amd_iommu.c 58.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60 61
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
62
static struct dma_ops_domain *find_protection_domain(u16 devid);
63
static u64 *alloc_pte(struct protection_domain *domain,
64 65
		      unsigned long address, int end_lvl,
		      u64 **pte_page, gfp_t gfp);
66 67 68
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
69
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
70
static u64 *fetch_pte(struct protection_domain *domain,
71
		      unsigned long address, int map_size);
72
static void update_domain(struct protection_domain *domain);
73

74 75 76 77 78 79
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

80
DECLARE_STATS_COUNTER(compl_wait);
81
DECLARE_STATS_COUNTER(cnt_map_single);
82
DECLARE_STATS_COUNTER(cnt_unmap_single);
83
DECLARE_STATS_COUNTER(cnt_map_sg);
84
DECLARE_STATS_COUNTER(cnt_unmap_sg);
85
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
86
DECLARE_STATS_COUNTER(cnt_free_coherent);
87
DECLARE_STATS_COUNTER(cross_page);
88
DECLARE_STATS_COUNTER(domain_flush_single);
89
DECLARE_STATS_COUNTER(domain_flush_all);
90
DECLARE_STATS_COUNTER(alloced_io_mem);
91
DECLARE_STATS_COUNTER(total_map_requests);
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
117 118

	amd_iommu_stats_add(&compl_wait);
119
	amd_iommu_stats_add(&cnt_map_single);
120
	amd_iommu_stats_add(&cnt_unmap_single);
121
	amd_iommu_stats_add(&cnt_map_sg);
122
	amd_iommu_stats_add(&cnt_unmap_sg);
123
	amd_iommu_stats_add(&cnt_alloc_coherent);
124
	amd_iommu_stats_add(&cnt_free_coherent);
125
	amd_iommu_stats_add(&cross_page);
126
	amd_iommu_stats_add(&domain_flush_single);
127
	amd_iommu_stats_add(&domain_flush_all);
128
	amd_iommu_stats_add(&alloced_io_mem);
129
	amd_iommu_stats_add(&total_map_requests);
130 131 132 133
}

#endif

134 135 136 137 138 139
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

140 141 142 143 144 145 146 147 148
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

149 150 151 152 153 154 155 156 157
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

158
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
159 160 161 162 163 164 165 166
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

167
	printk(KERN_ERR "AMD-Vi: Event logged [");
168 169 170 171 172 173 174

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
175
		dump_dte_entry(devid);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
197
		reset_iommu_command_buffer(iommu);
198
		dump_command(address);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
232
		iommu_print_event(iommu, iommu->evt_buf + head);
233 234 235 236 237 238 239 240
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

241 242
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
243 244
	struct amd_iommu *iommu;

245
	for_each_iommu(iommu)
246 247 248
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
249 250
}

251 252 253 254 255 256 257 258 259 260
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
261
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
262 263 264 265 266
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
267
	target = iommu->cmd_buf + tail;
268 269 270 271 272 273 274 275 276 277
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

278 279 280 281
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
282
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
283 284 285 286 287 288
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
289
	if (!ret)
290
		iommu->need_sync = true;
291 292 293 294 295
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

296 297 298 299 300 301 302 303 304 305
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

306 307
	INC_STATS_COUNTER(compl_wait);

308 309 310 311 312 313 314 315 316 317 318
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

319 320 321 322 323
	if (unlikely(i == EXIT_LOOP_COUNT)) {
		spin_unlock(&iommu->lock);
		reset_iommu_command_buffer(iommu);
		spin_lock(&iommu->lock);
	}
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

341 342 343 344 345 346 347
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
348 349
static int iommu_completion_wait(struct amd_iommu *iommu)
{
350 351
	int ret = 0;
	unsigned long flags;
352

353 354
	spin_lock_irqsave(&iommu->lock, flags);

355 356 357
	if (!iommu->need_sync)
		goto out;

358
	ret = __iommu_completion_wait(iommu);
359

360
	iommu->need_sync = false;
361 362

	if (ret)
363
		goto out;
364

365
	__iommu_wait_for_completion(iommu);
366

367 368
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
369 370 371 372

	return 0;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

389 390 391
/*
 * Command send function for invalidating a device table entry
 */
392 393
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
394
	struct iommu_cmd cmd;
395
	int ret;
396 397 398 399 400 401 402

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

403 404 405
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
406 407
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

423 424 425
/*
 * Generic command send function for invalidaing TLB entries
 */
426 427 428
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
429
	struct iommu_cmd cmd;
430
	int ret;
431

432
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
433

434 435 436
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
437 438
}

439 440 441 442 443
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
444 445
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
446
{
447
	int s = 0, i;
448
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
449 450 451

	address &= PAGE_MASK;

452 453 454 455 456 457 458
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
459 460
	}

461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
481
}
482

483
/* Flush the whole IO/TLB for a given protection domain */
484
static void iommu_flush_tlb(struct protection_domain *domain)
485
{
486
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
487 488
}

489
/* Flush the whole IO/TLB for a given protection domain - including PDE */
490
static void iommu_flush_tlb_pde(struct protection_domain *domain)
491
{
492
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
493 494
}

495
/*
496
 * This function flushes all domains that have devices on the given IOMMU
497
 */
498
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
499
{
500 501
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
	struct protection_domain *domain;
502
	unsigned long flags;
503

504
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
505

506 507
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
		if (domain->dev_iommu[iommu->index] == 0)
508
			continue;
509 510 511 512 513

		spin_lock(&domain->lock);
		iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1);
		iommu_flush_complete(domain);
		spin_unlock(&domain->lock);
514
	}
515

516
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
517 518
}

519 520 521 522
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
523
void amd_iommu_flush_all_domains(void)
524
{
525
	struct protection_domain *domain;
526 527 528
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
529

530
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
531
		spin_lock(&domain->lock);
532 533
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
534
		spin_unlock(&domain->lock);
535
	}
536 537

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
538 539
}

540
static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
541 542 543
{
	int i;

544 545
	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (iommu != amd_iommu_rlookup_table[i])
546
			continue;
547 548 549

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
550 551 552
	}
}

553
static void flush_devices_by_domain(struct protection_domain *domain)
554 555 556 557 558
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
559 560
		if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
		    (amd_iommu_pd_table[i] != domain))
561 562 563 564 565 566 567 568 569 570 571
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

572 573 574 575
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

576 577 578 579 580
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

	iommu->reset_in_progress = true;

581 582 583
	amd_iommu_reset_cmd_buffer(iommu);
	flush_all_devices_for_iommu(iommu);
	flush_all_domains_on_iommu(iommu);
584 585

	iommu->reset_in_progress = false;
586 587
}

588 589 590 591 592
void amd_iommu_flush_all_devices(void)
{
	flush_devices_by_domain(NULL);
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
607 608 609
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
610 611
			  int prot,
			  int map_size)
612
{
613
	u64 __pte, *pte;
614 615

	bus_addr  = PAGE_ALIGN(bus_addr);
616
	phys_addr = PAGE_ALIGN(phys_addr);
617

618 619 620
	BUG_ON(!PM_ALIGNED(map_size, bus_addr));
	BUG_ON(!PM_ALIGNED(map_size, phys_addr));

621
	if (!(prot & IOMMU_PROT_MASK))
622 623
		return -EINVAL;

624
	pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
625 626 627 628 629 630 631 632 633 634 635 636

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

637 638
	update_domain(dom);

639 640 641
	return 0;
}

642
static void iommu_unmap_page(struct protection_domain *dom,
643
			     unsigned long bus_addr, int map_size)
644
{
645
	u64 *pte = fetch_pte(dom, bus_addr, map_size);
646

647 648
	if (pte)
		*pte = 0;
649 650
}

651 652 653 654
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

669 670 671 672 673 674
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

691 692 693 694
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
695 696 697 698 699 700 701 702
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
703 704
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
				     PM_MAP_4k);
705 706 707 708 709 710 711
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
712
			__set_bit(addr >> PAGE_SHIFT,
713
				  dma_dom->aperture[0]->bitmap);
714 715 716 717 718
	}

	return 0;
}

719 720 721
/*
 * Inits the unity mappings required for a specific device
 */
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

739 740 741 742 743 744 745 746 747
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
748

749
/*
750
 * The address allocator core functions.
751 752 753
 *
 * called with domain->lock held
 */
754

755 756 757 758
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
759
static u64 *fetch_pte(struct protection_domain *domain,
760
		      unsigned long address, int map_size)
761
{
762
	int level;
763 764
	u64 *pte;

765 766
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
767

768
	while (level > map_size) {
769 770
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;
771

772
		level -= 1;
773

774 775
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
776

777 778 779 780
		if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
			pte = NULL;
			break;
		}
781
	}
782 783 784 785

	return pte;
}

786 787 788 789 790
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
791 792
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
793 794 795
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
796
	int i;
797

798 799 800 801
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
821
			pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
822 823 824 825 826 827 828 829 830 831 832 833
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
854
		u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
855 856 857 858 859 860
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

861 862
	update_domain(&dma_dom->domain);

863 864 865
	return 0;

out_free:
866 867
	update_domain(&dma_dom->domain);

868 869 870 871 872 873 874 875
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

876 877 878 879 880 881 882
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
883
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
884 885 886 887 888 889
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

890 891
	next_bit >>= PAGE_SHIFT;

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
910
			dom->next_address = address + (pages << PAGE_SHIFT);
911 912 913 914 915 916 917 918 919
			break;
		}

		next_bit = 0;
	}

	return address;
}

920 921
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
922
					     unsigned int pages,
923 924
					     unsigned long align_mask,
					     u64 dma_mask)
925 926 927
{
	unsigned long address;

928 929 930 931
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
932

933
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
934
				     dma_mask, dom->next_address);
935

936
	if (address == -1) {
937
		dom->next_address = 0;
938 939
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
940 941
		dom->need_flush = true;
	}
942

943
	if (unlikely(address == -1))
944
		address = DMA_ERROR_CODE;
945 946 947 948 949 950

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

951 952 953 954 955
/*
 * The address free function.
 *
 * called with domain->lock held
 */
956 957 958 959
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
960 961
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
962

963 964
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

965 966 967 968
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
969

970
	if (address >= dom->next_address)
971
		dom->need_flush = true;
972 973

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
974

975 976
	iommu_area_free(range->bitmap, address, pages);

977 978
}

979 980 981 982 983 984 985 986 987 988
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1041 1042 1043 1044
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
1045 1046 1047 1048
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
1049
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1050 1051 1052 1053

	if (start_page + pages > last_page)
		pages = last_page - start_page;

1054 1055 1056 1057 1058
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
1059 1060
}

1061
static void free_pagetable(struct protection_domain *domain)
1062 1063 1064 1065
{
	int i, j;
	u64 *p1, *p2, *p3;

1066
	p1 = domain->pt_root;
1067 1068 1069 1070 1071 1072 1073 1074 1075

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1076
		for (j = 0; j < 512; ++j) {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1087 1088

	domain->pt_root = NULL;
1089 1090
}

1091 1092 1093 1094
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1095 1096
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1097 1098
	int i;

1099 1100 1101
	if (!dom)
		return;

1102 1103
	del_domain_from_list(&dom->domain);

1104
	free_pagetable(&dom->domain);
1105

1106 1107 1108 1109 1110 1111
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1112 1113 1114 1115

	kfree(dom);
}

1116 1117 1118 1119 1120
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1121
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1134
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1135
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1136
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1137 1138 1139 1140
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1141
	dma_dom->need_flush = false;
1142
	dma_dom->target_dev = 0xffff;
1143

1144 1145
	add_domain_to_list(&dma_dom->domain);

1146
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1147 1148
		goto free_dma_dom;

1149
	/*
1150 1151
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1152
	 */
1153
	dma_dom->aperture[0]->bitmap[0] = 1;
1154
	dma_dom->next_address = 0;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1165 1166 1167 1168 1169 1170 1171 1172 1173
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1174 1175 1176 1177
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1190
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1191 1192
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1193

1194 1195 1196
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1197 1198

	amd_iommu_dev_table[devid].data[2] = domain->id;
1199 1200
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1201 1202

	amd_iommu_pd_table[devid] = domain;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
static void __attach_device(struct amd_iommu *iommu,
			    struct protection_domain *domain,
			    u16 devid)
{
	/* lock domain */
	spin_lock(&domain->lock);

	/* update DTE entry */
	set_dte_entry(devid, domain);
1218

1219 1220 1221
	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;
1222 1223 1224

	/* ready */
	spin_unlock(&domain->lock);
1225
}
1226

1227 1228 1229 1230
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1231 1232 1233 1234
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
{
1235 1236 1237
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1238
	__attach_device(iommu, domain, devid);
1239 1240
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1241 1242 1243 1244 1245
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1246
	iommu_queue_inv_dev_entry(iommu, devid);
1247
	iommu_flush_tlb_pde(domain);
1248 1249
}

1250 1251 1252 1253 1254
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{
1255 1256 1257
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	BUG_ON(!iommu);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

1270 1271
	amd_iommu_apply_erratum_63(devid);

1272 1273 1274
	/* decrease reference counters */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;
1275 1276 1277

	/* ready */
	spin_unlock(&domain->lock);
1278 1279 1280 1281 1282 1283 1284 1285 1286

	/*
	 * If we run in passthrough mode the device must be assigned to the
	 * passthrough domain if it is detached from any other domain
	 */
	if (iommu_pass_through) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
		__attach_device(iommu, pt_domain, devid);
	}
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1311
	unsigned long flags;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1329
	case BUS_NOTIFY_UNBOUND_DRIVER:
1330 1331
		if (!domain)
			goto out;
1332 1333
		if (iommu_pass_through)
			break;
1334
		detach_device(domain, devid);
1335 1336 1337 1338 1339 1340
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1341
		dma_domain = dma_ops_domain_alloc(iommu);
1342 1343 1344 1345 1346 1347 1348 1349
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1362
static struct notifier_block device_nb = {
1363 1364
	.notifier_call = device_change_notifier,
};
1365

1366 1367 1368 1369 1370 1371
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1417 1418 1419 1420 1421 1422 1423 1424 1425
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1426 1427 1428 1429 1430 1431
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1432 1433

	pcidev = to_pci_dev(dev);
1434
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1435

1436
	/* device not translated by any IOMMU in the system? */
1437
	if (_bdf > amd_iommu_last_bdf)
1438 1439 1440 1441 1442 1443 1444 1445 1446
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1447 1448 1449
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1450
		*domain = &dma_dom->domain;
1451
		attach_device(*iommu, *domain, *bdf);
1452 1453
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1454 1455
	}

1456
	if (domain_for_device(_bdf) == NULL)
1457
		attach_device(*iommu, *domain, _bdf);
1458

1459 1460 1461
	return 1;
}

1462 1463
static void update_device_table(struct protection_domain *domain)
{
1464
	unsigned long flags;
1465 1466 1467 1468 1469
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] != domain)
			continue;
1470
		write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1471
		set_dte_entry(i, domain);
1472
		write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
	flush_devices_by_domain(domain);
1483
	iommu_flush_tlb_pde(domain);
1484 1485 1486 1487

	domain->updated = false;
}

1488
/*
1489 1490 1491
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
1492
 */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

1515
static u64 *alloc_pte(struct protection_domain *domain,
1516 1517 1518 1519
		      unsigned long address,
		      int end_lvl,
		      u64 **pte_page,
		      gfp_t gfp)
1520 1521
{
	u64 *pte, *page;
1522
	int level;
1523

1524 1525
	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);
1526

1527 1528
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1529

1530
	while (level > end_lvl) {
1531 1532 1533 1534 1535 1536
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}
1537

1538
		level -= 1;
1539

1540
		pte = IOMMU_PTE_PAGE(*pte);
1541

1542
		if (pte_page && level == end_lvl)
1543
			*pte_page = pte;
1544

1545 1546
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1557
	struct aperture_range *aperture;
1558 1559
	u64 *pte, *pte_page;

1560 1561 1562 1563 1564
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1565
	if (!pte) {
1566 1567
		pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
				GFP_ATOMIC);
1568 1569
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1570
		pte += PM_LEVEL_INDEX(0, address);
1571

1572
	update_domain(&dom->domain);
1573 1574 1575 1576

	return pte;
}

1577 1578 1579 1580
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1593
	pte  = dma_ops_get_pte(dom, address);
1594
	if (!pte)
1595
		return DMA_ERROR_CODE;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1613 1614 1615
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1616 1617 1618 1619
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1620
	struct aperture_range *aperture;
1621 1622 1623 1624 1625
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1626 1627 1628 1629 1630 1631 1632
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1633

1634
	pte += PM_LEVEL_INDEX(0, address);
1635 1636 1637 1638 1639 1640

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1641 1642
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1643 1644
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1645 1646
 * Must be called with the domain lock held.
 */
1647 1648 1649 1650 1651
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1652
			       int dir,
1653 1654
			       bool align,
			       u64 dma_mask)
1655 1656
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1657
	dma_addr_t address, start, ret;
1658
	unsigned int pages;
1659
	unsigned long align_mask = 0;
1660 1661
	int i;

1662
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1663 1664
	paddr &= PAGE_MASK;

1665 1666
	INC_STATS_COUNTER(total_map_requests);

1667 1668 1669
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1670 1671 1672
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1673
retry:
1674 1675
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1676
	if (unlikely(address == DMA_ERROR_CODE)) {
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1693 1694 1695

	start = address;
	for (i = 0; i < pages; ++i) {
1696
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1697
		if (ret == DMA_ERROR_CODE)
1698 1699
			goto out_unmap;

1700 1701 1702 1703 1704
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1705 1706
	ADD_STATS_COUNTER(alloced_io_mem, size);

1707
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1708
		iommu_flush_tlb(&dma_dom->domain);
1709
		dma_dom->need_flush = false;
1710
	} else if (unlikely(amd_iommu_np_cache))
1711
		iommu_flush_pages(&dma_dom->domain, address, size);
1712

1713 1714
out:
	return address;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1725
	return DMA_ERROR_CODE;
1726 1727
}

1728 1729 1730 1731
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1732 1733 1734 1735 1736 1737 1738 1739 1740
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1741
	if ((dma_addr == DMA_ERROR_CODE) ||
1742
	    (dma_addr + size > dma_dom->aperture_size))
1743 1744
		return;

1745
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1746 1747 1748 1749 1750 1751 1752 1753
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1754 1755
	SUB_STATS_COUNTER(alloced_io_mem, size);

1756
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1757

1758
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1759
		iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1760 1761
		dma_dom->need_flush = false;
	}
1762 1763
}

1764 1765 1766
/*
 * The exported map_single function for dma_ops.
 */
1767 1768 1769 1770
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1771 1772 1773 1774 1775 1776
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1777
	u64 dma_mask;
1778
	phys_addr_t paddr = page_to_phys(page) + offset;
1779

1780 1781
	INC_STATS_COUNTER(cnt_map_single);

1782
	if (!check_device(dev))
1783
		return DMA_ERROR_CODE;
1784

1785
	dma_mask = *dev->dma_mask;
1786 1787 1788 1789

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1790
		/* device not handled by any AMD IOMMU */
1791 1792
		return (dma_addr_t)paddr;

1793
	if (!dma_ops_domain(domain))
1794
		return DMA_ERROR_CODE;
1795

1796
	spin_lock_irqsave(&domain->lock, flags);
1797 1798
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1799
	if (addr == DMA_ERROR_CODE)
1800 1801
		goto out;

1802
	iommu_flush_complete(domain);
1803 1804 1805 1806 1807 1808 1809

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1810 1811 1812
/*
 * The exported unmap_single function for dma_ops.
 */
1813 1814
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1815 1816 1817 1818 1819 1820
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1821 1822
	INC_STATS_COUNTER(cnt_unmap_single);

1823 1824
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1825
		/* device not handled by any AMD IOMMU */
1826 1827
		return;

1828 1829 1830
	if (!dma_ops_domain(domain))
		return;

1831 1832 1833 1834
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1835
	iommu_flush_complete(domain);
1836 1837 1838 1839

	spin_unlock_irqrestore(&domain->lock, flags);
}

1840 1841 1842 1843
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1858 1859 1860 1861
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1862
static int map_sg(struct device *dev, struct scatterlist *sglist,
1863 1864
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1865 1866 1867 1868 1869 1870 1871 1872 1873
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1874
	u64 dma_mask;
1875

1876 1877
	INC_STATS_COUNTER(cnt_map_sg);

1878 1879 1880
	if (!check_device(dev))
		return 0;

1881
	dma_mask = *dev->dma_mask;
1882 1883 1884 1885 1886 1887

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1888 1889 1890
	if (!dma_ops_domain(domain))
		return 0;

1891 1892 1893 1894 1895 1896
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1897 1898
					      paddr, s->length, dir, false,
					      dma_mask);
1899 1900 1901 1902 1903 1904 1905 1906

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1907
	iommu_flush_complete(domain);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1926 1927 1928 1929
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1930
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1931 1932
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1933 1934 1935 1936 1937 1938 1939 1940
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1941 1942
	INC_STATS_COUNTER(cnt_unmap_sg);

1943 1944
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1945 1946
		return;

1947 1948 1949
	if (!dma_ops_domain(domain))
		return;

1950 1951 1952 1953 1954 1955 1956 1957
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1958
	iommu_flush_complete(domain);
1959 1960 1961 1962

	spin_unlock_irqrestore(&domain->lock, flags);
}

1963 1964 1965
/*
 * The exported alloc_coherent function for dma_ops.
 */
1966 1967 1968 1969 1970 1971 1972 1973 1974
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1975
	u64 dma_mask = dev->coherent_dma_mask;
1976

1977 1978
	INC_STATS_COUNTER(cnt_alloc_coherent);

1979 1980
	if (!check_device(dev))
		return NULL;
1981

1982 1983
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1984

1985
	flag |= __GFP_ZERO;
1986 1987
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1988
		return NULL;
1989 1990 1991 1992 1993 1994 1995 1996

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1997 1998 1999
	if (!dma_ops_domain(domain))
		goto out_free;

2000 2001 2002
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2003 2004 2005
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
2006
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2007

2008
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2009
		spin_unlock_irqrestore(&domain->lock, flags);
2010
		goto out_free;
J
Jiri Slaby 已提交
2011
	}
2012

2013
	iommu_flush_complete(domain);
2014 2015 2016 2017

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2018 2019 2020 2021 2022 2023

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2024 2025
}

2026 2027 2028
/*
 * The exported free_coherent function for dma_ops.
 */
2029 2030 2031 2032 2033 2034 2035 2036
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

2037 2038
	INC_STATS_COUNTER(cnt_free_coherent);

2039 2040 2041
	if (!check_device(dev))
		return;

2042 2043 2044 2045 2046
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

2047 2048 2049
	if (!dma_ops_domain(domain))
		goto free_mem;

2050 2051 2052 2053
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

2054
	iommu_flush_complete(domain);
2055 2056 2057 2058 2059 2060 2061

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

2086
/*
2087 2088
 * The function for pre-allocating protection domains.
 *
2089 2090 2091 2092
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2093
static void prealloc_protection_domains(void)
2094 2095 2096 2097
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
2098
	u16 devid, __devid;
2099 2100

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2101
		__devid = devid = calc_devid(dev->bus->number, dev->devfn);
2102
		if (devid > amd_iommu_last_bdf)
2103 2104 2105 2106 2107 2108 2109
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
2110
		dma_dom = dma_ops_domain_alloc(iommu);
2111 2112 2113
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2114 2115
		dma_dom->target_dev = devid;

2116 2117 2118 2119
		attach_device(iommu, &dma_dom->domain, devid);
		if (__devid != devid)
			attach_device(iommu, &dma_dom->domain, __devid);

2120
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2121 2122 2123
	}
}

2124
static struct dma_map_ops amd_iommu_dma_ops = {
2125 2126
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2127 2128
	.map_page = map_page,
	.unmap_page = unmap_page,
2129 2130
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2131
	.dma_supported = amd_iommu_dma_supported,
2132 2133
};

2134 2135 2136
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2137 2138 2139 2140 2141
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2142 2143 2144 2145 2146
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2147
	for_each_iommu(iommu) {
2148
		iommu->default_dom = dma_ops_domain_alloc(iommu);
2149 2150
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2151
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2152 2153 2154 2155 2156
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2157 2158 2159 2160
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
2161 2162 2163 2164
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
2165
	swiotlb = 0;
I
Ingo Molnar 已提交
2166
#ifdef CONFIG_GART_IOMMU
2167 2168
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2169
#endif
2170

2171
	/* Make the driver finally visible to the drivers */
2172 2173
	dma_ops = &amd_iommu_dma_ops;

2174 2175
	register_iommu(&amd_iommu_ops);

2176 2177
	bus_register_notifier(&pci_bus_type, &device_nb);

2178 2179
	amd_iommu_stats_init();

2180 2181 2182 2183
	return 0;

free_domains:

2184
	for_each_iommu(iommu) {
2185 2186 2187 2188 2189 2190
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2216 2217 2218 2219 2220
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2221 2222
	del_domain_from_list(domain);

2223 2224 2225 2226 2227 2228 2229
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2230 2231 2232 2233 2234
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2235
		return NULL;
2236 2237 2238 2239

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2240 2241
		goto out_err;

2242 2243
	add_domain_to_list(domain);

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2258
		goto out_free;
2259 2260

	domain->mode    = PAGE_MODE_3_LEVEL;
2261 2262 2263 2264 2265 2266 2267 2268 2269
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2270
	protection_domain_free(domain);
2271 2272 2273 2274

	return -ENOMEM;
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2348
		detach_device(old_domain, devid);
2349 2350 2351 2352 2353 2354 2355 2356

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2375
		ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2396
		iommu_unmap_page(domain, iova, PM_MAP_4k);
2397 2398 2399
		iova  += PAGE_SIZE;
	}

2400
	iommu_flush_tlb_pde(domain);
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2411
	pte = fetch_pte(domain, iova, PM_MAP_4k);
2412

2413
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2414 2415 2416 2417 2418 2419 2420 2421
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2422 2423 2424 2425 2426 2427
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2428 2429 2430 2431 2432 2433 2434 2435
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2436
	.domain_has_cap = amd_iommu_domain_has_cap,
2437 2438
};

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
	struct pci_dev *dev = NULL;
	u16 devid, devid2;

	/* allocate passthroug domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		struct amd_iommu *iommu;

		devid = calc_devid(dev->bus->number, dev->devfn);
		if (devid > amd_iommu_last_bdf)
			continue;

		devid2 = amd_iommu_alias_table[devid];

		iommu = amd_iommu_rlookup_table[devid2];
		if (!iommu)
			continue;

		__attach_device(iommu, pt_domain, devid);
		__attach_device(iommu, pt_domain, devid2);
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}