amd_iommu.c 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64

65 66 67 68
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

69 70 71 72 73 74
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

75
DECLARE_STATS_COUNTER(compl_wait);
76
DECLARE_STATS_COUNTER(cnt_map_single);
77
DECLARE_STATS_COUNTER(cnt_unmap_single);
78
DECLARE_STATS_COUNTER(cnt_map_sg);
79
DECLARE_STATS_COUNTER(cnt_unmap_sg);
80
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
81
DECLARE_STATS_COUNTER(cnt_free_coherent);
82
DECLARE_STATS_COUNTER(cross_page);
83
DECLARE_STATS_COUNTER(domain_flush_single);
84
DECLARE_STATS_COUNTER(domain_flush_all);
85
DECLARE_STATS_COUNTER(alloced_io_mem);
86
DECLARE_STATS_COUNTER(total_map_requests);
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
112 113

	amd_iommu_stats_add(&compl_wait);
114
	amd_iommu_stats_add(&cnt_map_single);
115
	amd_iommu_stats_add(&cnt_unmap_single);
116
	amd_iommu_stats_add(&cnt_map_sg);
117
	amd_iommu_stats_add(&cnt_unmap_sg);
118
	amd_iommu_stats_add(&cnt_alloc_coherent);
119
	amd_iommu_stats_add(&cnt_free_coherent);
120
	amd_iommu_stats_add(&cross_page);
121
	amd_iommu_stats_add(&domain_flush_single);
122
	amd_iommu_stats_add(&domain_flush_all);
123
	amd_iommu_stats_add(&alloced_io_mem);
124
	amd_iommu_stats_add(&total_map_requests);
125 126 127 128
}

#endif

129
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
130 131
static int iommu_has_npcache(struct amd_iommu *iommu)
{
132
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
133 134
}

135 136 137 138 139 140
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

141 142 143 144 145 146 147 148 149
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

150 151 152 153 154 155 156 157 158
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
176
		dump_dte_entry(devid);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
198
		dump_command(address);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

241 242
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
243 244
	struct amd_iommu *iommu;

245
	for_each_iommu(iommu)
246 247 248
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
249 250
}

251 252 253 254 255 256 257 258 259 260
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
261
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
262 263 264 265 266
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
267
	target = iommu->cmd_buf + tail;
268 269 270 271 272 273 274 275 276 277
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

278 279 280 281
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
282
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
283 284 285 286 287 288
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
289
	if (!ret)
290
		iommu->need_sync = true;
291 292 293 294 295
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

296 297 298 299 300 301 302 303 304 305
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

306 307
	INC_STATS_COUNTER(compl_wait);

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

338 339 340 341 342 343 344
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
345 346
static int iommu_completion_wait(struct amd_iommu *iommu)
{
347 348
	int ret = 0;
	unsigned long flags;
349

350 351
	spin_lock_irqsave(&iommu->lock, flags);

352 353 354
	if (!iommu->need_sync)
		goto out;

355
	ret = __iommu_completion_wait(iommu);
356

357
	iommu->need_sync = false;
358 359

	if (ret)
360
		goto out;
361

362
	__iommu_wait_for_completion(iommu);
363

364 365
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
366 367 368 369

	return 0;
}

370 371 372
/*
 * Command send function for invalidating a device table entry
 */
373 374
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
375
	struct iommu_cmd cmd;
376
	int ret;
377 378 379 380 381 382 383

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

384 385 386
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

404 405 406
/*
 * Generic command send function for invalidaing TLB entries
 */
407 408 409
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
410
	struct iommu_cmd cmd;
411
	int ret;
412

413
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
414

415 416 417
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
418 419
}

420 421 422 423 424
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
425 426 427
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
428
	int s = 0;
429
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
430 431 432

	address &= PAGE_MASK;

433 434 435 436 437 438 439
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
440 441
	}

442 443
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

444 445
	return 0;
}
446

447 448 449 450 451
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

452 453
	INC_STATS_COUNTER(domain_flush_single);

454 455 456
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

457 458 459 460 461 462 463 464 465 466
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

467 468 469 470 471 472 473 474 475 476
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

477 478
	INC_STATS_COUNTER(domain_flush_all);

479 480 481
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

482
	for_each_iommu(iommu) {
483 484 485 486 487 488 489 490
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

491 492 493 494 495 496 497 498 499 500 501
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
534 535 536 537
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
538
{
539
	u64 __pte, *pte;
540 541

	bus_addr  = PAGE_ALIGN(bus_addr);
542
	phys_addr = PAGE_ALIGN(phys_addr);
543 544 545 546 547

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

548
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

586 587 588 589
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

604 605 606 607 608 609
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

626 627 628 629
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
630 631 632 633 634 635 636 637
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
638
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
639 640 641 642 643 644 645
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
646
			__set_bit(addr >> PAGE_SHIFT,
647
				  dma_dom->aperture[0]->bitmap);
648 649 650 651 652
	}

	return 0;
}

653 654 655
/*
 * Inits the unity mappings required for a specific device
 */
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

673 674 675 676 677 678 679 680 681
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
682

683
/*
684
 * The address allocator core functions.
685 686 687
 *
 * called with domain->lock held
 */
688

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

715 716 717 718 719
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
720 721
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
722 723 724
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
725
	int i;
726

727 728 729 730
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

790 791 792 793 794 795 796 797 798 799 800
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

801 802 803 804 805 806 807
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
808
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
809 810 811 812 813 814
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

815 816
	next_bit >>= PAGE_SHIFT;

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
835
			dom->next_address = address + (pages << PAGE_SHIFT);
836 837 838 839 840 841 842 843 844
			break;
		}

		next_bit = 0;
	}

	return address;
}

845 846
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
847
					     unsigned int pages,
848 849
					     unsigned long align_mask,
					     u64 dma_mask)
850 851 852
{
	unsigned long address;

853 854 855 856
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
857

858
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
859
				     dma_mask, dom->next_address);
860

861
	if (address == -1) {
862
		dom->next_address = 0;
863 864
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
865 866
		dom->need_flush = true;
	}
867

868
	if (unlikely(address == -1))
869 870 871 872 873 874 875
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

876 877 878 879 880
/*
 * The address free function.
 *
 * called with domain->lock held
 */
881 882 883 884
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
885 886
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
887

888 889
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

890 891 892 893
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
894

895
	if (address >= dom->next_address)
896
		dom->need_flush = true;
897 898

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
899

900 901
	iommu_area_free(range->bitmap, address, pages);

902 903
}

904 905 906 907 908 909 910 911 912 913
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

931 932 933 934 935 936 937 938 939 940
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

941 942 943 944
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
945 946 947 948
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
949
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
950 951 952 953

	if (start_page + pages > last_page)
		pages = last_page - start_page;

954 955 956 957 958
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
959 960
}

961
static void free_pagetable(struct protection_domain *domain)
962 963 964 965
{
	int i, j;
	u64 *p1, *p2, *p3;

966
	p1 = domain->pt_root;
967 968 969 970 971 972 973 974 975

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
976
		for (j = 0; j < 512; ++j) {
977 978 979 980 981 982 983 984 985 986
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
987 988

	domain->pt_root = NULL;
989 990
}

991 992 993 994
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
995 996
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
997 998
	int i;

999 1000 1001
	if (!dom)
		return;

1002
	free_pagetable(&dom->domain);
1003

1004 1005 1006 1007 1008 1009
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1010 1011 1012 1013

	kfree(dom);
}

1014 1015 1016 1017 1018
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1019
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1034
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1035 1036 1037 1038
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1039
	dma_dom->need_flush = false;
1040
	dma_dom->target_dev = 0xffff;
1041

1042
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1043 1044
		goto free_dma_dom;

1045
	/*
1046 1047
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1048
	 */
1049
	dma_dom->aperture[0]->bitmap[0] = 1;
1050
	dma_dom->next_address = 0;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1070 1071 1072 1073
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1086 1087 1088 1089
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1090 1091 1092
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1093 1094 1095 1096
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1097 1098
	domain->dev_cnt += 1;

1099 1100 1101
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1102 1103

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1104 1105
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1106 1107 1108 1109 1110
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1111 1112 1113 1114 1115
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1116
	iommu_queue_inv_dev_entry(iommu, devid);
1117
	iommu_flush_tlb_pde(iommu, domain->id);
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1166
	unsigned long flags;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1184
	case BUS_NOTIFY_UNBOUND_DRIVER:
1185 1186 1187
		if (!domain)
			goto out;
		detach_device(domain, devid);
1188 1189 1190 1191 1192 1193
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1194
		dma_domain = dma_ops_domain_alloc(iommu);
1195 1196 1197 1198 1199 1200 1201 1202
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1215
static struct notifier_block device_nb = {
1216 1217
	.notifier_call = device_change_notifier,
};
1218

1219 1220 1221 1222 1223 1224
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1263 1264 1265 1266 1267 1268 1269
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1270 1271 1272 1273 1274 1275 1276 1277 1278
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1279 1280 1281 1282 1283 1284
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1285 1286

	pcidev = to_pci_dev(dev);
1287
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1288

1289
	/* device not translated by any IOMMU in the system? */
1290
	if (_bdf > amd_iommu_last_bdf)
1291 1292 1293 1294 1295 1296 1297 1298 1299
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1300 1301 1302
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1303
		*domain = &dma_dom->domain;
1304
		attach_device(*iommu, *domain, *bdf);
1305 1306
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1307 1308
	}

1309
	if (domain_for_device(_bdf) == NULL)
1310
		attach_device(*iommu, *domain, _bdf);
1311

1312 1313 1314
	return 1;
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1358
	struct aperture_range *aperture;
1359 1360
	u64 *pte, *pte_page;

1361 1362 1363 1364 1365
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1366 1367
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1368 1369 1370
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1371 1372 1373 1374

	return pte;
}

1375 1376 1377 1378
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1391
	pte  = dma_ops_get_pte(dom, address);
1392 1393
	if (!pte)
		return bad_dma_address;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1411 1412 1413
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1414 1415 1416 1417
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1418
	struct aperture_range *aperture;
1419 1420 1421 1422 1423
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1424 1425 1426 1427 1428 1429 1430
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1431 1432 1433 1434 1435 1436 1437 1438

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1439 1440
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1441 1442
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1443 1444
 * Must be called with the domain lock held.
 */
1445 1446 1447 1448 1449
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1450
			       int dir,
1451 1452
			       bool align,
			       u64 dma_mask)
1453 1454
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1455
	dma_addr_t address, start, ret;
1456
	unsigned int pages;
1457
	unsigned long align_mask = 0;
1458 1459
	int i;

1460
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1461 1462
	paddr &= PAGE_MASK;

1463 1464
	INC_STATS_COUNTER(total_map_requests);

1465 1466 1467
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1468 1469 1470
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1471
retry:
1472 1473
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1491 1492 1493

	start = address;
	for (i = 0; i < pages; ++i) {
1494 1495 1496 1497
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1498 1499 1500 1501 1502
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1503 1504
	ADD_STATS_COUNTER(alloced_io_mem, size);

1505
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1506 1507 1508
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1509 1510
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1511 1512
out:
	return address;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1524 1525
}

1526 1527 1528 1529
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1530 1531 1532 1533 1534 1535 1536 1537 1538
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1539 1540
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1541 1542
		return;

1543
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1544 1545 1546 1547 1548 1549 1550 1551
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1552 1553
	SUB_STATS_COUNTER(alloced_io_mem, size);

1554
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1555

1556
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1557
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1558 1559
		dma_dom->need_flush = false;
	}
1560 1561
}

1562 1563 1564
/*
 * The exported map_single function for dma_ops.
 */
1565 1566 1567 1568
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1569 1570 1571 1572 1573 1574
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1575
	u64 dma_mask;
1576
	phys_addr_t paddr = page_to_phys(page) + offset;
1577

1578 1579
	INC_STATS_COUNTER(cnt_map_single);

1580 1581 1582
	if (!check_device(dev))
		return bad_dma_address;

1583
	dma_mask = *dev->dma_mask;
1584 1585 1586 1587

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1588
		/* device not handled by any AMD IOMMU */
1589 1590
		return (dma_addr_t)paddr;

1591 1592 1593
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1594
	spin_lock_irqsave(&domain->lock, flags);
1595 1596
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1597 1598 1599
	if (addr == bad_dma_address)
		goto out;

1600
	iommu_completion_wait(iommu);
1601 1602 1603 1604 1605 1606 1607

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1608 1609 1610
/*
 * The exported unmap_single function for dma_ops.
 */
1611 1612
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1613 1614 1615 1616 1617 1618
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1619 1620
	INC_STATS_COUNTER(cnt_unmap_single);

1621 1622
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1623
		/* device not handled by any AMD IOMMU */
1624 1625
		return;

1626 1627 1628
	if (!dma_ops_domain(domain))
		return;

1629 1630 1631 1632
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1633
	iommu_completion_wait(iommu);
1634 1635 1636 1637

	spin_unlock_irqrestore(&domain->lock, flags);
}

1638 1639 1640 1641
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1656 1657 1658 1659
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1660
static int map_sg(struct device *dev, struct scatterlist *sglist,
1661 1662
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1672
	u64 dma_mask;
1673

1674 1675
	INC_STATS_COUNTER(cnt_map_sg);

1676 1677 1678
	if (!check_device(dev))
		return 0;

1679
	dma_mask = *dev->dma_mask;
1680 1681 1682 1683 1684 1685

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1686 1687 1688
	if (!dma_ops_domain(domain))
		return 0;

1689 1690 1691 1692 1693 1694
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1695 1696
					      paddr, s->length, dir, false,
					      dma_mask);
1697 1698 1699 1700 1701 1702 1703 1704

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1705
	iommu_completion_wait(iommu);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1724 1725 1726 1727
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1728
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1729 1730
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1731 1732 1733 1734 1735 1736 1737 1738
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1739 1740
	INC_STATS_COUNTER(cnt_unmap_sg);

1741 1742
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1743 1744
		return;

1745 1746 1747
	if (!dma_ops_domain(domain))
		return;

1748 1749 1750 1751 1752 1753 1754 1755
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1756
	iommu_completion_wait(iommu);
1757 1758 1759 1760

	spin_unlock_irqrestore(&domain->lock, flags);
}

1761 1762 1763
/*
 * The exported alloc_coherent function for dma_ops.
 */
1764 1765 1766 1767 1768 1769 1770 1771 1772
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1773
	u64 dma_mask = dev->coherent_dma_mask;
1774

1775 1776
	INC_STATS_COUNTER(cnt_alloc_coherent);

1777 1778
	if (!check_device(dev))
		return NULL;
1779

1780 1781
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1782

1783
	flag |= __GFP_ZERO;
1784 1785
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1786
		return NULL;
1787 1788 1789 1790 1791 1792 1793 1794

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1795 1796 1797
	if (!dma_ops_domain(domain))
		goto out_free;

1798 1799 1800
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1801 1802 1803
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1804
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1805

J
Jiri Slaby 已提交
1806 1807
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1808
		goto out_free;
J
Jiri Slaby 已提交
1809
	}
1810

1811
	iommu_completion_wait(iommu);
1812 1813 1814 1815

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1816 1817 1818 1819 1820 1821

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1822 1823
}

1824 1825 1826
/*
 * The exported free_coherent function for dma_ops.
 */
1827 1828 1829 1830 1831 1832 1833 1834
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1835 1836
	INC_STATS_COUNTER(cnt_free_coherent);

1837 1838 1839
	if (!check_device(dev))
		return;

1840 1841 1842 1843 1844
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1845 1846 1847
	if (!dma_ops_domain(domain))
		goto free_mem;

1848 1849 1850 1851
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1852
	iommu_completion_wait(iommu);
1853 1854 1855 1856 1857 1858 1859

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1884
/*
1885 1886
 * The function for pre-allocating protection domains.
 *
1887 1888 1889 1890
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1891
static void prealloc_protection_domains(void)
1892 1893 1894 1895 1896 1897 1898
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1899
		devid = calc_devid(dev->bus->number, dev->devfn);
1900
		if (devid > amd_iommu_last_bdf)
1901 1902 1903 1904 1905 1906 1907
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1908
		dma_dom = dma_ops_domain_alloc(iommu);
1909 1910 1911
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1912 1913 1914
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1915 1916 1917
	}
}

1918
static struct dma_map_ops amd_iommu_dma_ops = {
1919 1920
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1921 1922
	.map_page = map_page,
	.unmap_page = unmap_page,
1923 1924
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1925
	.dma_supported = amd_iommu_dma_supported,
1926 1927
};

1928 1929 1930
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1931 1932 1933 1934 1935
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1936 1937 1938 1939 1940
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1941
	for_each_iommu(iommu) {
1942
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1943 1944
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1945
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1946 1947 1948 1949 1950
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1951 1952 1953 1954
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1955 1956 1957 1958 1959 1960
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1961
#ifdef CONFIG_GART_IOMMU
1962 1963
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1964
#endif
1965

1966
	/* Make the driver finally visible to the drivers */
1967 1968
	dma_ops = &amd_iommu_dma_ops;

1969 1970
	register_iommu(&amd_iommu_ops);

1971 1972
	bus_register_notifier(&pci_bus_type, &device_nb);

1973 1974
	amd_iommu_stats_init();

1975 1976 1977 1978
	return 0;

free_domains:

1979
	for_each_iommu(iommu) {
1980 1981 1982 1983 1984 1985
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2111
		detach_device(old_domain, devid);
2112 2113 2114 2115 2116 2117 2118 2119

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2197 2198 2199 2200 2201 2202
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2203 2204 2205 2206 2207 2208 2209 2210
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2211
	.domain_has_cap = amd_iommu_domain_has_cap,
2212 2213
};