cgroup.c 129.7 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/ctype.h>
31 32 33 34 35 36 37 38
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
39
#include <linux/proc_fs.h>
40 41
#include <linux/rcupdate.h>
#include <linux/sched.h>
42
#include <linux/backing-dev.h>
43 44 45 46 47
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
48
#include <linux/sort.h>
49
#include <linux/kmod.h>
50
#include <linux/module.h>
B
Balbir Singh 已提交
51 52
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
53
#include <linux/hash.h>
54
#include <linux/namei.h>
L
Li Zefan 已提交
55
#include <linux/pid_namespace.h>
56
#include <linux/idr.h>
57
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 59
#include <linux/eventfd.h>
#include <linux/poll.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/atomic.h>

63 64
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
65 66 67 68 69 70
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
71
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
72
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 74 75
#include <linux/cgroup_subsys.h>
};

76 77
#define MAX_CGROUP_ROOT_NAMELEN 64

78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

92 93 94
	/* Unique id for this hierarchy. */
	int hierarchy_id;

95 96 97 98 99 100 101 102 103 104 105 106
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

107
	/* A list running through the active hierarchies */
108 109 110 111
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
112

113
	/* The path to use for release notifications. */
114
	char release_agent_path[PATH_MAX];
115 116 117

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
118 119 120 121 122 123 124 125 126
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
140
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * cgroup_event represents events which userspace want to recieve.
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
188

189 190 191
/* The list of hierarchy roots */

static LIST_HEAD(roots);
192
static int root_count;
193

194 195 196 197
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

198 199 200 201
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
202 203 204
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
205
 */
206
static int need_forkexit_callback __read_mostly;
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

222
/* convenient tests for these bits */
223
inline int cgroup_is_removed(const struct cgroup *cgrp)
224
{
225
	return test_bit(CGRP_REMOVED, &cgrp->flags);
226 227 228 229 230 231 232
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

233
static int cgroup_is_releasable(const struct cgroup *cgrp)
234 235
{
	const int bits =
236 237 238
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
239 240
}

241
static int notify_on_release(const struct cgroup *cgrp)
242
{
243
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244 245
}

246 247 248 249 250
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

251 252 253 254 255 256 257
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

258 259
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
260 261
list_for_each_entry(_root, &roots, root_list)

262 263 264 265 266 267
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268
static void check_for_release(struct cgroup *cgrp);
269

270 271 272 273 274 275
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
276
	struct list_head cgrp_link_list;
277
	struct cgroup *cgrp;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

296 297
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
298

299 300 301 302 303 304
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

305 306 307 308 309
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

329 330 331 332 333 334
static void free_css_set_rcu(struct rcu_head *obj)
{
	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
	kfree(cg);
}

335 336 337 338
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
339
static int use_task_css_set_links __read_mostly;
340

341
static void __put_css_set(struct css_set *cg, int taskexit)
342
{
K
KOSAKI Motohiro 已提交
343 344
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
345 346 347 348 349 350 351 352 353 354 355 356
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
357

358 359 360 361 362 363 364 365 366
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
367 368
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
369
			if (taskexit)
370 371
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
372
		}
373 374

		kfree(link);
375
	}
376 377

	write_unlock(&css_set_lock);
378
	call_rcu(&cg->rcu_head, free_css_set_rcu);
379 380
}

381 382 383 384 385
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
386
	atomic_inc(&cg->refcount);
387 388 389 390
}

static inline void put_css_set(struct css_set *cg)
{
391
	__put_css_set(cg, 0);
392 393
}

394 395
static inline void put_css_set_taskexit(struct css_set *cg)
{
396
	__put_css_set(cg, 1);
397 398
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

471 472 473
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
474
 * css_set is suitable.
475 476 477 478
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
479
 * cgrp: the cgroup that we're moving into
480 481 482 483 484 485
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
486
	struct cgroup *cgrp,
487
	struct cgroup_subsys_state *template[])
488 489
{
	int i;
490
	struct cgroupfs_root *root = cgrp->root;
491 492 493
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
494

B
Ben Blum 已提交
495 496 497 498 499
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
500
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
501
		if (root->subsys_bits & (1UL << i)) {
502 503 504
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
505
			template[i] = cgrp->subsys[i];
506 507 508 509 510 511 512
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

513 514
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
515 516 517 518 519
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
520
	}
521 522 523 524 525

	/* No existing cgroup group matched */
	return NULL;
}

526 527 528 529 530 531 532 533 534 535 536
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

537 538
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 541 542 543 544 545 546 547 548 549
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
550
			free_cg_links(tmp);
551 552
			return -ENOMEM;
		}
553
		list_add(&link->cgrp_link_list, tmp);
554 555 556 557
	}
	return 0;
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
573
	link->cgrp = cgrp;
574
	atomic_inc(&cgrp->count);
575
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
576 577 578 579 580
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
581 582
}

583 584 585 586 587 588 589 590
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
591
	struct css_set *oldcg, struct cgroup *cgrp)
592 593 594 595 596 597
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

598
	struct hlist_head *hhead;
599
	struct cg_cgroup_link *link;
600

601 602
	/* First see if we already have a cgroup group that matches
	 * the desired set */
603
	read_lock(&css_set_lock);
604
	res = find_existing_css_set(oldcg, cgrp, template);
605 606
	if (res)
		get_css_set(res);
607
	read_unlock(&css_set_lock);
608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

622
	atomic_set(&res->refcount, 1);
623 624
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
625
	INIT_HLIST_NODE(&res->hlist);
626 627 628 629 630 631 632

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
633 634 635 636 637 638
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
639 640 641 642

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
643 644 645 646 647

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

648 649 650
	write_unlock(&css_set_lock);

	return res;
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

688 689 690 691 692 693 694 695 696 697
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
698
 * cgroup_attach_task() can increment it again.  Because a count of zero
699 700 701 702 703 704 705 706 707 708 709 710 711
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
712 713
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
714 715 716 717 718 719 720 721 722 723 724
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
725
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
726
 * another.  It does so using cgroup_mutex, however there are
727 728 729
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
730
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 732 733 734
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
735
 * update of a tasks cgroup pointer by cgroup_attach_task()
736 737 738 739 740 741 742 743 744 745
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
746
EXPORT_SYMBOL_GPL(cgroup_lock);
747 748 749 750 751 752 753 754 755 756

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
757
EXPORT_SYMBOL_GPL(cgroup_unlock);
758 759 760 761 762 763 764 765 766

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
768
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
769
static int cgroup_populate_dir(struct cgroup *cgrp);
770
static const struct inode_operations cgroup_dir_inode_operations;
771
static const struct file_operations proc_cgroupstats_operations;
772 773

static struct backing_dev_info cgroup_backing_dev_info = {
774
	.name		= "cgroup",
775
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
776
};
777

K
KAMEZAWA Hiroyuki 已提交
778 779 780
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

781 782 783 784 785
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
786
		inode->i_ino = get_next_ino();
787
		inode->i_mode = mode;
788 789
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
790 791 792 793 794 795
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

796 797 798 799
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
800
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
801 802
{
	struct cgroup_subsys *ss;
803 804
	int ret = 0;

805
	for_each_subsys(cgrp->root, ss)
806 807 808
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
809
				break;
810
		}
811

812
	return ret;
813 814
}

815 816 817 818 819 820 821
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

822 823 824 825
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
826
		struct cgroup *cgrp = dentry->d_fsdata;
827
		struct cgroup_subsys *ss;
828
		BUG_ON(!(cgroup_is_removed(cgrp)));
829 830 831 832 833 834 835
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
836 837 838 839 840

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
841 842
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
843 844 845 846

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

847 848 849 850
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
851 852
		deactivate_super(cgrp->root->sb);

853 854 855 856 857 858
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

859
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
860 861 862 863
	}
	iput(inode);
}

864 865 866 867 868
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
N
Nick Piggin 已提交
883
	spin_lock(&dentry->d_lock);
884 885 886
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
N
Nick Piggin 已提交
887 888

		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
889 890 891 892 893
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
894
			dget_dlock(d);
N
Nick Piggin 已提交
895 896
			spin_unlock(&d->d_lock);
			spin_unlock(&dentry->d_lock);
897 898 899
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
N
Nick Piggin 已提交
900 901 902
			spin_lock(&dentry->d_lock);
		} else
			spin_unlock(&d->d_lock);
903 904
		node = dentry->d_subdirs.next;
	}
N
Nick Piggin 已提交
905
	spin_unlock(&dentry->d_lock);
906 907 908 909 910 911 912
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
913 914
	struct dentry *parent;

915 916
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
917 918
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
919
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
920
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
921 922
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
923 924 925
	remove_dir(dentry);
}

926 927 928 929 930 931
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
932
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
933 934 935
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

936
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
937
{
938
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
939 940 941
		wake_up_all(&cgroup_rmdir_waitq);
}

942 943 944 945 946 947 948 949 950 951 952
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
953
/*
B
Ben Blum 已提交
954 955 956
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
957
 */
958 959 960 961
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
962
	struct cgroup *cgrp = &root->top_cgroup;
963 964
	int i;

B
Ben Blum 已提交
965 966
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

967 968 969 970
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
971
		unsigned long bit = 1UL << i;
972 973 974
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
975 976 977 978 979 980
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
981 982 983 984 985 986 987 988 989 990
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
991
	if (root->number_of_cgroups > 1)
992 993 994 995 996 997 998 999
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1000
			BUG_ON(ss == NULL);
1001
			BUG_ON(cgrp->subsys[i]);
1002 1003
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1004
			mutex_lock(&ss->hierarchy_mutex);
1005 1006
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1007
			list_move(&ss->sibling, &root->subsys_list);
1008
			ss->root = root;
1009
			if (ss->bind)
1010
				ss->bind(ss, cgrp);
1011
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1012
			/* refcount was already taken, and we're keeping it */
1013 1014
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1015
			BUG_ON(ss == NULL);
1016 1017
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1018
			mutex_lock(&ss->hierarchy_mutex);
1019 1020 1021
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
1022
			cgrp->subsys[i] = NULL;
1023
			subsys[i]->root = &rootnode;
1024
			list_move(&ss->sibling, &rootnode.subsys_list);
1025
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1026 1027
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1028 1029
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1030
			BUG_ON(ss == NULL);
1031
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1032 1033 1034 1035 1036 1037 1038 1039
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1040 1041
		} else {
			/* Subsystem state shouldn't exist */
1042
			BUG_ON(cgrp->subsys[i]);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1061 1062
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1063 1064
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1065 1066
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
1067 1068 1069 1070 1071 1072 1073
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1074
	char *release_agent;
1075
	bool clone_children;
1076
	char *name;
1077 1078
	/* User explicitly requested empty subsystem */
	bool none;
1079 1080

	struct cgroupfs_root *new_root;
1081

1082 1083
};

B
Ben Blum 已提交
1084 1085
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1086 1087 1088
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1089
 */
B
Ben Blum 已提交
1090
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1091
{
1092 1093
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1094
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1095 1096
	int i;
	bool module_pin_failed = false;
1097

B
Ben Blum 已提交
1098 1099
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1100 1101 1102
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1103

1104
	memset(opts, 0, sizeof(*opts));
1105 1106 1107 1108

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1109
		if (!strcmp(token, "none")) {
1110 1111
			/* Explicitly have no subsystems */
			opts->none = true;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1122
			set_bit(ROOT_NOPREFIX, &opts->flags);
1123 1124 1125
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1126
			opts->clone_children = true;
1127 1128 1129
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1130 1131 1132
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1133
			opts->release_agent =
1134
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1135 1136
			if (!opts->release_agent)
				return -ENOMEM;
1137 1138 1139
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1157
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1158 1159 1160
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
	 * otherwise 'all, 'none' and a subsystem name options were not
	 * specified, let's default to 'all'
	 */
	if (all_ss || (!all_ss && !one_ss && !opts->none)) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1199 1200 1201
		}
	}

1202 1203
	/* Consistency checks */

1204 1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1213 1214 1215 1216 1217 1218 1219 1220 1221

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1222
	if (!opts->subsys_bits && !opts->name)
1223 1224
		return -EINVAL;

B
Ben Blum 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1258 1259 1260
	return 0;
}

B
Ben Blum 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1273 1274 1275 1276
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1277
	struct cgroup *cgrp = &root->top_cgroup;
1278 1279
	struct cgroup_sb_opts opts;

1280
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1281 1282 1283 1284 1285 1286 1287
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

B
Ben Blum 已提交
1288 1289 1290
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1291
		ret = -EINVAL;
B
Ben Blum 已提交
1292
		drop_parsed_module_refcounts(opts.subsys_bits);
1293 1294 1295
		goto out_unlock;
	}

1296
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1297 1298
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1299
		goto out_unlock;
B
Ben Blum 已提交
1300
	}
1301 1302

	/* (re)populate subsystem files */
1303
	cgroup_populate_dir(cgrp);
1304

1305 1306
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1307
 out_unlock:
1308
	kfree(opts.release_agent);
1309
	kfree(opts.name);
1310
	mutex_unlock(&cgroup_mutex);
1311
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1312 1313 1314
	return ret;
}

1315
static const struct super_operations cgroup_ops = {
1316 1317 1318 1319 1320 1321
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1322 1323 1324 1325 1326 1327
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1328 1329
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1330 1331
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1332
}
1333

1334 1335
static void init_cgroup_root(struct cgroupfs_root *root)
{
1336
	struct cgroup *cgrp = &root->top_cgroup;
1337 1338 1339
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1340 1341
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1342
	init_cgroup_housekeeping(cgrp);
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1370 1371
static int cgroup_test_super(struct super_block *sb, void *data)
{
1372
	struct cgroup_sb_opts *opts = data;
1373 1374
	struct cgroupfs_root *root = sb->s_fs_info;

1375 1376 1377
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1378

1379 1380 1381 1382 1383 1384
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1385 1386 1387 1388 1389
		return 0;

	return 1;
}

1390 1391 1392 1393
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1394
	if (!opts->subsys_bits && !opts->none)
1395 1396 1397 1398 1399 1400
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1401 1402 1403 1404
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1405
	init_cgroup_root(root);
1406

1407 1408 1409 1410 1411 1412
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1413 1414
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1415 1416 1417
	return root;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1430 1431 1432
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1433 1434 1435 1436 1437 1438
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1439
	BUG_ON(!opts->subsys_bits && !opts->none);
1440 1441 1442 1443 1444

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1445 1446
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1458 1459
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1460
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1461 1462
	};

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
A
Al Viro 已提交
1480 1481
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1482 1483 1484
	return 0;
}

A
Al Viro 已提交
1485
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1486
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1487
			 void *data)
1488 1489
{
	struct cgroup_sb_opts opts;
1490
	struct cgroupfs_root *root;
1491 1492
	int ret = 0;
	struct super_block *sb;
1493
	struct cgroupfs_root *new_root;
1494 1495

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1496
	mutex_lock(&cgroup_mutex);
1497
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1498
	mutex_unlock(&cgroup_mutex);
1499 1500
	if (ret)
		goto out_err;
1501

1502 1503 1504 1505 1506 1507 1508
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1509
		goto drop_modules;
1510
	}
1511
	opts.new_root = new_root;
1512

1513 1514
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1515
	if (IS_ERR(sb)) {
1516
		ret = PTR_ERR(sb);
1517
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1518
		goto drop_modules;
1519 1520
	}

1521 1522 1523 1524 1525
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1526
		struct cgroup *root_cgrp = &root->top_cgroup;
1527
		struct inode *inode;
1528
		struct cgroupfs_root *existing_root;
1529
		int i;
1530 1531 1532 1533 1534 1535

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1536
		inode = sb->s_root->d_inode;
1537

1538
		mutex_lock(&inode->i_mutex);
1539 1540
		mutex_lock(&cgroup_mutex);

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1567 1568 1569
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1570
			mutex_unlock(&inode->i_mutex);
1571 1572
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1573
		}
B
Ben Blum 已提交
1574 1575 1576 1577 1578
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1579 1580 1581 1582 1583

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1584
		root_count++;
1585

1586
		sb->s_root->d_fsdata = root_cgrp;
1587 1588
		root->top_cgroup.dentry = sb->s_root;

1589 1590 1591
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1592 1593 1594
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1595
			struct css_set *cg;
1596

1597 1598
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1599
		}
1600 1601 1602 1603
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1604 1605
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1606 1607
		BUG_ON(root->number_of_cgroups != 1);

1608
		cgroup_populate_dir(root_cgrp);
1609
		mutex_unlock(&cgroup_mutex);
1610
		mutex_unlock(&inode->i_mutex);
1611 1612 1613 1614 1615
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1616
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1617 1618
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1619 1620
	}

1621 1622
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1623
	return dget(sb->s_root);
1624 1625

 drop_new_super:
1626
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1627 1628
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1629 1630 1631
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1632
	return ERR_PTR(ret);
1633 1634 1635 1636
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1637
	struct cgroup *cgrp = &root->top_cgroup;
1638
	int ret;
K
KOSAKI Motohiro 已提交
1639 1640
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1641 1642 1643 1644

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1645 1646
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1647 1648 1649 1650 1651 1652 1653 1654

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1655 1656 1657 1658 1659
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1660 1661 1662

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1663
		list_del(&link->cg_link_list);
1664
		list_del(&link->cgrp_link_list);
1665 1666 1667 1668
		kfree(link);
	}
	write_unlock(&css_set_lock);

1669 1670 1671 1672
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1673

1674 1675 1676
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1677
	cgroup_drop_root(root);
1678 1679 1680 1681
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1682
	.mount = cgroup_mount,
1683 1684 1685
	.kill_sb = cgroup_kill_sb,
};

1686 1687
static struct kobject *cgroup_kobj;

1688
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1689 1690 1691 1692 1693 1694 1695 1696 1697
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1698 1699 1700 1701 1702 1703
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1704 1705 1706
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1707
 */
1708
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1709 1710
{
	char *start;
1711 1712 1713
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      rcu_read_lock_held() ||
						      cgroup_lock_is_held());
1714

1715
	if (!dentry || cgrp == dummytop) {
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1728
		int len = dentry->d_name.len;
1729

1730 1731
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1732
		memcpy(start, dentry->d_name.name, len);
1733 1734
		cgrp = cgrp->parent;
		if (!cgrp)
1735
			break;
1736 1737 1738 1739

		dentry = rcu_dereference_check(cgrp->dentry,
					       rcu_read_lock_held() ||
					       cgroup_lock_is_held());
1740
		if (!cgrp->parent)
1741 1742 1743 1744 1745 1746 1747 1748
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1749
EXPORT_SYMBOL_GPL(cgroup_path);
1750

L
Li Zefan 已提交
1751 1752 1753 1754
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1755
 *
L
Li Zefan 已提交
1756 1757
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1758
 */
1759
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1760 1761
{
	int retval = 0;
1762
	struct cgroup_subsys *ss, *failed_ss = NULL;
1763
	struct cgroup *oldcgrp;
1764
	struct css_set *cg;
1765
	struct css_set *newcg;
1766
	struct cgroupfs_root *root = cgrp->root;
1767 1768

	/* Nothing to do if the task is already in that cgroup */
1769
	oldcgrp = task_cgroup_from_root(tsk, root);
1770
	if (cgrp == oldcgrp)
1771 1772 1773 1774
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1775
			retval = ss->can_attach(ss, cgrp, tsk, false);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1786 1787 1788
		}
	}

1789 1790 1791 1792
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1793 1794 1795 1796
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1797
	newcg = find_css_set(cg, cgrp);
1798
	put_css_set(cg);
1799 1800 1801 1802
	if (!newcg) {
		retval = -ENOMEM;
		goto out;
	}
1803

1804 1805 1806
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1807
		put_css_set(newcg);
1808 1809
		retval = -ESRCH;
		goto out;
1810
	}
1811
	rcu_assign_pointer(tsk->cgroups, newcg);
1812 1813
	task_unlock(tsk);

1814 1815
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
1816 1817
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
1818 1819
	write_unlock(&css_set_lock);

1820
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1821
		if (ss->attach)
1822
			ss->attach(ss, cgrp, oldcgrp, tsk, false);
1823
	}
1824
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1825
	synchronize_rcu();
1826
	put_css_set(cg);
1827 1828 1829 1830 1831

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1832
	cgroup_wakeup_rmdir_waiter(cgrp);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, tsk, false);
		}
	}
	return retval;
1849 1850
}

1851
/**
M
Michael S. Tsirkin 已提交
1852 1853
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1854 1855
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
1856
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1857 1858 1859 1860 1861 1862
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
1863 1864 1865
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
1866 1867 1868 1869 1870 1871 1872
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
1873
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1874

1875
/*
1876 1877
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1878
 */
1879
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1880 1881
{
	struct task_struct *tsk;
1882
	const struct cred *cred = current_cred(), *tcred;
1883 1884 1885 1886
	int ret;

	if (pid) {
		rcu_read_lock();
1887
		tsk = find_task_by_vpid(pid);
1888 1889 1890 1891 1892
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1893 1894 1895 1896 1897
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1898 1899
			return -EACCES;
		}
1900 1901
		get_task_struct(tsk);
		rcu_read_unlock();
1902 1903 1904 1905 1906
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1907
	ret = cgroup_attach_task(cgrp, tsk);
1908 1909 1910 1911
	put_task_struct(tsk);
	return ret;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1922 1923 1924 1925
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1926 1927
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1928
 */
1929
bool cgroup_lock_live_group(struct cgroup *cgrp)
1930 1931 1932 1933 1934 1935 1936 1937
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
1938
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1939 1940 1941 1942 1943

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1944 1945
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
1946 1947 1948
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1949
	cgroup_unlock();
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1960
	cgroup_unlock();
1961 1962 1963
	return 0;
}

1964 1965 1966
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1967
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1968 1969 1970
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1971
{
1972
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1984
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
1985
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1986 1987 1988 1989
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
1990
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1991 1992 1993 1994
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1995 1996 1997 1998 1999
	if (!retval)
		retval = nbytes;
	return retval;
}

2000 2001 2002 2003 2004
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2005
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2020 2021 2022 2023
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2024 2025

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2026
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2027 2028
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2029
out:
2030 2031 2032 2033 2034
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2035 2036 2037 2038
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2039
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2040

2041
	if (cgroup_is_removed(cgrp))
2042
		return -ENODEV;
2043
	if (cft->write)
2044
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2045 2046
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2047 2048
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2049 2050 2051 2052
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2053
	return -EINVAL;
2054 2055
}

2056 2057 2058 2059
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2060
{
2061
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2062
	u64 val = cft->read_u64(cgrp, cft);
2063 2064 2065 2066 2067
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2068 2069 2070 2071 2072
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2073
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2074 2075 2076 2077 2078 2079
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2080 2081 2082 2083
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2084
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2085

2086
	if (cgroup_is_removed(cgrp))
2087 2088 2089
		return -ENODEV;

	if (cft->read)
2090
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2091 2092
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2093 2094
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2095 2096 2097
	return -EINVAL;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2118 2119 2120 2121 2122 2123 2124 2125
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2126 2127
}

2128
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2129 2130 2131 2132 2133 2134
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2135
static const struct file_operations cgroup_seqfile_operations = {
2136
	.read = seq_read,
2137
	.write = cgroup_file_write,
2138 2139 2140 2141
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2142 2143 2144 2145 2146 2147 2148 2149 2150
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2151

2152
	if (cft->read_map || cft->read_seq_string) {
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2194
static const struct file_operations cgroup_file_operations = {
2195 2196 2197 2198 2199 2200 2201
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2202
static const struct inode_operations cgroup_dir_inode_operations = {
2203
	.lookup = cgroup_lookup,
2204 2205 2206 2207 2208
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2209 2210 2211 2212 2213 2214 2215 2216
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

2227 2228 2229
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
				struct super_block *sb)
{
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2250
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2261 2262 2263 2264 2265
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2266
 */
2267
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2268
				mode_t mode)
2269 2270 2271 2272
{
	struct dentry *parent;
	int error = 0;

2273 2274
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2275
	if (!error) {
2276
		dentry->d_fsdata = cgrp;
2277
		inc_nlink(parent->d_inode);
2278
		rcu_assign_pointer(cgrp->dentry, dentry);
2279 2280 2281 2282 2283 2284 2285
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2313
int cgroup_add_file(struct cgroup *cgrp,
2314 2315 2316
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2317
	struct dentry *dir = cgrp->dentry;
2318 2319
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2320
	mode_t mode;
2321 2322

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2323
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2324 2325 2326 2327 2328 2329 2330
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2331 2332
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2333
						cgrp->root->sb);
2334 2335 2336 2337 2338 2339 2340
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2341
EXPORT_SYMBOL_GPL(cgroup_add_file);
2342

2343
int cgroup_add_files(struct cgroup *cgrp,
2344 2345 2346 2347 2348 2349
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2350
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2351 2352 2353 2354 2355
		if (err)
			return err;
	}
	return 0;
}
2356
EXPORT_SYMBOL_GPL(cgroup_add_files);
2357

L
Li Zefan 已提交
2358 2359 2360 2361 2362 2363
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2364
int cgroup_task_count(const struct cgroup *cgrp)
2365 2366
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2367
	struct cg_cgroup_link *link;
2368 2369

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2370
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2371
		count += atomic_read(&link->cg->refcount);
2372 2373
	}
	read_unlock(&css_set_lock);
2374 2375 2376
	return count;
}

2377 2378 2379 2380
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2381
static void cgroup_advance_iter(struct cgroup *cgrp,
2382
				struct cgroup_iter *it)
2383 2384 2385 2386 2387 2388 2389 2390
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2391
		if (l == &cgrp->css_sets) {
2392 2393 2394
			it->cg_link = NULL;
			return;
		}
2395
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2396 2397 2398 2399 2400 2401
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2402 2403 2404 2405 2406 2407 2408 2409 2410
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2411
static void cgroup_enable_task_cg_lists(void)
2412 2413 2414 2415 2416 2417
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2418 2419 2420 2421 2422 2423
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2424 2425 2426 2427 2428 2429
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2430
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2431 2432 2433 2434 2435 2436
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2437 2438 2439
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2440
	read_lock(&css_set_lock);
2441 2442
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2443 2444
}

2445
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2446 2447 2448 2449
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2450
	struct cg_cgroup_link *link;
2451 2452 2453 2454 2455 2456 2457

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2458 2459
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2460 2461
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2462
		cgroup_advance_iter(cgrp, it);
2463 2464 2465 2466 2467 2468
	} else {
		it->task = l;
	}
	return res;
}

2469
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2470 2471 2472 2473
{
	read_unlock(&css_set_lock);
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2611
			struct task_struct *q = heap->ptrs[i];
2612
			if (i == 0) {
2613 2614
				latest_time = q->start_time;
				latest_task = q;
2615 2616
			}
			/* Process the task per the caller's callback */
2617 2618
			scan->process_task(q, scan);
			put_task_struct(q);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2634
/*
2635
 * Stuff for reading the 'tasks'/'procs' files.
2636 2637 2638 2639 2640 2641 2642 2643
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

2680
/*
2681 2682 2683 2684
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
2685
 */
2686 2687 2688
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
2689
{
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2719
		newlist = pidlist_resize(list, dest);
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
2742 2743
	struct pid_namespace *ns = current->nsproxy->pid_ns;

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
2768
	l->key.ns = get_pid_ns(ns);
2769 2770 2771 2772 2773 2774 2775 2776
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

2777 2778 2779
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
2780 2781
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
2782 2783 2784 2785
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
2786 2787
	struct cgroup_iter it;
	struct task_struct *tsk;
2788 2789 2790 2791 2792 2793 2794 2795 2796
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
2797
	array = pidlist_allocate(length);
2798 2799 2800
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
2801 2802
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2803
		if (unlikely(n == length))
2804
			break;
2805
		/* get tgid or pid for procs or tasks file respectively */
2806 2807 2808 2809
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
2810 2811
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
2812
	}
2813
	cgroup_iter_end(cgrp, &it);
2814 2815 2816
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
2817
	if (type == CGROUP_FILE_PROCS)
2818
		length = pidlist_uniq(&array, length);
2819 2820
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
2821
		pidlist_free(array);
2822
		return -ENOMEM;
2823
	}
2824
	/* store array, freeing old if necessary - lock already held */
2825
	pidlist_free(l->list);
2826 2827 2828 2829
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
2830
	*lp = l;
2831
	return 0;
2832 2833
}

B
Balbir Singh 已提交
2834
/**
L
Li Zefan 已提交
2835
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2836 2837 2838
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2839 2840 2841
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2842 2843 2844 2845
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2846
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2847 2848
	struct cgroup_iter it;
	struct task_struct *tsk;
2849

B
Balbir Singh 已提交
2850
	/*
2851 2852
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2853
	 */
2854 2855
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2856 2857 2858
		 goto err;

	ret = 0;
2859
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2860

2861 2862
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2882
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2883 2884 2885 2886 2887

err:
	return ret;
}

2888

2889
/*
2890
 * seq_file methods for the tasks/procs files. The seq_file position is the
2891
 * next pid to display; the seq_file iterator is a pointer to the pid
2892
 * in the cgroup->l->list array.
2893
 */
2894

2895
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2896
{
2897 2898 2899 2900 2901 2902
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2903
	struct cgroup_pidlist *l = s->private;
2904 2905 2906
	int index = 0, pid = *pos;
	int *iter;

2907
	down_read(&l->mutex);
2908
	if (pid) {
2909
		int end = l->length;
S
Stephen Rothwell 已提交
2910

2911 2912
		while (index < end) {
			int mid = (index + end) / 2;
2913
			if (l->list[mid] == pid) {
2914 2915
				index = mid;
				break;
2916
			} else if (l->list[mid] <= pid)
2917 2918 2919 2920 2921 2922
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2923
	if (index >= l->length)
2924 2925
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2926
	iter = l->list + index;
2927 2928 2929 2930
	*pos = *iter;
	return iter;
}

2931
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2932
{
2933 2934
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
2935 2936
}

2937
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2938
{
2939 2940 2941
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

2955
static int cgroup_pidlist_show(struct seq_file *s, void *v)
2956 2957 2958
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
2969 2970
};

2971
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2972
{
2973 2974 2975 2976 2977 2978 2979
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
2980 2981 2982
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
2983 2984 2985
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
2986
		pidlist_free(l->list);
2987 2988 2989 2990
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
2991
	}
2992
	mutex_unlock(&l->owner->pidlist_mutex);
2993
	up_write(&l->mutex);
2994 2995
}

2996
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2997
{
2998
	struct cgroup_pidlist *l;
2999 3000
	if (!(file->f_mode & FMODE_READ))
		return 0;
3001 3002 3003 3004 3005 3006
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3007 3008 3009
	return seq_release(inode, file);
}

3010
static const struct file_operations cgroup_pidlist_operations = {
3011 3012 3013
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3014
	.release = cgroup_pidlist_release,
3015 3016
};

3017
/*
3018 3019 3020
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3021
 */
3022
/* helper function for the two below it */
3023
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3024
{
3025
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3026
	struct cgroup_pidlist *l;
3027
	int retval;
3028

3029
	/* Nothing to do for write-only files */
3030 3031 3032
	if (!(file->f_mode & FMODE_READ))
		return 0;

3033
	/* have the array populated */
3034
	retval = pidlist_array_load(cgrp, type, &l);
3035 3036 3037 3038
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3039

3040
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3041
	if (retval) {
3042
		cgroup_release_pid_array(l);
3043
		return retval;
3044
	}
3045
	((struct seq_file *)file->private_data)->private = l;
3046 3047
	return 0;
}
3048 3049
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3050
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3051 3052 3053
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3054
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3055
}
3056

3057
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3058 3059
					    struct cftype *cft)
{
3060
	return notify_on_release(cgrp);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3090
	dput(cgrp->dentry);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3107
		__remove_wait_queue(event->wqh, &event->wait);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
	ret = file_permission(cfile, MAY_READ);
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3211 3212 3213 3214 3215 3216 3217
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3259 3260 3261
/*
 * for the common functions, 'private' gives the type of file
 */
3262 3263
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3264 3265 3266 3267
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3268
		.write_u64 = cgroup_tasks_write,
3269
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3270
		.mode = S_IRUGO | S_IWUSR,
3271
	},
3272 3273 3274 3275 3276 3277 3278
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
		/* .write_u64 = cgroup_procs_write, TODO */
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO,
	},
3279 3280
	{
		.name = "notify_on_release",
3281
		.read_u64 = cgroup_read_notify_on_release,
3282
		.write_u64 = cgroup_write_notify_on_release,
3283
	},
3284 3285 3286 3287 3288
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3289 3290 3291 3292 3293
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3294 3295 3296 3297
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3298 3299 3300
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3301 3302
};

3303
static int cgroup_populate_dir(struct cgroup *cgrp)
3304 3305 3306 3307 3308
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
3309
	cgroup_clear_directory(cgrp->dentry);
3310

3311
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3312 3313 3314
	if (err < 0)
		return err;

3315 3316
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3317 3318 3319
			return err;
	}

3320 3321
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3322 3323
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3335 3336 3337 3338 3339 3340

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3341
			       struct cgroup *cgrp)
3342
{
3343
	css->cgroup = cgrp;
P
Paul Menage 已提交
3344
	atomic_set(&css->refcnt, 1);
3345
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3346
	css->id = NULL;
3347
	if (cgrp == dummytop)
3348
		set_bit(CSS_ROOT, &css->flags);
3349 3350
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3351 3352
}

3353 3354 3355 3356 3357
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3358 3359 3360 3361
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3362 3363
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3364 3365
		if (ss == NULL)
			continue;
3366
		if (ss->root == root)
3367
			mutex_lock(&ss->hierarchy_mutex);
3368 3369 3370 3371 3372 3373 3374 3375 3376
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3377 3378
		if (ss == NULL)
			continue;
3379 3380 3381 3382 3383
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3384
/*
L
Li Zefan 已提交
3385 3386 3387 3388
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3389
 *
L
Li Zefan 已提交
3390
 * Must be called with the mutex on the parent inode held
3391 3392
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
3393
			     mode_t mode)
3394
{
3395
	struct cgroup *cgrp;
3396 3397 3398 3399 3400
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3401 3402
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3414
	init_cgroup_housekeeping(cgrp);
3415

3416 3417 3418
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3419

3420 3421 3422
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3423 3424 3425
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3426
	for_each_subsys(root, ss) {
3427
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3428

3429 3430 3431 3432
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3433
		init_cgroup_css(css, ss, cgrp);
3434 3435 3436
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3437
				goto err_destroy;
3438
		}
K
KAMEZAWA Hiroyuki 已提交
3439
		/* At error, ->destroy() callback has to free assigned ID. */
3440 3441
		if (clone_children(parent) && ss->post_clone)
			ss->post_clone(ss, cgrp);
3442 3443
	}

3444
	cgroup_lock_hierarchy(root);
3445
	list_add(&cgrp->sibling, &cgrp->parent->children);
3446
	cgroup_unlock_hierarchy(root);
3447 3448
	root->number_of_cgroups++;

3449
	err = cgroup_create_dir(cgrp, dentry, mode);
3450 3451 3452 3453
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3454
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3455

3456
	err = cgroup_populate_dir(cgrp);
3457 3458 3459
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3460
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3461 3462 3463 3464 3465

	return 0;

 err_remove:

3466
	cgroup_lock_hierarchy(root);
3467
	list_del(&cgrp->sibling);
3468
	cgroup_unlock_hierarchy(root);
3469 3470 3471 3472 3473
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3474 3475
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3476 3477 3478 3479 3480 3481 3482
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3483
	kfree(cgrp);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3495
static int cgroup_has_css_refs(struct cgroup *cgrp)
3496 3497 3498
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3499
	 * cgroup, if the css refcount is also 1, then there should
3500 3501 3502 3503 3504 3505 3506
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3507 3508 3509 3510 3511
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3512 3513 3514
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3515 3516
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3517
			continue;
3518
		css = cgrp->subsys[ss->subsys_id];
3519 3520 3521 3522 3523 3524
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3525
		if (css && (atomic_read(&css->refcnt) > 1))
3526 3527 3528 3529 3530
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3546
		while (1) {
P
Paul Menage 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3560 3561 3562 3563
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3584 3585
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3586
	struct cgroup *cgrp = dentry->d_fsdata;
3587 3588
	struct dentry *d;
	struct cgroup *parent;
3589
	DEFINE_WAIT(wait);
3590
	struct cgroup_event *event, *tmp;
3591
	int ret;
3592 3593

	/* the vfs holds both inode->i_mutex already */
3594
again:
3595
	mutex_lock(&cgroup_mutex);
3596
	if (atomic_read(&cgrp->count) != 0) {
3597 3598 3599
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3600
	if (!list_empty(&cgrp->children)) {
3601 3602 3603
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3604
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3605

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3617
	/*
L
Li Zefan 已提交
3618 3619
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3620
	 */
3621
	ret = cgroup_call_pre_destroy(cgrp);
3622 3623
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3624
		return ret;
3625
	}
3626

3627 3628
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3629
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3630
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3631 3632 3633
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3634 3635 3636
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3637 3638 3639 3640 3641 3642
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3643 3644 3645 3646 3647 3648 3649 3650 3651
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3652

3653
	spin_lock(&release_list_lock);
3654 3655
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
3656
		list_del_init(&cgrp->release_list);
3657
	spin_unlock(&release_list_lock);
3658 3659 3660

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3661
	list_del_init(&cgrp->sibling);
3662 3663
	cgroup_unlock_hierarchy(cgrp->root);

3664
	d = dget(cgrp->dentry);
3665 3666 3667 3668

	cgroup_d_remove_dir(d);
	dput(d);

3669
	set_bit(CGRP_RELEASABLE, &parent->flags);
3670 3671
	check_for_release(parent);

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

3686 3687 3688 3689
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3690
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3691 3692
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3693 3694

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3695 3696

	/* Create the top cgroup state for this subsystem */
3697
	list_add(&ss->sibling, &rootnode.subsys_list);
3698 3699 3700 3701 3702 3703
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3704
	/* Update the init_css_set to contain a subsys
3705
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3706 3707 3708
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3709 3710 3711

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3712 3713 3714 3715 3716
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3717
	mutex_init(&ss->hierarchy_mutex);
3718
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3719
	ss->active = 1;
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
3731
 * subsystem is built as a module, it will be assigned a new subsys_id and set
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
	css = ss->create(ss, dummytop);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
			ss->destroy(ss, dummytop);
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
3849
}
3850
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3851

B
Ben Blum 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
3880
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
	ss->destroy(ss, dummytop);
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

3911
/**
L
Li Zefan 已提交
3912 3913 3914 3915
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3916 3917 3918 3919
 */
int __init cgroup_init_early(void)
{
	int i;
3920
	atomic_set(&init_css_set.refcount, 1);
3921 3922
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3923
	INIT_HLIST_NODE(&init_css_set.hlist);
3924
	css_set_count = 1;
3925
	init_cgroup_root(&rootnode);
3926 3927 3928 3929
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3930
	init_css_set_link.cgrp = dummytop;
3931
	list_add(&init_css_set_link.cgrp_link_list,
3932 3933 3934
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3935

3936 3937 3938
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
3939 3940
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3941 3942 3943 3944 3945 3946 3947
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3948
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3960 3961 3962 3963
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3964 3965 3966 3967 3968
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3969
	struct hlist_head *hhead;
3970 3971 3972 3973

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3974

B
Ben Blum 已提交
3975 3976
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3977 3978 3979
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3980
		if (ss->use_id)
3981
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3982 3983
	}

3984 3985 3986
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3987
	BUG_ON(!init_root_id(&rootnode));
3988 3989 3990 3991 3992 3993 3994

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

3995
	err = register_filesystem(&cgroup_fs_type);
3996 3997
	if (err < 0) {
		kobject_put(cgroup_kobj);
3998
		goto out;
3999
	}
4000

L
Li Zefan 已提交
4001
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4002

4003
out:
4004 4005 4006
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4007 4008
	return err;
}
4009

4010 4011 4012 4013 4014 4015
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4016
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4046
	for_each_active_root(root) {
4047
		struct cgroup_subsys *ss;
4048
		struct cgroup *cgrp;
4049 4050
		int count = 0;

4051
		seq_printf(m, "%d:", root->hierarchy_id);
4052 4053
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4054 4055 4056
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4057
		seq_putc(m, ':');
4058
		cgrp = task_cgroup_from_root(tsk, root);
4059
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4081
const struct file_operations proc_cgroup_operations = {
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4093
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4094 4095 4096 4097 4098
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4099 4100 4101
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4102 4103
		if (ss == NULL)
			continue;
4104 4105
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4106
			   ss->root->number_of_cgroups, !ss->disabled);
4107 4108 4109 4110 4111 4112 4113
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4114
	return single_open(file, proc_cgroupstats_show, NULL);
4115 4116
}

4117
static const struct file_operations proc_cgroupstats_operations = {
4118 4119 4120 4121 4122 4123
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4124 4125
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4126
 * @child: pointer to task_struct of forking parent process.
4127 4128 4129 4130 4131 4132
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
4133
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4134 4135
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4136 4137 4138 4139 4140 4141
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4142 4143 4144 4145 4146
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
4147 4148 4149
}

/**
L
Li Zefan 已提交
4150 4151 4152 4153 4154 4155
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4156 4157 4158 4159 4160
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4161 4162 4163 4164 4165 4166
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4167 4168 4169 4170 4171 4172 4173
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

4174
/**
L
Li Zefan 已提交
4175 4176 4177 4178 4179 4180 4181 4182
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4183 4184 4185 4186
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4187
		task_lock(child);
4188 4189
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
4190
		task_unlock(child);
4191 4192 4193
		write_unlock(&css_set_lock);
	}
}
4194 4195 4196
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4197
 * @run_callback: run exit callbacks?
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4226 4227
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4228 4229 4230
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4231
	struct css_set *cg;
4232
	int i;
4233 4234 4235 4236 4237 4238 4239 4240 4241

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4242
			list_del_init(&tsk->cg_list);
4243 4244 4245
		write_unlock(&css_set_lock);
	}

4246 4247
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4248 4249
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
				ss->exit(ss, cgrp, old_cgrp, tsk);
			}
		}
	}
4266
	task_unlock(tsk);
4267

4268
	if (cg)
4269
		put_css_set_taskexit(cg);
4270
}
4271 4272

/**
L
Li Zefan 已提交
4273 4274 4275
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
4276
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
4277 4278 4279 4280
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
4281
 */
4282 4283
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
4307
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
4308 4309 4310 4311
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
4312

4313
	/* Keep the cgroup alive */
4314 4315 4316
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
4317
	get_css_set(cg);
4318
	task_unlock(tsk);
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
4331
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4332 4333 4334 4335 4336 4337
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
4338
	ret = vfs_mkdir(inode, dentry, 0755);
4339
	child = __d_cgrp(dentry);
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
4356
		put_css_set(cg);
4357

4358
		deactivate_super(root->sb);
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
4375
	ret = cgroup_attach_task(child, tsk);
4376 4377 4378 4379
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
4380 4381

	mutex_lock(&cgroup_mutex);
4382
	put_css_set(cg);
4383
	mutex_unlock(&cgroup_mutex);
4384
	deactivate_super(root->sb);
4385 4386 4387
	return ret;
}

L
Li Zefan 已提交
4388
/**
4389
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4390
 * @cgrp: the cgroup in question
4391
 * @task: the task in question
L
Li Zefan 已提交
4392
 *
4393 4394
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4395 4396 4397 4398 4399 4400
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4401
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4402 4403 4404 4405
{
	int ret;
	struct cgroup *target;

4406
	if (cgrp == dummytop)
4407 4408
		return 1;

4409
	target = task_cgroup_from_root(task, cgrp->root);
4410 4411 4412
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4413 4414
	return ret;
}
4415

4416
static void check_for_release(struct cgroup *cgrp)
4417 4418 4419
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4420 4421
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4422 4423 4424 4425 4426
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
4427 4428 4429
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4430 4431 4432 4433 4434 4435 4436 4437
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4438 4439
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4440
{
4441
	struct cgroup *cgrp = css->cgroup;
4442
	int val;
4443
	rcu_read_lock();
4444
	val = atomic_sub_return(count, &css->refcnt);
4445
	if (val == 1) {
4446 4447 4448 4449
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4450
		cgroup_wakeup_rmdir_waiter(cgrp);
4451 4452
	}
	rcu_read_unlock();
4453
	WARN_ON_ONCE(val < 1);
4454
}
B
Ben Blum 已提交
4455
EXPORT_SYMBOL_GPL(__css_put);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4488
		char *pathbuf = NULL, *agentbuf = NULL;
4489
		struct cgroup *cgrp = list_entry(release_list.next,
4490 4491
						    struct cgroup,
						    release_list);
4492
		list_del_init(&cgrp->release_list);
4493 4494
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4495 4496 4497 4498 4499 4500 4501
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4502 4503

		i = 0;
4504 4505
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4520 4521 4522
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4523 4524 4525 4526 4527
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
4528 4529 4530 4531 4532 4533 4534 4535 4536

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4537 4538 4539 4540 4541
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4565 4566 4567 4568 4569 4570 4571 4572 4573
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
	cssid = rcu_dereference_check(css->id,
			rcu_read_lock_held() || atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4574 4575 4576 4577 4578

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4579
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4580 4581 4582

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4583 4584 4585 4586
	struct css_id *cssid;

	cssid = rcu_dereference_check(css->id,
			rcu_read_lock_held() || atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4587 4588 4589 4590 4591

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4592
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
4607
bool css_is_ancestor(struct cgroup_subsys_state *child,
4608
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4609
{
4610 4611 4612
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}
B
Ben Blum 已提交
4650
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4700 4701
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
4723
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
4724 4725 4726 4727 4728

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
4729
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
4767
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
4903 4904
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */