amd_iommu.c 61.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <asm/proto.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/amd_iommu_proto.h>
34
#include <asm/amd_iommu_types.h>
35
#include <asm/amd_iommu.h>
36 37 38

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

39
#define LOOP_TIMEOUT	100000
40

41 42
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

43 44 45 46
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

47 48 49 50 51 52
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

53 54
static struct iommu_ops amd_iommu_ops;

55 56 57
/*
 * general struct to manage commands send to an IOMMU
 */
58
struct iommu_cmd {
59 60 61
	u32 data[4];
};

62
static void update_domain(struct protection_domain *domain);
63

64 65 66 67 68 69 70 71 72 73 74 75 76
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

77 78 79 80 81
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

110 111 112 113 114 115 116 117 118 119 120 121
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
122
	if (dev->bus != &pci_bus_type)
123 124 125 126 127 128 129 130 131 132 133 134 135 136
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

137 138 139 140 141 142 143 144 145 146 147 148 149
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

150 151
	dev_data->dev = dev;

152 153 154 155 156 157
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

158 159
	atomic_set(&dev_data->bind, 0);

160 161 162 163 164 165 166 167 168 169
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
207 208 209 210 211 212
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

213
DECLARE_STATS_COUNTER(compl_wait);
214
DECLARE_STATS_COUNTER(cnt_map_single);
215
DECLARE_STATS_COUNTER(cnt_unmap_single);
216
DECLARE_STATS_COUNTER(cnt_map_sg);
217
DECLARE_STATS_COUNTER(cnt_unmap_sg);
218
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
219
DECLARE_STATS_COUNTER(cnt_free_coherent);
220
DECLARE_STATS_COUNTER(cross_page);
221
DECLARE_STATS_COUNTER(domain_flush_single);
222
DECLARE_STATS_COUNTER(domain_flush_all);
223
DECLARE_STATS_COUNTER(alloced_io_mem);
224
DECLARE_STATS_COUNTER(total_map_requests);
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
246 247

	amd_iommu_stats_add(&compl_wait);
248
	amd_iommu_stats_add(&cnt_map_single);
249
	amd_iommu_stats_add(&cnt_unmap_single);
250
	amd_iommu_stats_add(&cnt_map_sg);
251
	amd_iommu_stats_add(&cnt_unmap_sg);
252
	amd_iommu_stats_add(&cnt_alloc_coherent);
253
	amd_iommu_stats_add(&cnt_free_coherent);
254
	amd_iommu_stats_add(&cross_page);
255
	amd_iommu_stats_add(&domain_flush_single);
256
	amd_iommu_stats_add(&domain_flush_all);
257
	amd_iommu_stats_add(&alloced_io_mem);
258
	amd_iommu_stats_add(&total_map_requests);
259 260 261 262
}

#endif

263 264 265 266 267 268
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

269 270 271 272 273 274 275 276 277
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

278 279 280 281 282 283 284 285 286
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

287
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
288 289 290 291 292 293 294 295
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

296
	printk(KERN_ERR "AMD-Vi: Event logged [");
297 298 299 300 301 302 303

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
304
		dump_dte_entry(devid);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
326
		dump_command(address);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
360
		iommu_print_event(iommu, iommu->evt_buf + head);
361 362 363 364 365 366 367 368
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

369 370
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
371 372
	struct amd_iommu *iommu;

373
	for_each_iommu(iommu)
374 375 376
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
377 378
}

379 380 381 382 383 384
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
405 406 407
{
	u8 *target;

408
	target = iommu->cmd_buf + tail;
409 410 411 412 413 414
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
415
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
416
}
417

418
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
419
{
420 421
	WARN_ON(address & 0x7ULL);

422
	memset(cmd, 0, sizeof(*cmd));
423 424 425
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
426 427 428
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

429 430 431 432 433 434 435
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

498 499 500 501
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
502 503
}

504 505
/*
 * Writes the command to the IOMMUs command buffer and informs the
506
 * hardware about the new command.
507
 */
508
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
509
{
510
	u32 left, tail, head, next_tail;
511 512
	unsigned long flags;

513
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
514 515

again:
516 517
	spin_lock_irqsave(&iommu->lock, flags);

518 519 520 521
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
522

523 524 525 526
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
527

528 529
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
530

531 532 533 534 535 536
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
537 538
	}

539 540 541
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
542
	iommu->need_sync = true;
543

544
	spin_unlock_irqrestore(&iommu->lock, flags);
545

546
	return 0;
547 548 549 550 551 552
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
553
static int iommu_completion_wait(struct amd_iommu *iommu)
554 555
{
	struct iommu_cmd cmd;
556
	volatile u64 sem = 0;
557
	int ret;
558

559
	if (!iommu->need_sync)
560
		return 0;
561

562
	build_completion_wait(&cmd, (u64)&sem);
563

564
	ret = iommu_queue_command(iommu, &cmd);
565
	if (ret)
566
		return ret;
567

568
	return wait_on_sem(&sem);
569 570
}

571
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
572
{
573
	struct iommu_cmd cmd;
574

575
	build_inv_dte(&cmd, devid);
576

577 578
	return iommu_queue_command(iommu, &cmd);
}
579

580 581 582
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
583

584 585
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
586

587 588
	iommu_completion_wait(iommu);
}
589

590 591 592 593 594 595 596
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
597

598 599 600 601 602 603
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
604

605
	iommu_completion_wait(iommu);
606 607
}

608
static void iommu_flush_all(struct amd_iommu *iommu)
609
{
610
	struct iommu_cmd cmd;
611

612
	build_inv_all(&cmd);
613

614 615 616 617
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

618 619
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
620 621 622 623 624
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
625 626 627
	}
}

628
/*
629
 * Command send function for flushing on-device TLB
630
 */
631
static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
632
{
633
	struct pci_dev *pdev = to_pci_dev(dev);
634
	struct amd_iommu *iommu;
635
	struct iommu_cmd cmd;
636
	u16 devid;
637
	int qdep;
638

639
	qdep  = pci_ats_queue_depth(pdev);
640 641 642
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

643
	build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
644 645

	return iommu_queue_command(iommu, &cmd);
646 647
}

648 649 650
/*
 * Command send function for invalidating a device table entry
 */
651
static int device_flush_dte(struct device *dev)
652
{
653
	struct amd_iommu *iommu;
654
	struct pci_dev *pdev;
655
	u16 devid;
656
	int ret;
657

658
	pdev  = to_pci_dev(dev);
659 660
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
661

662 663 664 665 666 667
	ret = iommu_flush_dte(iommu, devid);
	if (ret)
		return ret;

	if (pci_ats_enabled(pdev))
		ret = device_flush_iotlb(dev, 0, ~0UL);
668 669

	return ret;
670 671
}

672 673 674 675 676
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
677 678
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
679
{
680
	struct iommu_dev_data *dev_data;
681 682
	struct iommu_cmd cmd;
	int ret = 0, i;
683

684
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
685

686 687 688 689 690 691 692 693
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
694
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
695 696
	}

697 698 699 700 701 702 703 704 705
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct pci_dev *pdev = to_pci_dev(dev_data->dev);

		if (!pci_ats_enabled(pdev))
			continue;

		ret |= device_flush_iotlb(dev_data->dev, address, size);
	}

706
	WARN_ON(ret);
707 708
}

709 710
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
711
{
712
	__domain_flush_pages(domain, address, size, 0);
713
}
714

715
/* Flush the whole IO/TLB for a given protection domain */
716
static void domain_flush_tlb(struct protection_domain *domain)
717
{
718
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
719 720
}

721
/* Flush the whole IO/TLB for a given protection domain - including PDE */
722
static void domain_flush_tlb_pde(struct protection_domain *domain)
723
{
724
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
725 726
}

727
static void domain_flush_complete(struct protection_domain *domain)
728
{
729
	int i;
730

731 732 733
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
734

735 736 737 738 739
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
740
	}
741 742
}

743

744
/*
745
 * This function flushes the DTEs for all devices in domain
746
 */
747
static void domain_flush_devices(struct protection_domain *domain)
748
{
749
	struct iommu_dev_data *dev_data;
750 751
	unsigned long flags;

752
	spin_lock_irqsave(&domain->lock, flags);
753

754
	list_for_each_entry(dev_data, &domain->dev_list, list)
755
		device_flush_dte(dev_data->dev);
756

757
	spin_unlock_irqrestore(&domain->lock, flags);
758 759
}

760 761 762 763 764 765 766
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
796
		      unsigned long page_size,
797 798 799
		      u64 **pte_page,
		      gfp_t gfp)
{
800
	int level, end_lvl;
801
	u64 *pte, *page;
802 803

	BUG_ON(!is_power_of_2(page_size));
804 805 806 807

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

808 809 810 811
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
812 813 814 815 816 817 818 819 820

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

821 822 823 824
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
842
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
843 844 845 846
{
	int level;
	u64 *pte;

847 848 849 850 851
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
852

853 854 855
	while (level > 0) {

		/* Not Present */
856 857 858
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

878 879
		level -= 1;

880
		/* Walk to the next level */
881 882 883 884 885 886 887
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

888 889 890 891 892 893 894
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
895 896 897
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
898
			  int prot,
899
			  unsigned long page_size)
900
{
901
	u64 __pte, *pte;
902
	int i, count;
903

904
	if (!(prot & IOMMU_PROT_MASK))
905 906
		return -EINVAL;

907 908 909 910 911 912 913 914
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
915

916 917 918 919 920
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
921 922 923 924 925 926

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

927 928
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
929

930 931
	update_domain(dom);

932 933 934
	return 0;
}

935 936 937
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
938
{
939 940 941 942 943 944
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
975

976
	return unmapped;
977 978
}

979 980 981 982
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
983 984 985 986 987 988 989 990 991 992 993 994 995 996
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

997 998 999 1000
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1001 1002 1003 1004 1005 1006 1007 1008
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1009
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1010
				     PAGE_SIZE);
1011 1012 1013 1014 1015 1016 1017
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1018
			__set_bit(addr >> PAGE_SHIFT,
1019
				  dma_dom->aperture[0]->bitmap);
1020 1021 1022 1023 1024
	}

	return 0;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1047 1048 1049
/*
 * Inits the unity mappings required for a specific device
 */
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1076

1077
/*
1078
 * The address allocator core functions.
1079 1080 1081
 *
 * called with domain->lock held
 */
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1103 1104 1105 1106 1107
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1108
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1109 1110 1111
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1112
	struct amd_iommu *iommu;
1113
	unsigned long i;
1114

1115 1116 1117 1118
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1138
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1151
	/* Initialize the exclusion range if necessary */
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1174
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1175 1176 1177 1178 1179 1180
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1181 1182
	update_domain(&dma_dom->domain);

1183 1184 1185
	return 0;

out_free:
1186 1187
	update_domain(&dma_dom->domain);

1188 1189 1190 1191 1192 1193 1194 1195
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1196 1197 1198 1199 1200 1201 1202
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1203
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1204 1205 1206 1207 1208 1209
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1210 1211
	next_bit >>= PAGE_SHIFT;

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1230
			dom->next_address = address + (pages << PAGE_SHIFT);
1231 1232 1233 1234 1235 1236 1237 1238 1239
			break;
		}

		next_bit = 0;
	}

	return address;
}

1240 1241
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1242
					     unsigned int pages,
1243 1244
					     unsigned long align_mask,
					     u64 dma_mask)
1245 1246 1247
{
	unsigned long address;

1248 1249 1250 1251
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1252

1253
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1254
				     dma_mask, dom->next_address);
1255

1256
	if (address == -1) {
1257
		dom->next_address = 0;
1258 1259
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1260 1261
		dom->need_flush = true;
	}
1262

1263
	if (unlikely(address == -1))
1264
		address = DMA_ERROR_CODE;
1265 1266 1267 1268 1269 1270

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1271 1272 1273 1274 1275
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1276 1277 1278 1279
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1280 1281
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1282

1283 1284
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1285 1286 1287 1288
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1289

1290
	if (address >= dom->next_address)
1291
		dom->need_flush = true;
1292 1293

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1294

A
Akinobu Mita 已提交
1295
	bitmap_clear(range->bitmap, address, pages);
1296

1297 1298
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1361
static void free_pagetable(struct protection_domain *domain)
1362 1363 1364 1365
{
	int i, j;
	u64 *p1, *p2, *p3;

1366
	p1 = domain->pt_root;
1367 1368 1369 1370 1371 1372 1373 1374 1375

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1376
		for (j = 0; j < 512; ++j) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1387 1388

	domain->pt_root = NULL;
1389 1390
}

1391 1392 1393 1394
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1395 1396
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1397 1398
	int i;

1399 1400 1401
	if (!dom)
		return;

1402 1403
	del_domain_from_list(&dom->domain);

1404
	free_pagetable(&dom->domain);
1405

1406 1407 1408 1409 1410 1411
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1412 1413 1414 1415

	kfree(dom);
}

1416 1417
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1418
 * It also initializes the page table and the address allocator data
1419 1420
 * structures required for the dma_ops interface
 */
1421
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1434
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1435
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1436
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1437
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1438 1439 1440 1441
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1442
	dma_dom->need_flush = false;
1443
	dma_dom->target_dev = 0xffff;
1444

1445 1446
	add_domain_to_list(&dma_dom->domain);

1447
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1448 1449
		goto free_dma_dom;

1450
	/*
1451 1452
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1453
	 */
1454
	dma_dom->aperture[0]->bitmap[0] = 1;
1455
	dma_dom->next_address = 0;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1475
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1476 1477
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1478
	u32 flags = 0;
1479

1480 1481 1482
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1483

1484 1485 1486 1487 1488 1489 1490
	if (ats)
		flags |= DTE_FLAG_IOTLB;

	amd_iommu_dev_table[devid].data[3] |= flags;
	amd_iommu_dev_table[devid].data[2]  = domain->id;
	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1501 1502 1503 1504 1505 1506
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
1507 1508
	struct pci_dev *pdev;
	bool ats = false;
1509 1510 1511 1512 1513
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1514 1515 1516 1517
	pdev     = to_pci_dev(dev);

	if (amd_iommu_iotlb_sup)
		ats = pci_ats_enabled(pdev);
1518 1519 1520 1521

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1522
	set_dte_entry(devid, domain, ats);
1523 1524 1525 1526 1527 1528

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1529
	device_flush_dte(dev);
1530 1531 1532 1533 1534 1535
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
1536
	struct pci_dev *pdev;
1537 1538 1539 1540 1541
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1542
	pdev     = to_pci_dev(dev);
1543 1544

	/* decrease reference counters */
1545 1546 1547 1548 1549 1550 1551
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1552

1553
	/* Flush the DTE entry */
1554
	device_flush_dte(dev);
1555 1556 1557 1558 1559 1560
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1561 1562
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1563
{
1564
	struct iommu_dev_data *dev_data, *alias_data;
1565
	int ret;
1566 1567 1568

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1569

1570 1571
	if (!alias_data)
		return -EINVAL;
1572

1573 1574 1575
	/* lock domain */
	spin_lock(&domain->lock);

1576
	/* Some sanity checks */
1577
	ret = -EBUSY;
1578 1579
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1580
		goto out_unlock;
1581

1582 1583
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1584
		goto out_unlock;
1585 1586

	/* Do real assignment */
1587 1588 1589 1590
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1591 1592

		atomic_inc(&alias_data->bind);
1593
	}
1594

1595 1596
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1597

1598 1599
	atomic_inc(&dev_data->bind);

1600 1601 1602 1603
	ret = 0;

out_unlock:

1604 1605
	/* ready */
	spin_unlock(&domain->lock);
1606

1607
	return ret;
1608
}
1609

1610 1611 1612 1613
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1614 1615
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1616
{
1617
	struct pci_dev *pdev = to_pci_dev(dev);
1618
	unsigned long flags;
1619
	int ret;
1620

1621 1622 1623
	if (amd_iommu_iotlb_sup)
		pci_enable_ats(pdev, PAGE_SHIFT);

1624
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1625
	ret = __attach_device(dev, domain);
1626 1627
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1628 1629 1630 1631 1632
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1633
	domain_flush_tlb_pde(domain);
1634 1635

	return ret;
1636 1637
}

1638 1639 1640
/*
 * Removes a device from a protection domain (unlocked)
 */
1641
static void __detach_device(struct device *dev)
1642
{
1643
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1644
	struct iommu_dev_data *alias_data;
1645
	struct protection_domain *domain;
1646
	unsigned long flags;
1647

1648
	BUG_ON(!dev_data->domain);
1649

1650 1651 1652
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1653

1654
	if (dev_data->alias != dev) {
1655
		alias_data = get_dev_data(dev_data->alias);
1656 1657
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1658 1659
	}

1660 1661 1662
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1663
	spin_unlock_irqrestore(&domain->lock, flags);
1664 1665 1666

	/*
	 * If we run in passthrough mode the device must be assigned to the
1667 1668
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1669
	 */
1670 1671
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1672
		__attach_device(dev, pt_domain);
1673 1674 1675 1676 1677
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1678
static void detach_device(struct device *dev)
1679
{
1680
	struct pci_dev *pdev = to_pci_dev(dev);
1681 1682 1683 1684
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1685
	__detach_device(dev);
1686
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1687 1688 1689

	if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
		pci_disable_ats(pdev);
1690
}
1691

1692 1693 1694 1695 1696 1697 1698
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1699
	struct iommu_dev_data *dev_data, *alias_data;
1700 1701 1702
	unsigned long flags;
	u16 devid, alias;

1703 1704 1705 1706 1707 1708
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1709 1710

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1711
	dom = dev_data->domain;
1712
	if (dom == NULL &&
1713 1714 1715
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1716 1717 1718 1719 1720 1721 1722
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1723 1724 1725 1726
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1727
	u16 devid;
1728 1729 1730
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1731
	unsigned long flags;
1732

1733 1734
	if (!check_device(dev))
		return 0;
1735

1736 1737
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1738 1739

	switch (action) {
1740
	case BUS_NOTIFY_UNBOUND_DRIVER:
1741 1742 1743

		domain = domain_for_device(dev);

1744 1745
		if (!domain)
			goto out;
1746 1747
		if (iommu_pass_through)
			break;
1748
		detach_device(dev);
1749 1750
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1751 1752 1753 1754 1755

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1756 1757 1758 1759
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1760
		dma_domain = dma_ops_domain_alloc();
1761 1762 1763 1764 1765 1766 1767 1768
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1769
		break;
1770 1771 1772 1773
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1774 1775 1776 1777
	default:
		goto out;
	}

1778
	device_flush_dte(dev);
1779 1780 1781 1782 1783 1784
	iommu_completion_wait(iommu);

out:
	return 0;
}

1785
static struct notifier_block device_nb = {
1786 1787
	.notifier_call = device_change_notifier,
};
1788

1789 1790 1791 1792 1793
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1807
static struct protection_domain *get_domain(struct device *dev)
1808
{
1809
	struct protection_domain *domain;
1810
	struct dma_ops_domain *dma_dom;
1811
	u16 devid = get_device_id(dev);
1812

1813
	if (!check_device(dev))
1814
		return ERR_PTR(-EINVAL);
1815

1816 1817 1818
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1819

1820 1821
	if (domain != NULL)
		return domain;
1822

1823
	/* Device not bount yet - bind it */
1824
	dma_dom = find_protection_domain(devid);
1825
	if (!dma_dom)
1826 1827
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1828
	DUMP_printk("Using protection domain %d for device %s\n",
1829
		    dma_dom->domain.id, dev_name(dev));
1830

1831
	return &dma_dom->domain;
1832 1833
}

1834 1835
static void update_device_table(struct protection_domain *domain)
{
1836
	struct iommu_dev_data *dev_data;
1837

1838
	list_for_each_entry(dev_data, &domain->dev_list, list) {
1839
		struct pci_dev *pdev = to_pci_dev(dev_data->dev);
1840
		u16 devid = get_device_id(dev_data->dev);
1841
		set_dte_entry(devid, domain, pci_ats_enabled(pdev));
1842 1843 1844 1845 1846 1847 1848 1849 1850
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1851 1852 1853

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1854 1855 1856 1857

	domain->updated = false;
}

1858 1859 1860 1861 1862 1863
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1864
	struct aperture_range *aperture;
1865 1866
	u64 *pte, *pte_page;

1867 1868 1869 1870 1871
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1872
	if (!pte) {
1873
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1874
				GFP_ATOMIC);
1875 1876
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1877
		pte += PM_LEVEL_INDEX(0, address);
1878

1879
	update_domain(&dom->domain);
1880 1881 1882 1883

	return pte;
}

1884 1885 1886 1887
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1888
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1899
	pte  = dma_ops_get_pte(dom, address);
1900
	if (!pte)
1901
		return DMA_ERROR_CODE;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1919 1920 1921
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1922
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1923 1924
				 unsigned long address)
{
1925
	struct aperture_range *aperture;
1926 1927 1928 1929 1930
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1931 1932 1933 1934 1935 1936 1937
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1938

1939
	pte += PM_LEVEL_INDEX(0, address);
1940 1941 1942 1943 1944 1945

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1946 1947
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1948 1949
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1950 1951
 * Must be called with the domain lock held.
 */
1952 1953 1954 1955
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1956
			       int dir,
1957 1958
			       bool align,
			       u64 dma_mask)
1959 1960
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1961
	dma_addr_t address, start, ret;
1962
	unsigned int pages;
1963
	unsigned long align_mask = 0;
1964 1965
	int i;

1966
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1967 1968
	paddr &= PAGE_MASK;

1969 1970
	INC_STATS_COUNTER(total_map_requests);

1971 1972 1973
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1974 1975 1976
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1977
retry:
1978 1979
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1980
	if (unlikely(address == DMA_ERROR_CODE)) {
1981 1982 1983 1984 1985 1986 1987
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1988
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1989 1990 1991
			goto out;

		/*
1992
		 * aperture was successfully enlarged by 128 MB, try
1993 1994 1995 1996
		 * allocation again
		 */
		goto retry;
	}
1997 1998 1999

	start = address;
	for (i = 0; i < pages; ++i) {
2000
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2001
		if (ret == DMA_ERROR_CODE)
2002 2003
			goto out_unmap;

2004 2005 2006 2007 2008
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2009 2010
	ADD_STATS_COUNTER(alloced_io_mem, size);

2011
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2012
		domain_flush_tlb(&dma_dom->domain);
2013
		dma_dom->need_flush = false;
2014
	} else if (unlikely(amd_iommu_np_cache))
2015
		domain_flush_pages(&dma_dom->domain, address, size);
2016

2017 2018
out:
	return address;
2019 2020 2021 2022 2023

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2024
		dma_ops_domain_unmap(dma_dom, start);
2025 2026 2027 2028
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2029
	return DMA_ERROR_CODE;
2030 2031
}

2032 2033 2034 2035
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2036
static void __unmap_single(struct dma_ops_domain *dma_dom,
2037 2038 2039 2040
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2041
	dma_addr_t flush_addr;
2042 2043 2044
	dma_addr_t i, start;
	unsigned int pages;

2045
	if ((dma_addr == DMA_ERROR_CODE) ||
2046
	    (dma_addr + size > dma_dom->aperture_size))
2047 2048
		return;

2049
	flush_addr = dma_addr;
2050
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2051 2052 2053 2054
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2055
		dma_ops_domain_unmap(dma_dom, start);
2056 2057 2058
		start += PAGE_SIZE;
	}

2059 2060
	SUB_STATS_COUNTER(alloced_io_mem, size);

2061
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2062

2063
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2064
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2065 2066
		dma_dom->need_flush = false;
	}
2067 2068
}

2069 2070 2071
/*
 * The exported map_single function for dma_ops.
 */
2072 2073 2074 2075
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2076 2077 2078 2079
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2080
	u64 dma_mask;
2081
	phys_addr_t paddr = page_to_phys(page) + offset;
2082

2083 2084
	INC_STATS_COUNTER(cnt_map_single);

2085 2086
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2087
		return (dma_addr_t)paddr;
2088 2089
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2090

2091 2092
	dma_mask = *dev->dma_mask;

2093
	spin_lock_irqsave(&domain->lock, flags);
2094

2095
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2096
			    dma_mask);
2097
	if (addr == DMA_ERROR_CODE)
2098 2099
		goto out;

2100
	domain_flush_complete(domain);
2101 2102 2103 2104 2105 2106 2107

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2108 2109 2110
/*
 * The exported unmap_single function for dma_ops.
 */
2111 2112
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2113 2114 2115 2116
{
	unsigned long flags;
	struct protection_domain *domain;

2117 2118
	INC_STATS_COUNTER(cnt_unmap_single);

2119 2120
	domain = get_domain(dev);
	if (IS_ERR(domain))
2121 2122
		return;

2123 2124
	spin_lock_irqsave(&domain->lock, flags);

2125
	__unmap_single(domain->priv, dma_addr, size, dir);
2126

2127
	domain_flush_complete(domain);
2128 2129 2130 2131

	spin_unlock_irqrestore(&domain->lock, flags);
}

2132 2133 2134 2135
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2150 2151 2152 2153
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2154
static int map_sg(struct device *dev, struct scatterlist *sglist,
2155 2156
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2157 2158 2159 2160 2161 2162 2163
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2164
	u64 dma_mask;
2165

2166 2167
	INC_STATS_COUNTER(cnt_map_sg);

2168 2169
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2170
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2171 2172
	else if (IS_ERR(domain))
		return 0;
2173

2174
	dma_mask = *dev->dma_mask;
2175 2176 2177 2178 2179 2180

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2181
		s->dma_address = __map_single(dev, domain->priv,
2182 2183
					      paddr, s->length, dir, false,
					      dma_mask);
2184 2185 2186 2187 2188 2189 2190 2191

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2192
	domain_flush_complete(domain);
2193 2194 2195 2196 2197 2198 2199 2200

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2201
			__unmap_single(domain->priv, s->dma_address,
2202 2203 2204 2205 2206 2207 2208 2209 2210
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2211 2212 2213 2214
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2215
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2216 2217
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2218 2219 2220 2221 2222 2223
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2224 2225
	INC_STATS_COUNTER(cnt_unmap_sg);

2226 2227
	domain = get_domain(dev);
	if (IS_ERR(domain))
2228 2229
		return;

2230 2231 2232
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2233
		__unmap_single(domain->priv, s->dma_address,
2234 2235 2236 2237
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2238
	domain_flush_complete(domain);
2239 2240 2241 2242

	spin_unlock_irqrestore(&domain->lock, flags);
}

2243 2244 2245
/*
 * The exported alloc_coherent function for dma_ops.
 */
2246 2247 2248 2249 2250 2251 2252
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2253
	u64 dma_mask = dev->coherent_dma_mask;
2254

2255 2256
	INC_STATS_COUNTER(cnt_alloc_coherent);

2257 2258
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2259 2260 2261
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2262 2263
	} else if (IS_ERR(domain))
		return NULL;
2264

2265 2266 2267
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2268 2269 2270

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2271
		return NULL;
2272 2273 2274

	paddr = virt_to_phys(virt_addr);

2275 2276 2277
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2278 2279
	spin_lock_irqsave(&domain->lock, flags);

2280
	*dma_addr = __map_single(dev, domain->priv, paddr,
2281
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2282

2283
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2284
		spin_unlock_irqrestore(&domain->lock, flags);
2285
		goto out_free;
J
Jiri Slaby 已提交
2286
	}
2287

2288
	domain_flush_complete(domain);
2289 2290 2291 2292

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2293 2294 2295 2296 2297 2298

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2299 2300
}

2301 2302 2303
/*
 * The exported free_coherent function for dma_ops.
 */
2304 2305 2306 2307 2308 2309
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2310 2311
	INC_STATS_COUNTER(cnt_free_coherent);

2312 2313
	domain = get_domain(dev);
	if (IS_ERR(domain))
2314 2315
		goto free_mem;

2316 2317
	spin_lock_irqsave(&domain->lock, flags);

2318
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2319

2320
	domain_flush_complete(domain);
2321 2322 2323 2324 2325 2326 2327

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2328 2329 2330 2331 2332 2333
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2334
	return check_device(dev);
2335 2336
}

2337
/*
2338 2339
 * The function for pre-allocating protection domains.
 *
2340 2341 2342 2343
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2344
static void prealloc_protection_domains(void)
2345 2346 2347
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2348
	u16 devid;
2349

2350
	for_each_pci_dev(dev) {
2351 2352 2353

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2354
			continue;
2355 2356

		/* Is there already any domain for it? */
2357
		if (domain_for_device(&dev->dev))
2358
			continue;
2359 2360 2361

		devid = get_device_id(&dev->dev);

2362
		dma_dom = dma_ops_domain_alloc();
2363 2364 2365
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2366 2367
		dma_dom->target_dev = devid;

2368
		attach_device(&dev->dev, &dma_dom->domain);
2369

2370
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2371 2372 2373
	}
}

2374
static struct dma_map_ops amd_iommu_dma_ops = {
2375 2376
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2377 2378
	.map_page = map_page,
	.unmap_page = unmap_page,
2379 2380
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2381
	.dma_supported = amd_iommu_dma_supported,
2382 2383
};

2384 2385 2386
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2387 2388 2389 2390 2391 2392

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2393 2394 2395 2396 2397
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2398 2399 2400 2401 2402
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2403
	for_each_iommu(iommu) {
2404
		iommu->default_dom = dma_ops_domain_alloc();
2405 2406
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2407
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2408 2409 2410 2411 2412
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2413
	/*
2414
	 * Pre-allocate the protection domains for each device.
2415
	 */
2416
	prealloc_protection_domains();
2417 2418

	iommu_detected = 1;
2419
	swiotlb = 0;
2420

2421
	/* Make the driver finally visible to the drivers */
2422 2423
	dma_ops = &amd_iommu_dma_ops;

2424 2425
	amd_iommu_stats_init();

2426 2427 2428 2429
	return 0;

free_domains:

2430
	for_each_iommu(iommu) {
2431 2432 2433 2434 2435 2436
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2450
	struct iommu_dev_data *dev_data, *next;
2451 2452 2453 2454
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2455 2456 2457
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2458
		__detach_device(dev);
2459 2460
		atomic_set(&dev_data->bind, 0);
	}
2461 2462 2463 2464

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2465 2466 2467 2468 2469
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2470 2471
	del_domain_from_list(domain);

2472 2473 2474 2475 2476 2477 2478
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2479 2480 2481 2482 2483
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2484
		return NULL;
2485 2486

	spin_lock_init(&domain->lock);
2487
	mutex_init(&domain->api_lock);
2488 2489
	domain->id = domain_id_alloc();
	if (!domain->id)
2490
		goto out_err;
2491
	INIT_LIST_HEAD(&domain->dev_list);
2492

2493 2494
	add_domain_to_list(domain);

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2509
		goto out_free;
2510 2511

	domain->mode    = PAGE_MODE_3_LEVEL;
2512 2513 2514 2515 2516 2517 2518 2519 2520
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2521
	protection_domain_free(domain);
2522 2523 2524 2525

	return -ENOMEM;
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2540
	protection_domain_free(domain);
2541 2542 2543 2544

	dom->priv = NULL;
}

2545 2546 2547
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2548
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2549 2550 2551
	struct amd_iommu *iommu;
	u16 devid;

2552
	if (!check_device(dev))
2553 2554
		return;

2555
	devid = get_device_id(dev);
2556

2557
	if (dev_data->domain != NULL)
2558
		detach_device(dev);
2559 2560 2561 2562 2563

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2564
	device_flush_dte(dev);
2565 2566 2567
	iommu_completion_wait(iommu);
}

2568 2569 2570 2571
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2572
	struct iommu_dev_data *dev_data;
2573
	struct amd_iommu *iommu;
2574
	int ret;
2575 2576
	u16 devid;

2577
	if (!check_device(dev))
2578 2579
		return -EINVAL;

2580 2581
	dev_data = dev->archdata.iommu;

2582
	devid = get_device_id(dev);
2583 2584 2585 2586 2587

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2588
	if (dev_data->domain)
2589
		detach_device(dev);
2590

2591
	ret = attach_device(dev, domain);
2592 2593 2594

	iommu_completion_wait(iommu);

2595
	return ret;
2596 2597
}

2598 2599
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2600
{
2601
	unsigned long page_size = 0x1000UL << gfp_order;
2602 2603 2604 2605 2606 2607 2608 2609 2610
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2611
	mutex_lock(&domain->api_lock);
2612
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2613 2614
	mutex_unlock(&domain->api_lock);

2615
	return ret;
2616 2617
}

2618 2619
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2620 2621
{
	struct protection_domain *domain = dom->priv;
2622
	unsigned long page_size, unmap_size;
2623

2624
	page_size  = 0x1000UL << gfp_order;
2625

2626
	mutex_lock(&domain->api_lock);
2627
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2628
	mutex_unlock(&domain->api_lock);
2629

2630
	domain_flush_tlb_pde(domain);
2631

2632
	return get_order(unmap_size);
2633 2634
}

2635 2636 2637 2638
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2639
	unsigned long offset_mask;
2640
	phys_addr_t paddr;
2641
	u64 *pte, __pte;
2642

2643
	pte = fetch_pte(domain, iova);
2644

2645
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2646 2647
		return 0;

2648 2649 2650 2651 2652 2653 2654
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2655 2656 2657 2658

	return paddr;
}

S
Sheng Yang 已提交
2659 2660 2661
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2662 2663 2664 2665 2666
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2667 2668 2669
	return 0;
}

2670 2671 2672 2673 2674
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2675 2676
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2677
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2678
	.domain_has_cap = amd_iommu_domain_has_cap,
2679 2680
};

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2693
	struct amd_iommu *iommu;
2694
	struct pci_dev *dev = NULL;
2695
	u16 devid;
2696

2697
	/* allocate passthrough domain */
2698 2699 2700 2701 2702 2703
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2704
	for_each_pci_dev(dev) {
2705
		if (!check_device(&dev->dev))
2706 2707
			continue;

2708 2709
		devid = get_device_id(&dev->dev);

2710
		iommu = amd_iommu_rlookup_table[devid];
2711 2712 2713
		if (!iommu)
			continue;

2714
		attach_device(&dev->dev, pt_domain);
2715 2716 2717 2718 2719 2720
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}