out;
337

338
	__iommu_wait_for_completion(iommu);
339

340 341
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
342 343 344 345

	return 0;
}

346 347 348
/*
 * Command send function for invalidating a device table entry
 */
349 350
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
351
	struct iommu_cmd cmd;
352
	int ret;
353 354 355 356 357 358 359

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

360 361 362
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

380 381 382
/*
 * Generic command send function for invalidaing TLB entries
 */
383 384 385
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
386
	struct iommu_cmd cmd;
387
	int ret;
388

389
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
390

391 392 393
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
394 395
}

396 397 398 399 400
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
401 402 403
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
404
	int s = 0;
405
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
406 407 408

	address &= PAGE_MASK;

409 410 411 412 413 414 415
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
416 417
	}

418 419
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

420 421
	return 0;
}
422

423 424 425 426 427
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

428 429
	INC_STATS_COUNTER(domain_flush_single);

430 431 432
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

433 434 435 436 437 438 439 440 441 442
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

443 444
	INC_STATS_COUNTER(domain_flush_all);

445 446 447 448 449 450 451 452 453 454 455 456
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
471 472 473 474
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
475
{
476
	u64 __pte, *pte;
477 478

	bus_addr  = PAGE_ALIGN(bus_addr);
479
	phys_addr = PAGE_ALIGN(phys_addr);
480 481 482 483 484

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

485
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

523 524 525 526
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
527 528 529 530 531 532 533 534 535 536 537 538 539 540
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

541 542 543 544 545 546
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

563 564 565 566
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
567 568 569 570 571 572 573 574
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
575
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
576 577 578 579 580 581 582
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
583
			__set_bit(addr >> PAGE_SHIFT,
584
				  dma_dom->aperture[0]->bitmap);
585 586 587 588 589
	}

	return 0;
}

590 591 592
/*
 * Inits the unity mappings required for a specific device
 */
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

610 611 612 613 614 615 616 617 618
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
619

620
/*
621
 * The address allocator core functions.
622 623 624
 *
 * called with domain->lock held
 */
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

652 653 654 655 656
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
657 658
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
659 660 661
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
662
	int i;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

723 724 725 726 727 728 729 730 731 732 733
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

734 735 736 737 738 739 740
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
741
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
742 743 744 745 746 747
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

748 749
	next_bit >>= PAGE_SHIFT;

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
768
			dom->next_address = address + (pages << PAGE_SHIFT);
769 770 771 772 773 774 775 776 777
			break;
		}

		next_bit = 0;
	}

	return address;
}

778 779
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
780
					     unsigned int pages,
781 782
					     unsigned long align_mask,
					     u64 dma_mask)
783 784 785
{
	unsigned long address;

786 787 788 789 790
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif

791
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
792
				     dma_mask, dom->next_address);
793

794
	if (address == -1) {
795
		dom->next_address = 0;
796 797
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
798 799
		dom->need_flush = true;
	}
800

801
	if (unlikely(address == -1))
802 803 804 805 806 807 808
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

809 810 811 812 813
/*
 * The address free function.
 *
 * called with domain->lock held
 */
814 815 816 817
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
818 819
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
820

821 822
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

823
	if (address >= dom->next_address)
824
		dom->need_flush = true;
825 826

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
827

828 829
	iommu_area_free(range->bitmap, address, pages);

830 831
}

832 833 834 835 836 837 838 839 840 841
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

859 860 861 862 863 864 865 866 867 868
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

869 870 871 872
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
873 874 875 876
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
877
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
878 879 880 881

	if (start_page + pages > last_page)
		pages = last_page - start_page;

882 883 884 885 886
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
887 888
}

889
static void free_pagetable(struct protection_domain *domain)
890 891 892 893
{
	int i, j;
	u64 *p1, *p2, *p3;

894
	p1 = domain->pt_root;
895 896 897 898 899 900 901 902 903

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
904
		for (j = 0; j < 512; ++j) {
905 906 907 908 909 910 911 912 913 914
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
915 916

	domain->pt_root = NULL;
917 918
}

919 920 921 922
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
923 924
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
925 926
	int i;

927 928 929
	if (!dom)
		return;

930
	free_pagetable(&dom->domain);
931

932 933 934 935 936 937
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
938 939 940 941

	kfree(dom);
}

942 943 944 945 946
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
947
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
948 949 950 951 952 953 954 955 956 957 958 959 960 961
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
962
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
963 964 965
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
966 967 968 969

	dma_dom->need_flush = false;
	dma_dom->target_dev = 0xffff;

970
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
971
		goto free_dma_dom;
972

973 974 975 976
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
977
	dma_dom->aperture[0]->bitmap[0] = 1;
978
	dma_dom->next_address = 0;
979 980 981 982 983 984 985 986 987 988


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

989 990 991 992 993 994 995 996 997
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

998 999 1000 1001
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1014 1015 1016 1017
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1018 1019 1020
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1021 1022 1023 1024
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1025 1026
	domain->dev_cnt += 1;

1027 1028 1029
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1030 1031

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1032 1033
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1034 1035 1036 1037 1038 1039 1040 1041
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1088
	unsigned long flags;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
	case BUS_NOTIFY_BOUND_DRIVER:
		if (domain)
			goto out;
		dma_domain = find_protection_domain(devid);
		if (!dma_domain)
			dma_domain = iommu->default_dom;
		attach_device(iommu, &dma_domain->domain, devid);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
		       "device %s\n", dma_domain->domain.id, dev_name(dev));
		break;
	case BUS_NOTIFY_UNBIND_DRIVER:
		if (!domain)
			goto out;
		detach_device(domain, devid);
1120 1121 1122 1123 1124 1125
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1126
		dma_domain = dma_ops_domain_alloc(iommu);
1127 1128 1129 1130 1131 1132 1133 1134
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

struct notifier_block device_nb = {
	.notifier_call = device_change_notifier,
};
1150

1151 1152 1153 1154 1155 1156
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1195 1196 1197 1198 1199 1200 1201
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1202 1203 1204 1205 1206 1207 1208 1209 1210
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1211 1212 1213 1214 1215 1216
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1217 1218

	pcidev = to_pci_dev(dev);
1219
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1220

1221
	/* device not translated by any IOMMU in the system? */
1222
	if (_bdf > amd_iommu_last_bdf)
1223 1224 1225 1226 1227 1228 1229 1230 1231
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1232 1233 1234
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1235
		*domain = &dma_dom->domain;
1236
		attach_device(*iommu, *domain, *bdf);
1237
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1238
				"device %s\n", (*domain)->id, dev_name(dev));
1239 1240
	}

1241
	if (domain_for_device(_bdf) == NULL)
1242
		attach_device(*iommu, *domain, _bdf);
1243

1244 1245 1246
	return 1;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1290
	struct aperture_range *aperture;
1291 1292
	u64 *pte, *pte_page;

1293 1294 1295 1296 1297
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1298 1299
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1300 1301 1302
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1303 1304 1305 1306

	return pte;
}

1307 1308 1309 1310
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1323
	pte  = dma_ops_get_pte(dom, address);
1324 1325
	if (!pte)
		return bad_dma_address;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1343 1344 1345
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1346 1347 1348 1349
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1350
	struct aperture_range *aperture;
1351 1352 1353 1354 1355
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1356 1357 1358 1359 1360 1361 1362
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1363 1364 1365 1366 1367 1368 1369 1370

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1371 1372
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1373 1374
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1375 1376
 * Must be called with the domain lock held.
 */
1377 1378 1379 1380 1381
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1382
			       int dir,
1383 1384
			       bool align,
			       u64 dma_mask)
1385 1386
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1387
	dma_addr_t address, start, ret;
1388
	unsigned int pages;
1389
	unsigned long align_mask = 0;
1390 1391
	int i;

1392
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1393 1394
	paddr &= PAGE_MASK;

1395 1396
	INC_STATS_COUNTER(total_map_requests);

1397 1398 1399
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1400 1401 1402
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1403
retry:
1404 1405
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1423 1424 1425

	start = address;
	for (i = 0; i < pages; ++i) {
1426 1427 1428 1429
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1430 1431 1432 1433 1434
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1435 1436
	ADD_STATS_COUNTER(alloced_io_mem, size);

1437
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1438 1439 1440
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1441 1442
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1443 1444
out:
	return address;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1456 1457
}

1458 1459 1460 1461
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1462 1463 1464 1465 1466 1467 1468 1469 1470
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1471 1472
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1473 1474
		return;

1475
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1476 1477 1478 1479 1480 1481 1482 1483
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1484 1485
	SUB_STATS_COUNTER(alloced_io_mem, size);

1486
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1487

1488
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1489
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1490 1491
		dma_dom->need_flush = false;
	}
1492 1493
}

1494 1495 1496
/*
 * The exported map_single function for dma_ops.
 */
1497 1498 1499 1500
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1501 1502 1503 1504 1505 1506
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1507
	u64 dma_mask;
1508
	phys_addr_t paddr = page_to_phys(page) + offset;
1509

1510 1511
	INC_STATS_COUNTER(cnt_map_single);

1512 1513 1514
	if (!check_device(dev))
		return bad_dma_address;

1515
	dma_mask = *dev->dma_mask;
1516 1517 1518 1519

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1520
		/* device not handled by any AMD IOMMU */
1521 1522
		return (dma_addr_t)paddr;

1523 1524 1525
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1526
	spin_lock_irqsave(&domain->lock, flags);
1527 1528
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1529 1530 1531
	if (addr == bad_dma_address)
		goto out;

1532
	iommu_completion_wait(iommu);
1533 1534 1535 1536 1537 1538 1539

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1540 1541 1542
/*
 * The exported unmap_single function for dma_ops.
 */
1543 1544
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1545 1546 1547 1548 1549 1550
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1551 1552
	INC_STATS_COUNTER(cnt_unmap_single);

1553 1554
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1555
		/* device not handled by any AMD IOMMU */
1556 1557
		return;

1558 1559 1560
	if (!dma_ops_domain(domain))
		return;

1561 1562 1563 1564
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1565
	iommu_completion_wait(iommu);
1566 1567 1568 1569

	spin_unlock_irqrestore(&domain->lock, flags);
}

1570 1571 1572 1573
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1588 1589 1590 1591
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1592
static int map_sg(struct device *dev, struct scatterlist *sglist,
1593 1594
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1595 1596 1597 1598 1599 1600 1601 1602 1603
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1604
	u64 dma_mask;
1605

1606 1607
	INC_STATS_COUNTER(cnt_map_sg);

1608 1609 1610
	if (!check_device(dev))
		return 0;

1611
	dma_mask = *dev->dma_mask;
1612 1613 1614 1615 1616 1617

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1618 1619 1620
	if (!dma_ops_domain(domain))
		return 0;

1621 1622 1623 1624 1625 1626
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1627 1628
					      paddr, s->length, dir, false,
					      dma_mask);
1629 1630 1631 1632 1633 1634 1635 1636

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1637
	iommu_completion_wait(iommu);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1656 1657 1658 1659
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1660
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1661 1662
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1663 1664 1665 1666 1667 1668 1669 1670
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1671 1672
	INC_STATS_COUNTER(cnt_unmap_sg);

1673 1674
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1675 1676
		return;

1677 1678 1679
	if (!dma_ops_domain(domain))
		return;

1680 1681 1682 1683 1684 1685 1686 1687
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1688
	iommu_completion_wait(iommu);
1689 1690 1691 1692

	spin_unlock_irqrestore(&domain->lock, flags);
}

1693 1694 1695
/*
 * The exported alloc_coherent function for dma_ops.
 */
1696 1697 1698 1699 1700 1701 1702 1703 1704
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1705
	u64 dma_mask = dev->coherent_dma_mask;
1706

1707 1708
	INC_STATS_COUNTER(cnt_alloc_coherent);

1709 1710
	if (!check_device(dev))
		return NULL;
1711

1712 1713
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1714

1715
	flag |= __GFP_ZERO;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1727 1728 1729
	if (!dma_ops_domain(domain))
		goto out_free;

1730 1731 1732
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1733 1734 1735
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1736
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1737

1738 1739
	if (*dma_addr == bad_dma_address)
		goto out_free;
1740

1741
	iommu_completion_wait(iommu);
1742 1743 1744 1745

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1746 1747 1748 1749 1750 1751

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1752 1753
}

1754 1755 1756
/*
 * The exported free_coherent function for dma_ops.
 */
1757 1758 1759 1760 1761 1762 1763 1764
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1765 1766
	INC_STATS_COUNTER(cnt_free_coherent);

1767 1768 1769
	if (!check_device(dev))
		return;

1770 1771 1772 1773 1774
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1775 1776 1777
	if (!dma_ops_domain(domain))
		goto free_mem;

1778 1779 1780 1781
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1782
	iommu_completion_wait(iommu);
1783 1784 1785 1786 1787 1788 1789

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1814
/*
1815 1816
 * The function for pre-allocating protection domains.
 *
1817 1818 1819 1820
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1821
static void prealloc_protection_domains(void)
1822 1823 1824 1825 1826 1827 1828
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1829
		devid = calc_devid(dev->bus->number, dev->devfn);
1830
		if (devid > amd_iommu_last_bdf)
1831 1832 1833 1834 1835 1836 1837
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1838
		dma_dom = dma_ops_domain_alloc(iommu);
1839 1840 1841
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1842 1843 1844
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1845 1846 1847
	}
}

1848
static struct dma_map_ops amd_iommu_dma_ops = {
1849 1850
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1851 1852
	.map_page = map_page,
	.unmap_page = unmap_page,
1853 1854
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1855
	.dma_supported = amd_iommu_dma_supported,
1856 1857
};

1858 1859 1860
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1861 1862 1863 1864 1865
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1866 1867 1868 1869 1870
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1871
	list_for_each_entry(iommu, &amd_iommu_list, list) {
1872
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1873 1874
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1875
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1876 1877 1878 1879 1880
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1881 1882 1883 1884
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1885 1886 1887 1888 1889 1890
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1891
#ifdef CONFIG_GART_IOMMU
1892 1893
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1894
#endif
1895

1896
	/* Make the driver finally visible to the drivers */
1897 1898
	dma_ops = &amd_iommu_dma_ops;

1899 1900
	register_iommu(&amd_iommu_ops);

1901 1902
	bus_register_notifier(&pci_bus_type, &device_nb);

1903 1904
	amd_iommu_stats_init();

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
		return -EBUSY;

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2127 2128 2129 2130 2131 2132
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2133 2134 2135 2136 2137 2138 2139 2140
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2141
	.domain_has_cap = amd_iommu_domain_has_cap,
2142 2143
};