amd_iommu.c 52.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58
static u64 *alloc_pte(struct protection_domain *domain,
59 60
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64 65
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address);
66
static void update_domain(struct protection_domain *domain);
67

68 69 70 71
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

72 73 74 75 76 77
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

78
DECLARE_STATS_COUNTER(compl_wait);
79
DECLARE_STATS_COUNTER(cnt_map_single);
80
DECLARE_STATS_COUNTER(cnt_unmap_single);
81
DECLARE_STATS_COUNTER(cnt_map_sg);
82
DECLARE_STATS_COUNTER(cnt_unmap_sg);
83
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
84
DECLARE_STATS_COUNTER(cnt_free_coherent);
85
DECLARE_STATS_COUNTER(cross_page);
86
DECLARE_STATS_COUNTER(domain_flush_single);
87
DECLARE_STATS_COUNTER(domain_flush_all);
88
DECLARE_STATS_COUNTER(alloced_io_mem);
89
DECLARE_STATS_COUNTER(total_map_requests);
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
115 116

	amd_iommu_stats_add(&compl_wait);
117
	amd_iommu_stats_add(&cnt_map_single);
118
	amd_iommu_stats_add(&cnt_unmap_single);
119
	amd_iommu_stats_add(&cnt_map_sg);
120
	amd_iommu_stats_add(&cnt_unmap_sg);
121
	amd_iommu_stats_add(&cnt_alloc_coherent);
122
	amd_iommu_stats_add(&cnt_free_coherent);
123
	amd_iommu_stats_add(&cross_page);
124
	amd_iommu_stats_add(&domain_flush_single);
125
	amd_iommu_stats_add(&domain_flush_all);
126
	amd_iommu_stats_add(&alloced_io_mem);
127
	amd_iommu_stats_add(&total_map_requests);
128 129 130 131
}

#endif

132
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
133 134
static int iommu_has_npcache(struct amd_iommu *iommu)
{
135
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
136 137
}

138 139 140 141 142 143
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

224 225
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
226 227
	struct amd_iommu *iommu;

228
	for_each_iommu(iommu)
229 230 231
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
232 233
}

234 235 236 237 238 239 240 241 242 243
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
244
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
245 246 247 248 249
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
250
	target = iommu->cmd_buf + tail;
251 252 253 254 255 256 257 258 259 260
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

261 262 263 264
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
265
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
266 267 268 269 270 271
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
272
	if (!ret)
273
		iommu->need_sync = true;
274 275 276 277 278
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

279 280 281 282 283 284 285 286 287 288
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

289 290
	INC_STATS_COUNTER(compl_wait);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

321 322 323 324 325 326 327
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
328 329
static int iommu_completion_wait(struct amd_iommu *iommu)
{
330 331
	int ret = 0;
	unsigned long flags;
332

333 334
	spin_lock_irqsave(&iommu->lock, flags);

335 336 337
	if (!iommu->need_sync)
		goto out;

338
	ret = __iommu_completion_wait(iommu);
339

340
	iommu->need_sync = false;
341 342

	if (ret)
343
		goto out;
344

345
	__iommu_wait_for_completion(iommu);
346

347 348
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
349 350 351 352

	return 0;
}

353 354 355
/*
 * Command send function for invalidating a device table entry
 */
356 357
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
358
	struct iommu_cmd cmd;
359
	int ret;
360 361 362 363 364 365 366

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

367 368 369
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
370 371
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

387 388 389
/*
 * Generic command send function for invalidaing TLB entries
 */
390 391 392
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
393
	struct iommu_cmd cmd;
394
	int ret;
395

396
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
397

398 399 400
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
401 402
}

403 404 405 406 407
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
408 409 410
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
411
	int s = 0;
412
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
413 414 415

	address &= PAGE_MASK;

416 417 418 419 420 421 422
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
423 424
	}

425 426
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

427 428
	return 0;
}
429

430 431 432 433 434
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

435 436
	INC_STATS_COUNTER(domain_flush_single);

437 438 439
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

440 441 442 443 444 445 446 447 448 449
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

450 451 452 453 454 455 456 457 458 459
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

460 461
	INC_STATS_COUNTER(domain_flush_all);

462 463 464
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

465
	for_each_iommu(iommu) {
466 467 468 469 470 471 472 473
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

474 475 476 477 478 479 480 481 482 483 484
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

485
static void flush_devices_by_domain(struct protection_domain *domain)
486 487 488 489 490
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
491 492
		if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
		    (amd_iommu_pd_table[i] != domain))
493 494 495 496 497 498 499 500 501 502 503
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

504 505 506 507 508
void amd_iommu_flush_all_devices(void)
{
	flush_devices_by_domain(NULL);
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
523 524 525 526
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
527
{
528
	u64 __pte, *pte;
529 530

	bus_addr  = PAGE_ALIGN(bus_addr);
531
	phys_addr = PAGE_ALIGN(phys_addr);
532 533 534 535 536

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

537
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
538 539 540 541 542 543 544 545 546 547 548 549

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

550 551
	update_domain(dom);

552 553 554
	return 0;
}

555 556 557
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
558
	u64 *pte = fetch_pte(dom, bus_addr);
559

560 561
	if (pte)
		*pte = 0;
562 563
}

564 565 566 567
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
568 569 570 571 572 573 574 575 576 577 578 579 580 581
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

582 583 584 585 586 587
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

604 605 606 607
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
608 609 610 611 612 613 614 615
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
616
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
617 618 619 620 621 622 623
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
624
			__set_bit(addr >> PAGE_SHIFT,
625
				  dma_dom->aperture[0]->bitmap);
626 627 628 629 630
	}

	return 0;
}

631 632 633
/*
 * Inits the unity mappings required for a specific device
 */
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

651 652 653 654 655 656 657 658 659
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
660

661
/*
662
 * The address allocator core functions.
663 664 665
 *
 * called with domain->lock held
 */
666

667 668 669 670
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
671
static u64 *fetch_pte(struct protection_domain *domain,
672 673
		      unsigned long address)
{
674
	int level;
675 676
	u64 *pte;

677 678
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
679

680 681 682
	while (level > 0) {
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;
683

684
		level -= 1;
685

686 687 688
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}
689 690 691 692

	return pte;
}

693 694 695 696 697
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
698 699
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
700 701 702
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
703
	int i;
704

705 706 707 708
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

768 769
	update_domain(&dma_dom->domain);

770 771 772
	return 0;

out_free:
773 774
	update_domain(&dma_dom->domain);

775 776 777 778 779 780 781 782
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

783 784 785 786 787 788 789
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
790
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
791 792 793 794 795 796
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

797 798
	next_bit >>= PAGE_SHIFT;

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
817
			dom->next_address = address + (pages << PAGE_SHIFT);
818 819 820 821 822 823 824 825 826
			break;
		}

		next_bit = 0;
	}

	return address;
}

827 828
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
829
					     unsigned int pages,
830 831
					     unsigned long align_mask,
					     u64 dma_mask)
832 833 834
{
	unsigned long address;

835 836 837 838
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
839

840
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
841
				     dma_mask, dom->next_address);
842

843
	if (address == -1) {
844
		dom->next_address = 0;
845 846
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
847 848
		dom->need_flush = true;
	}
849

850
	if (unlikely(address == -1))
851 852 853 854 855 856 857
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

858 859 860 861 862
/*
 * The address free function.
 *
 * called with domain->lock held
 */
863 864 865 866
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
867 868
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
869

870 871
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

872 873 874 875
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
876

877
	if (address >= dom->next_address)
878
		dom->need_flush = true;
879 880

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
881

882 883
	iommu_area_free(range->bitmap, address, pages);

884 885
}

886 887 888 889 890 891 892 893 894 895
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

913 914 915 916 917 918 919 920 921 922
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

923 924 925 926
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
927 928 929 930
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
931
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
932 933 934 935

	if (start_page + pages > last_page)
		pages = last_page - start_page;

936 937 938 939 940
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
941 942
}

943
static void free_pagetable(struct protection_domain *domain)
944 945 946 947
{
	int i, j;
	u64 *p1, *p2, *p3;

948
	p1 = domain->pt_root;
949 950 951 952 953 954 955 956 957

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
958
		for (j = 0; j < 512; ++j) {
959 960 961 962 963 964 965 966 967 968
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
969 970

	domain->pt_root = NULL;
971 972
}

973 974 975 976
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
977 978
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
979 980
	int i;

981 982 983
	if (!dom)
		return;

984
	free_pagetable(&dom->domain);
985

986 987 988 989 990 991
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
992 993 994 995

	kfree(dom);
}

996 997 998 999 1000
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1001
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1016
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1017 1018 1019 1020
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1021
	dma_dom->need_flush = false;
1022
	dma_dom->target_dev = 0xffff;
1023

1024
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1025 1026
		goto free_dma_dom;

1027
	/*
1028 1029
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1030
	 */
1031
	dma_dom->aperture[0]->bitmap[0] = 1;
1032
	dma_dom->next_address = 0;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1052 1053 1054 1055
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1068
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1069 1070
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1071
	unsigned long flags;
1072

1073 1074 1075
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1076 1077

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1078 1079
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1080 1081 1082 1083
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
{
	/* set the DTE entry */
	set_dte_entry(devid, domain);

	/* increase reference counter */
	domain->dev_cnt += 1;
1099

1100 1101 1102 1103 1104
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1105
	iommu_queue_inv_dev_entry(iommu, devid);
1106
	iommu_flush_tlb_pde(iommu, domain->id);
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1155
	unsigned long flags;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1173
	case BUS_NOTIFY_UNBOUND_DRIVER:
1174 1175 1176
		if (!domain)
			goto out;
		detach_device(domain, devid);
1177 1178 1179 1180 1181 1182
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1183
		dma_domain = dma_ops_domain_alloc(iommu);
1184 1185 1186 1187 1188 1189 1190 1191
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1204
static struct notifier_block device_nb = {
1205 1206
	.notifier_call = device_change_notifier,
};
1207

1208 1209 1210 1211 1212 1213
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1252 1253 1254 1255 1256 1257 1258
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1259 1260 1261 1262 1263 1264 1265 1266 1267
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1268 1269 1270 1271 1272 1273
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1274 1275

	pcidev = to_pci_dev(dev);
1276
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1277

1278
	/* device not translated by any IOMMU in the system? */
1279
	if (_bdf > amd_iommu_last_bdf)
1280 1281 1282 1283 1284 1285 1286 1287 1288
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1289 1290 1291
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1292
		*domain = &dma_dom->domain;
1293
		attach_device(*iommu, *domain, *bdf);
1294 1295
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1296 1297
	}

1298
	if (domain_for_device(_bdf) == NULL)
1299
		attach_device(*iommu, *domain, _bdf);
1300

1301 1302 1303
	return 1;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static void update_device_table(struct protection_domain *domain)
{
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] != domain)
			continue;
		set_dte_entry(i, domain);
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
	flush_devices_by_domain(domain);
	iommu_flush_domain(domain->id);

	domain->updated = false;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

1354
static u64 *alloc_pte(struct protection_domain *domain,
1355 1356 1357
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;
1358
	int level;
1359

1360 1361
	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);
1362

1363 1364
	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1365

1366 1367 1368 1369 1370 1371 1372
	while (level > 0) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}
1373

1374
		level -= 1;
1375

1376
		pte = IOMMU_PTE_PAGE(*pte);
1377

1378 1379
		if (pte_page && level == 0)
			*pte_page = pte;
1380

1381 1382
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1393
	struct aperture_range *aperture;
1394 1395
	u64 *pte, *pte_page;

1396 1397 1398 1399 1400
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1401 1402
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1403 1404
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1405
		pte += PM_LEVEL_INDEX(0, address);
1406

1407 1408
	update_domain(&dom->domain);

1409 1410 1411
	return pte;
}

1412 1413 1414 1415
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1428
	pte  = dma_ops_get_pte(dom, address);
1429 1430
	if (!pte)
		return bad_dma_address;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1448 1449 1450
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1451 1452 1453 1454
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1455
	struct aperture_range *aperture;
1456 1457 1458 1459 1460
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1461 1462 1463 1464 1465 1466 1467
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1468

1469
	pte += PM_LEVEL_INDEX(0, address);
1470 1471 1472 1473 1474 1475

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1476 1477
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1478 1479
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1480 1481
 * Must be called with the domain lock held.
 */
1482 1483 1484 1485 1486
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1487
			       int dir,
1488 1489
			       bool align,
			       u64 dma_mask)
1490 1491
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1492
	dma_addr_t address, start, ret;
1493
	unsigned int pages;
1494
	unsigned long align_mask = 0;
1495 1496
	int i;

1497
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1498 1499
	paddr &= PAGE_MASK;

1500 1501
	INC_STATS_COUNTER(total_map_requests);

1502 1503 1504
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1505 1506 1507
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1508
retry:
1509 1510
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1528 1529 1530

	start = address;
	for (i = 0; i < pages; ++i) {
1531 1532 1533 1534
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1535 1536 1537 1538 1539
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1540 1541
	ADD_STATS_COUNTER(alloced_io_mem, size);

1542
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1543 1544 1545
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1546 1547
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1548 1549
out:
	return address;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1561 1562
}

1563 1564 1565 1566
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1567 1568 1569 1570 1571 1572 1573 1574 1575
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1576 1577
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1578 1579
		return;

1580
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1581 1582 1583 1584 1585 1586 1587 1588
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1589 1590
	SUB_STATS_COUNTER(alloced_io_mem, size);

1591
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1592

1593
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1594
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1595 1596
		dma_dom->need_flush = false;
	}
1597 1598
}

1599 1600 1601
/*
 * The exported map_single function for dma_ops.
 */
1602 1603 1604 1605
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1606 1607 1608 1609 1610 1611
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1612
	u64 dma_mask;
1613
	phys_addr_t paddr = page_to_phys(page) + offset;
1614

1615 1616
	INC_STATS_COUNTER(cnt_map_single);

1617 1618 1619
	if (!check_device(dev))
		return bad_dma_address;

1620
	dma_mask = *dev->dma_mask;
1621 1622 1623 1624

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1625
		/* device not handled by any AMD IOMMU */
1626 1627
		return (dma_addr_t)paddr;

1628 1629 1630
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1631
	spin_lock_irqsave(&domain->lock, flags);
1632 1633
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1634 1635 1636
	if (addr == bad_dma_address)
		goto out;

1637
	iommu_completion_wait(iommu);
1638 1639 1640 1641 1642 1643 1644

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1645 1646 1647
/*
 * The exported unmap_single function for dma_ops.
 */
1648 1649
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1650 1651 1652 1653 1654 1655
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1656 1657
	INC_STATS_COUNTER(cnt_unmap_single);

1658 1659
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1660
		/* device not handled by any AMD IOMMU */
1661 1662
		return;

1663 1664 1665
	if (!dma_ops_domain(domain))
		return;

1666 1667 1668 1669
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1670
	iommu_completion_wait(iommu);
1671 1672 1673 1674

	spin_unlock_irqrestore(&domain->lock, flags);
}

1675 1676 1677 1678
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1693 1694 1695 1696
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1697
static int map_sg(struct device *dev, struct scatterlist *sglist,
1698 1699
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1700 1701 1702 1703 1704 1705 1706 1707 1708
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1709
	u64 dma_mask;
1710

1711 1712
	INC_STATS_COUNTER(cnt_map_sg);

1713 1714 1715
	if (!check_device(dev))
		return 0;

1716
	dma_mask = *dev->dma_mask;
1717 1718 1719 1720 1721 1722

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1723 1724 1725
	if (!dma_ops_domain(domain))
		return 0;

1726 1727 1728 1729 1730 1731
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1732 1733
					      paddr, s->length, dir, false,
					      dma_mask);
1734 1735 1736 1737 1738 1739 1740 1741

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1742
	iommu_completion_wait(iommu);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1761 1762 1763 1764
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1765
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1766 1767
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1768 1769 1770 1771 1772 1773 1774 1775
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1776 1777
	INC_STATS_COUNTER(cnt_unmap_sg);

1778 1779
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1780 1781
		return;

1782 1783 1784
	if (!dma_ops_domain(domain))
		return;

1785 1786 1787 1788 1789 1790 1791 1792
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1793
	iommu_completion_wait(iommu);
1794 1795 1796 1797

	spin_unlock_irqrestore(&domain->lock, flags);
}

1798 1799 1800
/*
 * The exported alloc_coherent function for dma_ops.
 */
1801 1802 1803 1804 1805 1806 1807 1808 1809
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1810
	u64 dma_mask = dev->coherent_dma_mask;
1811

1812 1813
	INC_STATS_COUNTER(cnt_alloc_coherent);

1814 1815
	if (!check_device(dev))
		return NULL;
1816

1817 1818
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1819

1820
	flag |= __GFP_ZERO;
1821 1822
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1823
		return NULL;
1824 1825 1826 1827 1828 1829 1830 1831

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1832 1833 1834
	if (!dma_ops_domain(domain))
		goto out_free;

1835 1836 1837
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1838 1839 1840
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1841
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1842

J
Jiri Slaby 已提交
1843 1844
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1845
		goto out_free;
J
Jiri Slaby 已提交
1846
	}
1847

1848
	iommu_completion_wait(iommu);
1849 1850 1851 1852

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1853 1854 1855 1856 1857 1858

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1859 1860
}

1861 1862 1863
/*
 * The exported free_coherent function for dma_ops.
 */
1864 1865 1866 1867 1868 1869 1870 1871
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1872 1873
	INC_STATS_COUNTER(cnt_free_coherent);

1874 1875 1876
	if (!check_device(dev))
		return;

1877 1878 1879 1880 1881
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1882 1883 1884
	if (!dma_ops_domain(domain))
		goto free_mem;

1885 1886 1887 1888
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1889
	iommu_completion_wait(iommu);
1890 1891 1892 1893 1894 1895 1896

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1921
/*
1922 1923
 * The function for pre-allocating protection domains.
 *
1924 1925 1926 1927
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1928
static void prealloc_protection_domains(void)
1929 1930 1931 1932 1933 1934 1935
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1936
		devid = calc_devid(dev->bus->number, dev->devfn);
1937
		if (devid > amd_iommu_last_bdf)
1938 1939 1940 1941 1942 1943 1944
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1945
		dma_dom = dma_ops_domain_alloc(iommu);
1946 1947 1948
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1949 1950 1951
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1952 1953 1954
	}
}

1955
static struct dma_map_ops amd_iommu_dma_ops = {
1956 1957
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1958 1959
	.map_page = map_page,
	.unmap_page = unmap_page,
1960 1961
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1962
	.dma_supported = amd_iommu_dma_supported,
1963 1964
};

1965 1966 1967
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1968 1969 1970 1971 1972
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1973 1974 1975 1976 1977
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1978
	for_each_iommu(iommu) {
1979
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1980 1981
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1982
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1983 1984 1985 1986 1987
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1988 1989 1990 1991
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1992 1993 1994 1995 1996 1997
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1998
#ifdef CONFIG_GART_IOMMU
1999 2000
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2001
#endif
2002

2003
	/* Make the driver finally visible to the drivers */
2004 2005
	dma_ops = &amd_iommu_dma_ops;

2006 2007
	register_iommu(&amd_iommu_ops);

2008 2009
	bus_register_notifier(&pci_bus_type, &device_nb);

2010 2011
	amd_iommu_stats_init();

2012 2013 2014 2015
	return 0;

free_domains:

2016
	for_each_iommu(iommu) {
2017 2018 2019 2020 2021 2022
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2148
		detach_device(old_domain, devid);
2149 2150 2151 2152 2153 2154 2155 2156

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2203 2204 2205 2206 2207 2208 2209 2210
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2211
	pte = fetch_pte(domain, iova);
2212

2213
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2214 2215 2216 2217 2218 2219 2220 2221
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2222 2223 2224 2225 2226 2227
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2228 2229 2230 2231 2232 2233 2234 2235
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2236
	.domain_has_cap = amd_iommu_domain_has_cap,
2237 2238
};