amd_iommu.c 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/amd_iommu_types.h>
28
#include <asm/amd_iommu.h>
29 30 31

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

32 33
#define EXIT_LOOP_COUNT 10000000

34 35
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

36 37 38
/*
 * general struct to manage commands send to an IOMMU
 */
39
struct iommu_cmd {
40 41 42
	u32 data[4];
};

43 44 45
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

46
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
47 48 49 50 51
static int iommu_has_npcache(struct amd_iommu *iommu)
{
	return iommu->cap & IOMMU_CAP_NPCACHE;
}

52 53 54 55 56 57 58 59 60 61 62
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_NONE;
}

63 64 65 66 67 68 69 70 71 72
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
73
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
74 75 76 77 78
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
79
	target = iommu->cmd_buf + tail;
80 81 82 83 84 85 86 87 88 89
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

90 91 92 93
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
94
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
95 96 97 98 99 100 101 102 103 104 105
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

106 107 108 109 110 111 112
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
113 114
static int iommu_completion_wait(struct amd_iommu *iommu)
{
115 116
	int ret, ready = 0;
	unsigned status = 0;
117
	struct iommu_cmd cmd;
118
	unsigned long i = 0;
119 120

	memset(&cmd, 0, sizeof(cmd));
121
	cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
122 123 124 125 126 127 128 129 130
	CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	iommu->need_sync = 0;

	ret = iommu_queue_command(iommu, &cmd);

	if (ret)
		return ret;

131 132
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
133 134 135
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136 137
	}

138 139 140 141
	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

142 143
	if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
		printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
144 145 146 147

	return 0;
}

148 149 150
/*
 * Command send function for invalidating a device table entry
 */
151 152
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
153
	struct iommu_cmd cmd;
154 155 156 157 158 159 160 161 162 163 164 165

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

166 167 168
/*
 * Generic command send function for invalidaing TLB entries
 */
169 170 171
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
172
	struct iommu_cmd cmd;
173 174 175 176 177

	memset(&cmd, 0, sizeof(cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
	cmd.data[1] |= domid;
178
	cmd.data[2] = lower_32_bits(address);
179
	cmd.data[3] = upper_32_bits(address);
180
	if (s) /* size bit - we flush more than one 4kb page */
181
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
182
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
183 184 185 186 187 188 189
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

190 191 192 193 194
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
195 196 197
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
198
	int s = 0;
199
	unsigned pages = iommu_num_pages(address, size);
200 201 202

	address &= PAGE_MASK;

203 204 205 206 207 208 209
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
210 211
	}

212 213
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

214 215
	return 0;
}
216

217 218 219 220 221 222 223 224
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static int iommu_map(struct protection_domain *dom,
		     unsigned long bus_addr,
		     unsigned long phys_addr,
		     int prot)
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(bus_addr);

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

289 290 291 292
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

307 308 309 310 311 312
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

329 330 331 332
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

355 356 357
/*
 * Inits the unity mappings required for a specific device
 */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

375 376 377 378 379 380 381 382 383
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
384 385 386 387 388 389
static unsigned long dma_mask_to_pages(unsigned long mask)
{
	return (mask >> PAGE_SHIFT) +
		(PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
}

390 391 392 393 394
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
395 396
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
397 398
					     unsigned int pages,
					     unsigned long align_mask)
399 400 401 402 403 404 405 406 407 408
{
	unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
	unsigned long address;
	unsigned long size = dom->aperture_size >> PAGE_SHIFT;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
	limit = limit < size ? limit : size;

409
	if (dom->next_bit >= limit) {
410
		dom->next_bit = 0;
411 412
		dom->need_flush = true;
	}
413 414

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
415
				   0 , boundary_size, align_mask);
416
	if (address == -1) {
417
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
418
				0, boundary_size, align_mask);
419 420
		dom->need_flush = true;
	}
421 422 423 424 425 426 427 428 429 430 431 432

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

433 434 435 436 437
/*
 * The address free function.
 *
 * called with domain->lock held
 */
438 439 440 441 442 443 444 445
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
}

446 447 448 449 450 451 452 453 454 455
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

473 474 475 476
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	set_bit_string(dom->bitmap, start_page, pages);
}

static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
	int i, j;
	u64 *p1, *p2, *p3;

	p1 = dma_dom->domain.pt_root;

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
		for (j = 0; j < 512; ++i) {
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
}

517 518 519 520
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
521 522 523 524 525 526 527 528 529 530 531 532 533 534
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

	dma_ops_free_pagetable(dom);

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

535 536 537 538 539
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

580 581
	dma_dom->need_flush = false;

582
	/* Intialize the exclusion range if necessary */
583 584 585
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
586 587
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length);
588 589 590
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

591 592 593 594 595
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

624 625 626 627
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
628 629 630 631 632 633 634 635 636 637 638 639
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

640 641 642 643
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static void set_device_domain(struct amd_iommu *iommu,
			      struct protection_domain *domain,
			      u16 devid)
{
	unsigned long flags;

	u64 pte_root = virt_to_phys(domain->pt_root);

	pte_root |= (domain->mode & 0x07) << 9;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	amd_iommu_dev_table[devid].data[0] = pte_root;
	amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);

	iommu->need_sync = 1;
}

668 669 670 671 672 673
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

674 675 676 677 678 679 680 681 682 683 684 685
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

686 687 688 689 690 691 692
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
693 694 695 696 697 698 699 700 701
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

702 703 704 705 706 707
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
708 709

	pcidev = to_pci_dev(dev);
710
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
711

712
	/* device not translated by any IOMMU in the system? */
713
	if (_bdf > amd_iommu_last_bdf)
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	dma_dom = (*iommu)->default_dom;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
		*domain = &dma_dom->domain;
		set_device_domain(*iommu, *domain, *bdf);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

	return 1;
}

734 735 736 737
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

769 770 771
/*
 * The generic unmapping function for on page in the DMA address space.
 */
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

	WARN_ON(address & 0xfffULL || address > dom->aperture_size);

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

791 792 793 794 795 796
/*
 * This function contains common code for mapping of a physically
 * contiguous memory region into DMA address space. It is uses by all
 * mapping functions provided by this IOMMU driver.
 * Must be called with the domain lock held.
 */
797 798 799 800 801
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
802 803
			       int dir,
			       bool align)
804 805 806 807
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
808
	unsigned long align_mask = 0;
809 810
	int i;

811
	pages = iommu_num_pages(paddr, size);
812 813
	paddr &= PAGE_MASK;

814 815 816 817
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask);
818 819 820 821 822 823 824 825 826 827 828
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

829 830 831 832
	if (unlikely(dma_dom->need_flush && !iommu_fullflush)) {
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
833 834
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

835 836 837 838
out:
	return address;
}

839 840 841 842
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
843 844 845 846 847 848 849 850 851 852 853 854
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

	if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
		return;

855
	pages = iommu_num_pages(dma_addr, size);
856 857 858 859 860 861 862 863 864
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
865

866 867
	if (iommu_fullflush)
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
868 869
}

870 871 872
/*
 * The exported map_single function for dma_ops.
 */
873 874 875 876 877 878 879 880 881
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;

882 883 884
	if (!check_device(dev))
		return bad_dma_address;

885 886 887
	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
888
		/* device not handled by any AMD IOMMU */
889 890 891
		return (dma_addr_t)paddr;

	spin_lock_irqsave(&domain->lock, flags);
892
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false);
893 894 895
	if (addr == bad_dma_address)
		goto out;

896
	if (unlikely(iommu->need_sync))
897 898 899 900 901 902 903 904
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

905 906 907
/*
 * The exported unmap_single function for dma_ops.
 */
908 909 910 911 912 913 914 915
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

916 917
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
918
		/* device not handled by any AMD IOMMU */
919 920 921 922 923 924
		return;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

925
	if (unlikely(iommu->need_sync))
926 927 928 929 930
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

931 932 933 934
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
935 936 937 938 939 940 941 942 943 944 945 946 947 948
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

949 950 951 952
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
953 954 955 956 957 958 959 960 961 962 963 964
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;

965 966 967
	if (!check_device(dev))
		return 0;

968 969 970 971 972 973 974 975 976 977 978
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
979
					      paddr, s->length, dir, false);
980 981 982 983 984 985 986 987

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

988
	if (unlikely(iommu->need_sync))
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1008 1009 1010 1011
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1022 1023
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		return;

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1034
	if (unlikely(iommu->need_sync))
1035 1036 1037 1038 1039
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

1040 1041 1042
/*
 * The exported alloc_coherent function for dma_ops.
 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;

1053 1054 1055
	if (!check_device(dev))
		return NULL;

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	memset(virt_addr, 0, size);
	paddr = virt_to_phys(virt_addr);

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1073
				 size, DMA_BIDIRECTIONAL, true);
1074 1075 1076 1077 1078 1079 1080

	if (*dma_addr == bad_dma_address) {
		free_pages((unsigned long)virt_addr, get_order(size));
		virt_addr = NULL;
		goto out;
	}

1081
	if (unlikely(iommu->need_sync))
1082 1083 1084 1085 1086 1087 1088 1089
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
}

1090 1091 1092
/*
 * The exported free_coherent function for dma_ops.
 */
1093 1094 1095 1096 1097 1098 1099 1100
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1101 1102 1103
	if (!check_device(dev))
		return;

1104 1105 1106 1107 1108 1109 1110 1111 1112
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1113
	if (unlikely(iommu->need_sync))
1114 1115 1116 1117 1118 1119 1120 1121
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1122
/*
1123 1124
 * The function for pre-allocating protection domains.
 *
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1139
		if (devid > amd_iommu_last_bdf)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
		set_device_domain(iommu, &dma_dom->domain, devid);
		printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
		       dma_dom->domain.id);
		print_devid(devid, 1);
	}
}

1158 1159 1160 1161 1162 1163 1164 1165 1166
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
};

1167 1168 1169
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1170 1171 1172 1173 1174 1175
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1176 1177 1178 1179 1180
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1181 1182 1183 1184 1185 1186 1187 1188 1189
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1190 1191 1192 1193
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1194 1195 1196 1197 1198 1199
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1200
#ifdef CONFIG_GART_IOMMU
1201 1202
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1203
#endif
1204

1205
	/* Make the driver finally visible to the drivers */
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}