amd_iommu.c 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47 48 49
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

50 51
static struct iommu_ops amd_iommu_ops;

52 53 54
/*
 * general struct to manage commands send to an IOMMU
 */
55
struct iommu_cmd {
56 57 58
	u32 data[4];
};

59 60
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
61
static struct dma_ops_domain *find_protection_domain(u16 devid);
62
static u64 *alloc_pte(struct protection_domain *domain,
63 64
		      unsigned long address, int end_lvl,
		      u64 **pte_page, gfp_t gfp);
65 66 67
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
68
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
69
static u64 *fetch_pte(struct protection_domain *domain,
70
		      unsigned long address, int map_size);
71
static void update_domain(struct protection_domain *domain);
72

73 74 75 76 77 78
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

79
DECLARE_STATS_COUNTER(compl_wait);
80
DECLARE_STATS_COUNTER(cnt_map_single);
81
DECLARE_STATS_COUNTER(cnt_unmap_single);
82
DECLARE_STATS_COUNTER(cnt_map_sg);
83
DECLARE_STATS_COUNTER(cnt_unmap_sg);
84
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
85
DECLARE_STATS_COUNTER(cnt_free_coherent);
86
DECLARE_STATS_COUNTER(cross_page);
87
DECLARE_STATS_COUNTER(domain_flush_single);
88
DECLARE_STATS_COUNTER(domain_flush_all);
89
DECLARE_STATS_COUNTER(alloced_io_mem);
90
DECLARE_STATS_COUNTER(total_map_requests);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
116 117

	amd_iommu_stats_add(&compl_wait);
118
	amd_iommu_stats_add(&cnt_map_single);
119
	amd_iommu_stats_add(&cnt_unmap_single);
120
	amd_iommu_stats_add(&cnt_map_sg);
121
	amd_iommu_stats_add(&cnt_unmap_sg);
122
	amd_iommu_stats_add(&cnt_alloc_coherent);
123
	amd_iommu_stats_add(&cnt_free_coherent);
124
	amd_iommu_stats_add(&cross_page);
125
	amd_iommu_stats_add(&domain_flush_single);
126
	amd_iommu_stats_add(&domain_flush_all);
127
	amd_iommu_stats_add(&alloced_io_mem);
128
	amd_iommu_stats_add(&total_map_requests);
129 130 131 132
}

#endif

133
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
134 135
static int iommu_has_npcache(struct amd_iommu *iommu)
{
136
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
137 138
}

139 140 141 142 143 144
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

145 146 147 148 149 150 151 152 153
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

154 155 156 157 158 159 160 161 162
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

163
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
164 165 166 167 168 169 170 171
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

172
	printk(KERN_ERR "AMD-Vi: Event logged [");
173 174 175 176 177 178 179

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
180
		dump_dte_entry(devid);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
202
		reset_iommu_command_buffer(iommu);
203
		dump_command(address);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
237
		iommu_print_event(iommu, iommu->evt_buf + head);
238 239 240 241 242 243 244 245
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

246 247
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
248 249
	struct amd_iommu *iommu;

250
	for_each_iommu(iommu)
251 252 253
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
254 255
}

256 257 258 259 260 261 262 263 264 265
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
266
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
267 268 269 270 271
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
272
	target = iommu->cmd_buf + tail;
273 274 275 276 277 278 279 280 281 282
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

283 284 285 286
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
287
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
288 289 290 291 292 293
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
294
	if (!ret)
295
		iommu->need_sync = true;
296 297 298 299 300
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

301 302 303 304 305 306 307 308 309 310
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

311 312
	INC_STATS_COUNTER(compl_wait);

313 314 315 316 317 318 319 320 321 322 323
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

324 325 326 327 328
	if (unlikely(i == EXIT_LOOP_COUNT)) {
		spin_unlock(&iommu->lock);
		reset_iommu_command_buffer(iommu);
		spin_lock(&iommu->lock);
	}
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

346 347 348 349 350 351 352
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
353 354
static int iommu_completion_wait(struct amd_iommu *iommu)
{
355 356
	int ret = 0;
	unsigned long flags;
357

358 359
	spin_lock_irqsave(&iommu->lock, flags);

360 361 362
	if (!iommu->need_sync)
		goto out;

363
	ret = __iommu_completion_wait(iommu);
364

365
	iommu->need_sync = false;
366 367

	if (ret)
368
		goto out;
369

370
	__iommu_wait_for_completion(iommu);
371

372 373
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
374 375 376 377

	return 0;
}

378 379 380
/*
 * Command send function for invalidating a device table entry
 */
381 382
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
383
	struct iommu_cmd cmd;
384
	int ret;
385 386 387 388 389 390 391

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

392 393 394
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

412 413 414
/*
 * Generic command send function for invalidaing TLB entries
 */
415 416 417
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
418
	struct iommu_cmd cmd;
419
	int ret;
420

421
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
422

423 424 425
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
426 427
}

428 429 430 431 432
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
433 434 435
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
436
	int s = 0;
437
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
438 439 440

	address &= PAGE_MASK;

441 442 443 444 445 446 447
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
448 449
	}

450 451
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

452 453
	return 0;
}
454

455 456 457 458 459
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

460 461
	INC_STATS_COUNTER(domain_flush_single);

462 463 464
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

465 466 467 468 469 470 471 472 473 474
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

475
/*
476
 * This function flushes one domain on one IOMMU
477
 */
478
static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
479 480
{
	struct iommu_cmd cmd;
481
	unsigned long flags;
482

483 484 485
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

486 487 488 489 490
	spin_lock_irqsave(&iommu->lock, flags);
	__iommu_queue_command(iommu, &cmd);
	__iommu_completion_wait(iommu);
	__iommu_wait_for_completion(iommu);
	spin_unlock_irqrestore(&iommu->lock, flags);
491 492
}

493
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
494 495 496 497 498 499
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
500
		flush_domain_on_iommu(iommu, i);
501
	}
502 503 504

}

505 506 507 508 509 510 511 512
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	struct amd_iommu *iommu;

513 514
	INC_STATS_COUNTER(domain_flush_all);

515 516
	for_each_iommu(iommu)
		flush_domain_on_iommu(iommu, domid);
517 518
}

519
void amd_iommu_flush_all_domains(void)
520 521 522 523 524
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		flush_all_domains_on_iommu(iommu);
525 526
}

527
static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
528 529 530
{
	int i;

531 532
	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (iommu != amd_iommu_rlookup_table[i])
533
			continue;
534 535 536

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
537 538 539
	}
}

540
static void flush_devices_by_domain(struct protection_domain *domain)
541 542 543 544 545
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
546 547
		if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
		    (amd_iommu_pd_table[i] != domain))
548 549 550 551 552 553 554 555 556 557 558
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

559 560 561 562
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

563 564 565 566 567
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

	iommu->reset_in_progress = true;

568 569 570
	amd_iommu_reset_cmd_buffer(iommu);
	flush_all_devices_for_iommu(iommu);
	flush_all_domains_on_iommu(iommu);
571 572

	iommu->reset_in_progress = false;
573 574
}

575 576 577 578 579
void amd_iommu_flush_all_devices(void)
{
	flush_devices_by_domain(NULL);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
594 595 596
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
597 598
			  int prot,
			  int map_size)
599
{
600
	u64 __pte, *pte;
601 602

	bus_addr  = PAGE_ALIGN(bus_addr);
603
	phys_addr = PAGE_ALIGN(phys_addr);
604

605 606 607
	BUG_ON(!PM_ALIGNED(map_size, bus_addr));
	BUG_ON(!PM_ALIGNED(map_size, phys_addr));

608
	if (!(prot & IOMMU_PROT_MASK))
609 610
		return -EINVAL;

611
	pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
612 613 614 615 616 617 618 619 620 621 622 623

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

624 625
	update_domain(dom);

626 627 628
	return 0;
}

629
static void iommu_unmap_page(struct protection_domain *dom,
630
			     unsigned long bus_addr, int map_size)
631
{
632
	u64 *pte = fetch_pte(dom, bus_addr, map_size);
633

634 635
	if (pte)
		*pte = 0;
636 637
}

638 639 640 641
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
642 643 644 645 646 647 648 649 650 651 652 653 654 655
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

656 657 658 659 660 661
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

678 679 680 681
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
682 683 684 685 686 687 688 689
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
690 691
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
				     PM_MAP_4k);
692 693 694 695 696 697 698
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
699
			__set_bit(addr >> PAGE_SHIFT,
700
				  dma_dom->aperture[0]->bitmap);
701 702 703 704 705
	}

	return 0;
}

706 707 708
/*
 * Inits the unity mappings required for a specific device
 */
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

726 727 728 729 730 731 732 733 734
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
735

736
/*
737
 * The address allocator core functions.
738 739 740
 *
 * called with domain->lock held
 */
741

742 743 744 745
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
746
static u64 *fetch_pte(struct protection_domain *domain,
747
		      unsigned long address, int map_size)
748
{
749
	int level;
750 751
	u64 *pte;

752 753
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
754

755
	while (level > map_size) {
756 757
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;
758

759
		level -= 1;
760

761 762
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
763

764 765 766 767
		if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
			pte = NULL;
			break;
		}
768
	}
769 770 771 772

	return pte;
}

773 774 775 776 777
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
778 779
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
780 781 782
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
783
	int i;
784

785 786 787 788
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
808
			pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
809 810 811 812 813 814 815 816 817 818 819 820
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
841
		u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
842 843 844 845 846 847
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

848 849
	update_domain(&dma_dom->domain);

850 851 852
	return 0;

out_free:
853 854
	update_domain(&dma_dom->domain);

855 856 857 858 859 860 861 862
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

863 864 865 866 867 868 869
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
870
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
871 872 873 874 875 876
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

877 878
	next_bit >>= PAGE_SHIFT;

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
897
			dom->next_address = address + (pages << PAGE_SHIFT);
898 899 900 901 902 903 904 905 906
			break;
		}

		next_bit = 0;
	}

	return address;
}

907 908
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
909
					     unsigned int pages,
910 911
					     unsigned long align_mask,
					     u64 dma_mask)
912 913 914
{
	unsigned long address;

915 916 917 918
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
919

920
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
921
				     dma_mask, dom->next_address);
922

923
	if (address == -1) {
924
		dom->next_address = 0;
925 926
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
927 928
		dom->need_flush = true;
	}
929

930
	if (unlikely(address == -1))
931 932 933 934 935 936 937
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

938 939 940 941 942
/*
 * The address free function.
 *
 * called with domain->lock held
 */
943 944 945 946
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
947 948
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
949

950 951
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

952 953 954 955
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
956

957
	if (address >= dom->next_address)
958
		dom->need_flush = true;
959 960

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
961

962 963
	iommu_area_free(range->bitmap, address, pages);

964 965
}

966 967 968 969 970 971 972 973 974 975
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

993 994 995 996 997 998 999 1000 1001 1002
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1003 1004 1005 1006
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
1007 1008 1009 1010
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
1011
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1012 1013 1014 1015

	if (start_page + pages > last_page)
		pages = last_page - start_page;

1016 1017 1018 1019 1020
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
1021 1022
}

1023
static void free_pagetable(struct protection_domain *domain)
1024 1025 1026 1027
{
	int i, j;
	u64 *p1, *p2, *p3;

1028
	p1 = domain->pt_root;
1029 1030 1031 1032 1033 1034 1035 1036 1037

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1038
		for (j = 0; j < 512; ++j) {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1049 1050

	domain->pt_root = NULL;
1051 1052
}

1053 1054 1055 1056
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1057 1058
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1059 1060
	int i;

1061 1062 1063
	if (!dom)
		return;

1064
	free_pagetable(&dom->domain);
1065

1066 1067 1068 1069 1070 1071
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1072 1073 1074 1075

	kfree(dom);
}

1076 1077 1078 1079 1080
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1081
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1094
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1095
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1096
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1097 1098 1099 1100
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1101
	dma_dom->need_flush = false;
1102
	dma_dom->target_dev = 0xffff;
1103

1104
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1105 1106
		goto free_dma_dom;

1107
	/*
1108 1109
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1110
	 */
1111
	dma_dom->aperture[0]->bitmap[0] = 1;
1112
	dma_dom->next_address = 0;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1132 1133 1134 1135
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1148
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1149 1150
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1151

1152 1153 1154
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1155 1156

	amd_iommu_dev_table[devid].data[2] = domain->id;
1157 1158
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1159 1160

	amd_iommu_pd_table[devid] = domain;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
static void __attach_device(struct amd_iommu *iommu,
			    struct protection_domain *domain,
			    u16 devid)
{
	/* lock domain */
	spin_lock(&domain->lock);

	/* update DTE entry */
	set_dte_entry(devid, domain);
1176 1177 1178 1179 1180

	domain->dev_cnt += 1;

	/* ready */
	spin_unlock(&domain->lock);
1181
}
1182

1183 1184 1185 1186
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1187 1188 1189 1190
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
{
1191 1192 1193
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1194
	__attach_device(iommu, domain, devid);
1195 1196
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1197 1198 1199 1200 1201
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1202
	iommu_queue_inv_dev_entry(iommu, devid);
1203
	iommu_flush_tlb_pde(iommu, domain->id);
1204 1205
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

1223 1224
	amd_iommu_apply_erratum_63(devid);

1225 1226 1227 1228 1229
	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
1230 1231 1232 1233 1234 1235 1236 1237 1238

	/*
	 * If we run in passthrough mode the device must be assigned to the
	 * passthrough domain if it is detached from any other domain
	 */
	if (iommu_pass_through) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
		__attach_device(iommu, pt_domain, devid);
	}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1263
	unsigned long flags;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1281
	case BUS_NOTIFY_UNBOUND_DRIVER:
1282 1283
		if (!domain)
			goto out;
1284 1285
		if (iommu_pass_through)
			break;
1286
		detach_device(domain, devid);
1287 1288 1289 1290 1291 1292
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1293
		dma_domain = dma_ops_domain_alloc(iommu);
1294 1295 1296 1297 1298 1299 1300 1301
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1314
static struct notifier_block device_nb = {
1315 1316
	.notifier_call = device_change_notifier,
};
1317

1318 1319 1320 1321 1322 1323
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1362 1363 1364 1365 1366 1367 1368
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1369 1370 1371 1372 1373 1374 1375 1376 1377
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1378 1379 1380 1381 1382 1383
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1384 1385

	pcidev = to_pci_dev(dev);
1386
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1387

1388
	/* device not translated by any IOMMU in the system? */
1389
	if (_bdf > amd_iommu_last_bdf)
1390 1391 1392 1393 1394 1395 1396 1397 1398
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1399 1400 1401
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1402
		*domain = &dma_dom->domain;
1403
		attach_device(*iommu, *domain, *bdf);
1404 1405
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1406 1407
	}

1408
	if (domain_for_device(_bdf) == NULL)
1409
		attach_device(*iommu, *domain, _bdf);
1410

1411 1412 1413
	return 1;
}

1414 1415
static void update_device_table(struct protection_domain *domain)
{
1416
	unsigned long flags;
1417 1418 1419 1420 1421
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] != domain)
			continue;
1422
		write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1423
		set_dte_entry(i, domain);
1424
		write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
	flush_devices_by_domain(domain);
	iommu_flush_domain(domain->id);

	domain->updated = false;
}

1440
/*
1441 1442 1443
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
1444
 */
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

1467
static u64 *alloc_pte(struct protection_domain *domain,
1468 1469 1470 1471
		      unsigned long address,
		      int end_lvl,
		      u64 **pte_page,
		      gfp_t gfp)
1472 1473
{
	u64 *pte, *page;
1474
	int level;
1475

1476 1477
	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);
1478

1479 1480
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1481

1482
	while (level > end_lvl) {
1483 1484 1485 1486 1487 1488
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}
1489

1490
		level -= 1;
1491

1492
		pte = IOMMU_PTE_PAGE(*pte);
1493

1494
		if (pte_page && level == end_lvl)
1495
			*pte_page = pte;
1496

1497 1498
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1509
	struct aperture_range *aperture;
1510 1511
	u64 *pte, *pte_page;

1512 1513 1514 1515 1516
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1517
	if (!pte) {
1518 1519
		pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
				GFP_ATOMIC);
1520 1521
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1522
		pte += PM_LEVEL_INDEX(0, address);
1523

1524
	update_domain(&dom->domain);
1525 1526 1527 1528

	return pte;
}

1529 1530 1531 1532
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1545
	pte  = dma_ops_get_pte(dom, address);
1546 1547
	if (!pte)
		return bad_dma_address;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1565 1566 1567
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1568 1569 1570 1571
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1572
	struct aperture_range *aperture;
1573 1574 1575 1576 1577
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1578 1579 1580 1581 1582 1583 1584
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1585

1586
	pte += PM_LEVEL_INDEX(0, address);
1587 1588 1589 1590 1591 1592

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1593 1594
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1595 1596
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1597 1598
 * Must be called with the domain lock held.
 */
1599 1600 1601 1602 1603
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1604
			       int dir,
1605 1606
			       bool align,
			       u64 dma_mask)
1607 1608
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1609
	dma_addr_t address, start, ret;
1610
	unsigned int pages;
1611
	unsigned long align_mask = 0;
1612 1613
	int i;

1614
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1615 1616
	paddr &= PAGE_MASK;

1617 1618
	INC_STATS_COUNTER(total_map_requests);

1619 1620 1621
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1622 1623 1624
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1625
retry:
1626 1627
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1645 1646 1647

	start = address;
	for (i = 0; i < pages; ++i) {
1648 1649 1650 1651
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1652 1653 1654 1655 1656
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1657 1658
	ADD_STATS_COUNTER(alloced_io_mem, size);

1659
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1660 1661 1662
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1663 1664
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1665 1666
out:
	return address;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1678 1679
}

1680 1681 1682 1683
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1684 1685 1686 1687 1688 1689 1690 1691 1692
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1693 1694
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1695 1696
		return;

1697
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1698 1699 1700 1701 1702 1703 1704 1705
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1706 1707
	SUB_STATS_COUNTER(alloced_io_mem, size);

1708
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1709

1710
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1711
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1712 1713
		dma_dom->need_flush = false;
	}
1714 1715
}

1716 1717 1718
/*
 * The exported map_single function for dma_ops.
 */
1719 1720 1721 1722
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1723 1724 1725 1726 1727 1728
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1729
	u64 dma_mask;
1730
	phys_addr_t paddr = page_to_phys(page) + offset;
1731

1732 1733
	INC_STATS_COUNTER(cnt_map_single);

1734 1735 1736
	if (!check_device(dev))
		return bad_dma_address;

1737
	dma_mask = *dev->dma_mask;
1738 1739 1740 1741

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1742
		/* device not handled by any AMD IOMMU */
1743 1744
		return (dma_addr_t)paddr;

1745 1746 1747
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1748
	spin_lock_irqsave(&domain->lock, flags);
1749 1750
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1751 1752 1753
	if (addr == bad_dma_address)
		goto out;

1754
	iommu_completion_wait(iommu);
1755 1756 1757 1758 1759 1760 1761

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1762 1763 1764
/*
 * The exported unmap_single function for dma_ops.
 */
1765 1766
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1767 1768 1769 1770 1771 1772
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1773 1774
	INC_STATS_COUNTER(cnt_unmap_single);

1775 1776
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1777
		/* device not handled by any AMD IOMMU */
1778 1779
		return;

1780 1781 1782
	if (!dma_ops_domain(domain))
		return;

1783 1784 1785 1786
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1787
	iommu_completion_wait(iommu);
1788 1789 1790 1791

	spin_unlock_irqrestore(&domain->lock, flags);
}

1792 1793 1794 1795
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1810 1811 1812 1813
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1814
static int map_sg(struct device *dev, struct scatterlist *sglist,
1815 1816
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1817 1818 1819 1820 1821 1822 1823 1824 1825
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1826
	u64 dma_mask;
1827

1828 1829
	INC_STATS_COUNTER(cnt_map_sg);

1830 1831 1832
	if (!check_device(dev))
		return 0;

1833
	dma_mask = *dev->dma_mask;
1834 1835 1836 1837 1838 1839

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1840 1841 1842
	if (!dma_ops_domain(domain))
		return 0;

1843 1844 1845 1846 1847 1848
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1849 1850
					      paddr, s->length, dir, false,
					      dma_mask);
1851 1852 1853 1854 1855 1856 1857 1858

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1859
	iommu_completion_wait(iommu);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1878 1879 1880 1881
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1882
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1883 1884
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1885 1886 1887 1888 1889 1890 1891 1892
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1893 1894
	INC_STATS_COUNTER(cnt_unmap_sg);

1895 1896
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1897 1898
		return;

1899 1900 1901
	if (!dma_ops_domain(domain))
		return;

1902 1903 1904 1905 1906 1907 1908 1909
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1910
	iommu_completion_wait(iommu);
1911 1912 1913 1914

	spin_unlock_irqrestore(&domain->lock, flags);
}

1915 1916 1917
/*
 * The exported alloc_coherent function for dma_ops.
 */
1918 1919 1920 1921 1922 1923 1924 1925 1926
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1927
	u64 dma_mask = dev->coherent_dma_mask;
1928

1929 1930
	INC_STATS_COUNTER(cnt_alloc_coherent);

1931 1932
	if (!check_device(dev))
		return NULL;
1933

1934 1935
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1936

1937
	flag |= __GFP_ZERO;
1938 1939
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1940
		return NULL;
1941 1942 1943 1944 1945 1946 1947 1948

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1949 1950 1951
	if (!dma_ops_domain(domain))
		goto out_free;

1952 1953 1954
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1955 1956 1957
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1958
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1959

J
Jiri Slaby 已提交
1960 1961
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1962
		goto out_free;
J
Jiri Slaby 已提交
1963
	}
1964

1965
	iommu_completion_wait(iommu);
1966 1967 1968 1969

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1970 1971 1972 1973 1974 1975

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1976 1977
}

1978 1979 1980
/*
 * The exported free_coherent function for dma_ops.
 */
1981 1982 1983 1984 1985 1986 1987 1988
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1989 1990
	INC_STATS_COUNTER(cnt_free_coherent);

1991 1992 1993
	if (!check_device(dev))
		return;

1994 1995 1996 1997 1998
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1999 2000 2001
	if (!dma_ops_domain(domain))
		goto free_mem;

2002 2003 2004 2005
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

2006
	iommu_completion_wait(iommu);
2007 2008 2009 2010 2011 2012 2013

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

2038
/*
2039 2040
 * The function for pre-allocating protection domains.
 *
2041 2042 2043 2044
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2045
static void prealloc_protection_domains(void)
2046 2047 2048 2049 2050 2051 2052
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2053
		devid = calc_devid(dev->bus->number, dev->devfn);
2054
		if (devid > amd_iommu_last_bdf)
2055 2056 2057 2058 2059 2060 2061
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
2062
		dma_dom = dma_ops_domain_alloc(iommu);
2063 2064 2065
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2066 2067 2068
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
2069 2070 2071
	}
}

2072
static struct dma_map_ops amd_iommu_dma_ops = {
2073 2074
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2075 2076
	.map_page = map_page,
	.unmap_page = unmap_page,
2077 2078
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2079
	.dma_supported = amd_iommu_dma_supported,
2080 2081
};

2082 2083 2084
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2085 2086 2087 2088 2089
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2090 2091 2092 2093 2094
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2095
	for_each_iommu(iommu) {
2096
		iommu->default_dom = dma_ops_domain_alloc(iommu);
2097 2098
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2099
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2100 2101 2102 2103 2104
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2105 2106 2107 2108
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
2109 2110 2111 2112 2113 2114
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
2115
#ifdef CONFIG_GART_IOMMU
2116 2117
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2118
#endif
2119

2120
	/* Make the driver finally visible to the drivers */
2121 2122
	dma_ops = &amd_iommu_dma_ops;

2123 2124
	register_iommu(&amd_iommu_ops);

2125 2126
	bus_register_notifier(&pci_bus_type, &device_nb);

2127 2128
	amd_iommu_stats_init();

2129 2130 2131 2132
	return 0;

free_domains:

2133
	for_each_iommu(iommu) {
2134 2135 2136 2137 2138 2139
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2177 2178 2179 2180 2181
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2182
		return NULL;
2183 2184 2185 2186

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		goto out_err;

	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2203
		goto out_free;
2204 2205

	domain->mode    = PAGE_MODE_3_LEVEL;
2206 2207 2208 2209 2210 2211 2212 2213 2214
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2215
	protection_domain_free(domain);
2216 2217 2218 2219

	return -ENOMEM;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2293
		detach_device(old_domain, devid);
2294 2295 2296 2297 2298 2299 2300 2301

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2320
		ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2341
		iommu_unmap_page(domain, iova, PM_MAP_4k);
2342 2343 2344 2345 2346 2347
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2348 2349 2350 2351 2352 2353 2354 2355
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2356
	pte = fetch_pte(domain, iova, PM_MAP_4k);
2357

2358
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2359 2360 2361 2362 2363 2364 2365 2366
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2367 2368 2369 2370 2371 2372
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2373 2374 2375 2376 2377 2378 2379 2380
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2381
	.domain_has_cap = amd_iommu_domain_has_cap,
2382 2383
};

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
	struct pci_dev *dev = NULL;
	u16 devid, devid2;

	/* allocate passthroug domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		struct amd_iommu *iommu;

		devid = calc_devid(dev->bus->number, dev->devfn);
		if (devid > amd_iommu_last_bdf)
			continue;

		devid2 = amd_iommu_alias_table[devid];

		iommu = amd_iommu_rlookup_table[devid2];
		if (!iommu)
			continue;

		__attach_device(iommu, pt_domain, devid);
		__attach_device(iommu, pt_domain, devid2);
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}