cgroup.c 81.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

87
	/* A list running through the active hierarchies */
88 89 90 91
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119 120

/* convenient tests for these bits */
121
inline int cgroup_is_removed(const struct cgroup *cgrp)
122
{
123
	return test_bit(CGRP_REMOVED, &cgrp->flags);
124 125 126 127 128 129 130
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

131
static int cgroup_is_releasable(const struct cgroup *cgrp)
132 133
{
	const int bits =
134 135 136
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
137 138
}

139
static int notify_on_release(const struct cgroup *cgrp)
140
{
141
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 143
}

144 145 146 147 148 149 150
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

151 152
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
153 154
list_for_each_entry(_root, &roots, root_list)

155 156 157 158 159 160
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161
static void check_for_release(struct cgroup *cgrp);
162

163 164 165 166 167 168
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
169
	struct list_head cgrp_link_list;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

215 216 217 218
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
219
static int use_task_css_set_links __read_mostly;
220 221 222 223 224 225 226

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
227 228 229 230 231 232 233
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
234 235 236 237

/*
 * unlink a css_set from the list and free it
 */
238
static void unlink_css_set(struct css_set *cg)
239
{
K
KOSAKI Motohiro 已提交
240 241 242
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

243
	hlist_del(&cg->hlist);
244
	css_set_count--;
K
KOSAKI Motohiro 已提交
245 246 247

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
248
		list_del(&link->cg_link_list);
249
		list_del(&link->cgrp_link_list);
250 251
		kfree(link);
	}
252 253
}

254
static void __put_css_set(struct css_set *cg, int taskexit)
255 256
{
	int i;
257 258 259 260 261 262 263 264 265 266 267 268
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
269
	unlink_css_set(cg);
270
	write_unlock(&css_set_lock);
271 272 273

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 275 276
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
277
			if (taskexit)
278 279
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
280 281 282
		}
	}
	rcu_read_unlock();
283
	kfree(cg);
284 285
}

286 287 288 289 290
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
291
	atomic_inc(&cg->refcount);
292 293 294 295
}

static inline void put_css_set(struct css_set *cg)
{
296
	__put_css_set(cg, 0);
297 298
}

299 300
static inline void put_css_set_taskexit(struct css_set *cg)
{
301
	__put_css_set(cg, 1);
302 303
}

304 305 306
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
307
 * css_set is suitable.
308 309 310 311
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
312
 * cgrp: the cgroup that we're moving into
313 314 315 316 317 318
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
319
	struct cgroup *cgrp,
320
	struct cgroup_subsys_state *template[])
321 322
{
	int i;
323
	struct cgroupfs_root *root = cgrp->root;
324 325 326
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
327 328 329 330

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
331
		if (root->subsys_bits & (1UL << i)) {
332 333 334
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
335
			template[i] = cgrp->subsys[i];
336 337 338 339 340 341 342
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

343 344
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
345 346 347 348
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
349
	}
350 351 352 353 354

	/* No existing cgroup group matched */
	return NULL;
}

355 356 357 358 359 360 361 362 363 364 365
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

366 367
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 370 371 372 373 374 375 376 377 378
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
379
			free_cg_links(tmp);
380 381
			return -ENOMEM;
		}
382
		list_add(&link->cgrp_link_list, tmp);
383 384 385 386 387 388 389 390 391 392 393 394
	}
	return 0;
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
395
	struct css_set *oldcg, struct cgroup *cgrp)
396 397 398 399 400 401 402 403
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

404 405
	struct hlist_head *hhead;

406 407
	/* First see if we already have a cgroup group that matches
	 * the desired set */
408
	read_lock(&css_set_lock);
409
	res = find_existing_css_set(oldcg, cgrp, template);
410 411
	if (res)
		get_css_set(res);
412
	read_unlock(&css_set_lock);
413 414 415 416 417 418 419 420 421 422 423 424 425 426

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

427
	atomic_set(&res->refcount, 1);
428 429
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
430
	INIT_HLIST_NODE(&res->hlist);
431 432 433 434 435 436 437 438

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439
		struct cgroup *cgrp = res->subsys[i]->cgroup;
440
		struct cgroup_subsys *ss = subsys[i];
441
		atomic_inc(&cgrp->count);
442 443 444 445 446 447 448 449 450
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
451 452 453
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 455 456 457 458 459 460
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
461 462 463
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 465 466 467 468 469 470
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
471 472 473 474 475

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

476 477 478
	write_unlock(&css_set_lock);

	return res;
479 480
}

481 482 483 484 485 486 487 488 489 490
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
491
 * cgroup_attach_task() can increment it again.  Because a count of zero
492 493 494 495 496 497 498 499 500 501 502 503 504
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
505 506
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
507 508 509 510 511 512 513 514 515 516 517
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
518
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
519
 * another.  It does so using cgroup_mutex, however there are
520 521 522
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
523
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
524 525 526 527
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
528
 * update of a tasks cgroup pointer by cgroup_attach_task()
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
559
static int cgroup_populate_dir(struct cgroup *cgrp);
560
static struct inode_operations cgroup_dir_inode_operations;
561 562 563
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
564
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
565
};
566 567 568 569 570 571 572

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
573 574
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
575 576 577 578 579 580
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

581 582 583 584 585 586 587 588
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
589
		if (ss->pre_destroy)
590 591 592 593
			ss->pre_destroy(ss, cgrp);
	return;
}

594 595 596 597
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
598
		struct cgroup *cgrp = dentry->d_fsdata;
599
		struct cgroup_subsys *ss;
600
		BUG_ON(!(cgroup_is_removed(cgrp)));
601 602 603 604 605 606 607
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
608 609 610 611 612

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
613 614
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
615 616 617 618 619 620 621 622

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

623
		kfree(cgrp);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
680
	struct cgroup *cgrp = &root->top_cgroup;
681 682 683 684 685 686
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
687
		unsigned long bit = 1UL << i;
688 689 690 691 692 693 694 695 696 697 698 699 700
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
701
	if (root->number_of_cgroups > 1)
702 703 704 705 706 707 708 709
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
710
			BUG_ON(cgrp->subsys[i]);
711 712
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
713 714
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
715
			list_add(&ss->sibling, &root->subsys_list);
716
			ss->root = root;
717
			if (ss->bind)
718
				ss->bind(ss, cgrp);
719 720 721

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
722 723
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
724 725 726
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
727
			cgrp->subsys[i] = NULL;
728
			subsys[i]->root = &rootnode;
729 730 731
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
732
			BUG_ON(!cgrp->subsys[i]);
733 734
		} else {
			/* Subsystem state shouldn't exist */
735
			BUG_ON(cgrp->subsys[i]);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
754 755
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
756 757 758 759 760 761 762
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
763
	char *release_agent;
764 765 766 767 768 769 770 771 772 773 774
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
775
	opts->release_agent = NULL;
776 777 778 779 780

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
781 782 783 784 785 786 787 788
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
789 790
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
791 792 793 794 795 796 797 798 799
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
800 801 802 803 804 805
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
806 807
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
827
	struct cgroup *cgrp = &root->top_cgroup;
828 829
	struct cgroup_sb_opts opts;

830
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
848
		cgroup_populate_dir(cgrp);
849

850 851
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
852
 out_unlock:
853 854
	if (opts.release_agent)
		kfree(opts.release_agent);
855
	mutex_unlock(&cgroup_mutex);
856
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
857 858 859 860 861 862 863 864 865 866
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

867 868 869 870 871 872 873 874
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
875 876
static void init_cgroup_root(struct cgroupfs_root *root)
{
877
	struct cgroup *cgrp = &root->top_cgroup;
878 879 880
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
881 882
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
883
	init_cgroup_housekeeping(cgrp);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
952
	struct list_head tmp_cg_links;
953 954 955

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
956 957 958
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
959
		return ret;
960
	}
961 962

	root = kzalloc(sizeof(*root), GFP_KERNEL);
963 964 965
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
966
		return -ENOMEM;
967
	}
968 969 970 971

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
972 973 974 975
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
991
		struct cgroup *cgrp = &root->top_cgroup;
992
		struct inode *inode;
993
		int i;
994 995 996 997 998 999

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1000
		inode = sb->s_root->d_inode;
1001

1002
		mutex_lock(&inode->i_mutex);
1003 1004
		mutex_lock(&cgroup_mutex);

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1019 1020 1021
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1022
			mutex_unlock(&inode->i_mutex);
1023
			goto free_cg_links;
1024 1025 1026 1027 1028 1029
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1030
		root_count++;
1031 1032 1033 1034

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1035 1036 1037
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1038 1039 1040
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1041
			struct css_set *cg;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1057 1058 1059 1060
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1061 1062
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1063 1064
		BUG_ON(root->number_of_cgroups != 1);

1065
		cgroup_populate_dir(cgrp);
1066
		mutex_unlock(&inode->i_mutex);
1067 1068 1069 1070 1071
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

1072 1073
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1074 1075 1076 1077 1078 1079 1080 1081
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1082
	struct cgroup *cgrp = &root->top_cgroup;
1083
	int ret;
K
KOSAKI Motohiro 已提交
1084 1085
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1086 1087 1088 1089

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1090 1091
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1092 1093 1094 1095 1096 1097 1098 1099

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1100 1101 1102 1103 1104
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1105 1106 1107

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1108
		list_del(&link->cg_link_list);
1109
		list_del(&link->cgrp_link_list);
1110 1111 1112 1113
		kfree(link);
	}
	write_unlock(&css_set_lock);

1114 1115 1116
	list_del(&root->root_list);
	root_count--;

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1129
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1139 1140 1141 1142 1143 1144 1145
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1146 1147
 * Returns 0 on success, -errno on error.
 */
1148
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1149 1150 1151
{
	char *start;

1152
	if (cgrp == dummytop) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1165
		int len = cgrp->dentry->d_name.len;
1166 1167
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1168 1169 1170
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1171
			break;
1172
		if (!cgrp->parent)
1173 1174 1175 1176 1177 1178 1179 1180 1181
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1182 1183 1184 1185 1186
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1187
static void get_first_subsys(const struct cgroup *cgrp,
1188 1189
			struct cgroup_subsys_state **css, int *subsys_id)
{
1190
	const struct cgroupfs_root *root = cgrp->root;
1191 1192 1193 1194 1195
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1196
		*css = cgrp->subsys[test_ss->subsys_id];
1197 1198 1199 1200 1201 1202
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1203 1204 1205 1206
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1207
 *
L
Li Zefan 已提交
1208 1209
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1210
 */
1211
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1212 1213 1214
{
	int retval = 0;
	struct cgroup_subsys *ss;
1215
	struct cgroup *oldcgrp;
1216
	struct css_set *cg;
1217
	struct css_set *newcg;
1218
	struct cgroupfs_root *root = cgrp->root;
1219 1220
	int subsys_id;

1221
	get_first_subsys(cgrp, NULL, &subsys_id);
1222 1223

	/* Nothing to do if the task is already in that cgroup */
1224 1225
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1226 1227 1228 1229
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1230
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1231
			if (retval)
1232 1233 1234 1235
				return retval;
		}
	}

1236 1237 1238 1239
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1240 1241 1242 1243
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1244
	newcg = find_css_set(cg, cgrp);
1245
	put_css_set(cg);
P
Paul Jackson 已提交
1246
	if (!newcg)
1247 1248
		return -ENOMEM;

1249 1250 1251
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1252
		put_css_set(newcg);
1253 1254
		return -ESRCH;
	}
1255
	rcu_assign_pointer(tsk->cgroups, newcg);
1256 1257
	task_unlock(tsk);

1258 1259 1260 1261 1262 1263 1264 1265
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1266
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1267
		if (ss->attach)
1268
			ss->attach(ss, cgrp, oldcgrp, tsk);
1269
	}
1270
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1271
	synchronize_rcu();
1272
	put_css_set(cg);
1273 1274 1275 1276
	return 0;
}

/*
1277 1278
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1279
 */
1280
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1281 1282
{
	struct task_struct *tsk;
1283
	const struct cred *cred = current_cred(), *tcred;
1284 1285 1286 1287
	int ret;

	if (pid) {
		rcu_read_lock();
1288
		tsk = find_task_by_vpid(pid);
1289 1290 1291 1292 1293
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1294 1295 1296 1297 1298
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1299 1300
			return -EACCES;
		}
1301 1302
		get_task_struct(tsk);
		rcu_read_unlock();
1303 1304 1305 1306 1307
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1308
	ret = cgroup_attach_task(cgrp, tsk);
1309 1310 1311 1312
	put_task_struct(tsk);
	return ret;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1323 1324 1325 1326 1327
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1328 1329
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1330 1331
};

1332 1333 1334 1335
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1336 1337
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1338
 */
1339
bool cgroup_lock_live_group(struct cgroup *cgrp)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1356
	cgroup_unlock();
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1367
	cgroup_unlock();
1368 1369 1370
	return 0;
}

1371 1372 1373
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1374
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1375 1376 1377
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1378
{
1379
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1391
	strstrip(buffer);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1403 1404 1405 1406 1407
	if (!retval)
		retval = nbytes;
	return retval;
}

1408 1409 1410 1411 1412
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1413
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1428 1429 1430 1431
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1432 1433 1434 1435 1436 1437

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1438
out:
1439 1440 1441 1442 1443
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1444 1445 1446 1447
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1448
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1449

1450
	if (cgroup_is_removed(cgrp))
1451
		return -ENODEV;
1452
	if (cft->write)
1453
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1454 1455
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1456 1457
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1458 1459 1460 1461
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1462
	return -EINVAL;
1463 1464
}

1465 1466 1467 1468
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1469
{
1470
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1471
	u64 val = cft->read_u64(cgrp, cft);
1472 1473 1474 1475 1476
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1477 1478 1479 1480 1481
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1482
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1483 1484 1485 1486 1487 1488
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1489 1490 1491 1492
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1493
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1494

1495
	if (cgroup_is_removed(cgrp))
1496 1497 1498
		return -ENODEV;

	if (cft->read)
1499
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1500 1501
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1502 1503
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1504 1505 1506
	return -EINVAL;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1527 1528 1529 1530 1531 1532 1533 1534
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1535 1536
}

1537
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1538 1539 1540 1541 1542 1543 1544 1545
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1546
	.write = cgroup_file_write,
1547 1548 1549 1550
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1551 1552 1553 1554 1555 1556 1557 1558 1559
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1560

1561
	if (cft->read_map || cft->read_seq_string) {
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1645
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1657 1658 1659 1660 1661
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1662
 */
1663
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1664 1665 1666 1667 1668
				int mode)
{
	struct dentry *parent;
	int error = 0;

1669 1670
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1671
	if (!error) {
1672
		dentry->d_fsdata = cgrp;
1673
		inc_nlink(parent->d_inode);
1674
		cgrp->dentry = dentry;
1675 1676 1677 1678 1679 1680 1681
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1682
int cgroup_add_file(struct cgroup *cgrp,
1683 1684 1685
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1686
	struct dentry *dir = cgrp->dentry;
1687 1688 1689 1690
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1691
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1692 1693 1694 1695 1696 1697 1698 1699
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1700
						cgrp->root->sb);
1701 1702 1703 1704 1705 1706 1707 1708
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1709
int cgroup_add_files(struct cgroup *cgrp,
1710 1711 1712 1713 1714 1715
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1716
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1717 1718 1719 1720 1721 1722
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1723 1724 1725 1726 1727 1728
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1729
int cgroup_task_count(const struct cgroup *cgrp)
1730 1731
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1732
	struct cg_cgroup_link *link;
1733 1734

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1735
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1736
		count += atomic_read(&link->cg->refcount);
1737 1738
	}
	read_unlock(&css_set_lock);
1739 1740 1741
	return count;
}

1742 1743 1744 1745
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1746
static void cgroup_advance_iter(struct cgroup *cgrp,
1747 1748 1749 1750 1751 1752 1753 1754 1755
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1756
		if (l == &cgrp->css_sets) {
1757 1758 1759
			it->cg_link = NULL;
			return;
		}
1760
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1761 1762 1763 1764 1765 1766
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1776
static void cgroup_enable_task_cg_lists(void)
1777 1778 1779 1780 1781 1782
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1783 1784 1785 1786 1787 1788
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1789 1790 1791 1792 1793 1794
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1795
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1796 1797 1798 1799 1800 1801
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1802 1803 1804
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1805
	read_lock(&css_set_lock);
1806 1807
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1808 1809
}

1810
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1811 1812 1813 1814
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1815
	struct cg_cgroup_link *link;
1816 1817 1818 1819 1820 1821 1822

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1823 1824
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1825 1826
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1827
		cgroup_advance_iter(cgrp, it);
1828 1829 1830 1831 1832 1833
	} else {
		it->task = l;
	}
	return res;
}

1834
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1835 1836 1837 1838
{
	read_unlock(&css_set_lock);
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1976
			struct task_struct *q = heap->ptrs[i];
1977
			if (i == 0) {
1978 1979
				latest_time = q->start_time;
				latest_task = q;
1980 1981
			}
			/* Process the task per the caller's callback */
1982 1983
			scan->process_task(q, scan);
			put_task_struct(q);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2011
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2012 2013 2014 2015
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2016
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2017 2018
{
	int n = 0;
2019 2020
	struct cgroup_iter it;
	struct task_struct *tsk;
2021 2022
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2023 2024
		if (unlikely(n == npids))
			break;
2025
		pidarray[n++] = task_pid_vnr(tsk);
2026
	}
2027
	cgroup_iter_end(cgrp, &it);
2028 2029 2030
	return n;
}

B
Balbir Singh 已提交
2031
/**
L
Li Zefan 已提交
2032
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2033 2034 2035
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2036 2037 2038
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2039 2040 2041 2042
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2043
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2044 2045
	struct cgroup_iter it;
	struct task_struct *tsk;
2046

B
Balbir Singh 已提交
2047
	/*
2048 2049
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2050
	 */
2051 2052
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2053 2054 2055
		 goto err;

	ret = 0;
2056
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2057

2058 2059
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2079
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2080 2081 2082 2083 2084

err:
	return ret;
}

2085 2086 2087 2088 2089
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2090

2091
/*
2092 2093 2094
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2095
 */
2096 2097

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2098
{
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2200
/*
2201
 * Handle an open on 'tasks' file.  Prepare an array containing the
2202 2203
 * process id's of tasks currently attached to the cgroup being opened.
 */
2204

2205 2206
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2207
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2208 2209
	pid_t *pidarray;
	int npids;
2210
	int retval;
2211

2212
	/* Nothing to do for write-only files */
2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2222
	npids = cgroup_task_count(cgrp);
2223 2224 2225 2226 2227
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2246
	}
2247
	((struct seq_file *)file->private_data)->private = cgrp;
2248 2249 2250
	return 0;
}

2251
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2252 2253
					    struct cftype *cft)
{
2254
	return notify_on_release(cgrp);
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2269 2270 2271
/*
 * for the common functions, 'private' gives the type of file
 */
2272 2273 2274 2275
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2276
		.write_u64 = cgroup_tasks_write,
2277 2278 2279 2280 2281 2282
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2283
		.read_u64 = cgroup_read_notify_on_release,
2284
		.write_u64 = cgroup_write_notify_on_release,
2285 2286 2287 2288 2289 2290
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2291 2292 2293
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2294
	.private = FILE_RELEASE_AGENT,
2295 2296
};

2297
static int cgroup_populate_dir(struct cgroup *cgrp)
2298 2299 2300 2301 2302
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2303
	cgroup_clear_directory(cgrp->dentry);
2304

2305
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2306 2307 2308
	if (err < 0)
		return err;

2309 2310
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2311 2312 2313
			return err;
	}

2314 2315
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2316 2317 2318 2319 2320 2321 2322 2323
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2324
			       struct cgroup *cgrp)
2325
{
2326
	css->cgroup = cgrp;
2327 2328
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2329
	if (cgrp == dummytop)
2330
		set_bit(CSS_ROOT, &css->flags);
2331 2332
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2333 2334 2335
}

/*
L
Li Zefan 已提交
2336 2337 2338 2339
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2340
 *
L
Li Zefan 已提交
2341
 * Must be called with the mutex on the parent inode held
2342 2343 2344 2345
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2346
	struct cgroup *cgrp;
2347 2348 2349 2350 2351
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2352 2353
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2365
	init_cgroup_housekeeping(cgrp);
2366

2367 2368 2369
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2370

2371 2372 2373
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2374
	for_each_subsys(root, ss) {
2375
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2376 2377 2378 2379
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2380
		init_cgroup_css(css, ss, cgrp);
2381 2382
	}

2383
	list_add(&cgrp->sibling, &cgrp->parent->children);
2384 2385
	root->number_of_cgroups++;

2386
	err = cgroup_create_dir(cgrp, dentry, mode);
2387 2388 2389 2390
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2391
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2392

2393
	err = cgroup_populate_dir(cgrp);
2394 2395 2396
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2397
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2398 2399 2400 2401 2402

	return 0;

 err_remove:

2403
	list_del(&cgrp->sibling);
2404 2405 2406 2407 2408
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2409 2410
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2411 2412 2413 2414 2415 2416 2417
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2418
	kfree(cgrp);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2430
static int cgroup_has_css_refs(struct cgroup *cgrp)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2446
		if (ss->root != cgrp->root)
2447
			continue;
2448
		css = cgrp->subsys[ss->subsys_id];
2449 2450 2451 2452 2453 2454
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2455
		if (css && atomic_read(&css->refcnt))
2456 2457 2458 2459 2460
			return 1;
	}
	return 0;
}

2461 2462
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2463
	struct cgroup *cgrp = dentry->d_fsdata;
2464 2465 2466 2467 2468 2469
	struct dentry *d;
	struct cgroup *parent;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2470
	if (atomic_read(&cgrp->count) != 0) {
2471 2472 2473
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2474
	if (!list_empty(&cgrp->children)) {
2475 2476 2477
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2478
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2479

2480
	/*
L
Li Zefan 已提交
2481 2482
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2483 2484
	 */
	cgroup_call_pre_destroy(cgrp);
2485

2486 2487 2488 2489 2490 2491
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;

	if (atomic_read(&cgrp->count)
	    || !list_empty(&cgrp->children)
	    || cgroup_has_css_refs(cgrp)) {
2492 2493 2494 2495
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2496
	spin_lock(&release_list_lock);
2497 2498 2499
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2500
	spin_unlock(&release_list_lock);
2501
	/* delete my sibling from parent->children */
2502 2503 2504
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2505 2506 2507 2508 2509
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2510
	set_bit(CGRP_RELEASABLE, &parent->flags);
2511 2512
	check_for_release(parent);

2513 2514 2515 2516
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2517
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2518 2519
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2520 2521

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2522 2523 2524 2525 2526 2527 2528 2529

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2530
	/* Update the init_css_set to contain a subsys
2531
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2532 2533 2534
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2535 2536 2537

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2538 2539 2540 2541 2542
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2543 2544 2545 2546
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2547 2548 2549 2550
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2551 2552 2553 2554
 */
int __init cgroup_init_early(void)
{
	int i;
2555
	atomic_set(&init_css_set.refcount, 1);
2556 2557
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2558
	INIT_HLIST_NODE(&init_css_set.hlist);
2559
	css_set_count = 1;
2560
	init_cgroup_root(&rootnode);
2561 2562 2563 2564
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2565
	list_add(&init_css_set_link.cgrp_link_list,
2566 2567 2568
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2569

2570 2571 2572
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2573 2574 2575 2576 2577 2578 2579 2580
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2581
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2593 2594 2595 2596
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2597 2598 2599 2600 2601
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2602
	struct hlist_head *hhead;
2603 2604 2605 2606

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2607 2608 2609 2610 2611 2612 2613

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2614 2615 2616 2617
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2618 2619 2620 2621
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2622
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2623

2624
out:
2625 2626 2627
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2628 2629
	return err;
}
2630

2631 2632 2633 2634 2635 2636
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2637
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2667
	for_each_active_root(root) {
2668
		struct cgroup_subsys *ss;
2669
		struct cgroup *cgrp;
2670 2671 2672
		int subsys_id;
		int count = 0;

2673
		seq_printf(m, "%lu:", root->subsys_bits);
2674 2675 2676 2677
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2678 2679
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2713
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2714 2715 2716
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2717
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2718
			   ss->name, ss->root->subsys_bits,
2719
			   ss->root->number_of_cgroups, !ss->disabled);
2720 2721 2722 2723 2724 2725 2726
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2727
	return single_open(file, proc_cgroupstats_show, NULL);
2728 2729 2730 2731 2732 2733 2734 2735 2736
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2737 2738
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2739
 * @child: pointer to task_struct of forking parent process.
2740 2741 2742 2743 2744 2745
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2746
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2747 2748
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2749 2750 2751 2752 2753 2754
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2755 2756 2757 2758 2759
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2760 2761 2762
}

/**
L
Li Zefan 已提交
2763 2764 2765 2766 2767 2768
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2782
/**
L
Li Zefan 已提交
2783 2784 2785 2786 2787 2788 2789 2790
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2791 2792 2793 2794
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
2795
		task_lock(child);
2796 2797
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
2798
		task_unlock(child);
2799 2800 2801
		write_unlock(&css_set_lock);
	}
}
2802 2803 2804
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2805
 * @run_callback: run exit callbacks?
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2834 2835
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2836 2837 2838 2839
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2840
	struct css_set *cg;
2841 2842 2843 2844 2845 2846 2847 2848

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2862 2863
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2864 2865
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2866
	task_unlock(tsk);
2867
	if (cg)
2868
		put_css_set_taskexit(cg);
2869
}
2870 2871

/**
L
Li Zefan 已提交
2872 2873 2874
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2875
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2876 2877 2878 2879
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2880
 */
2881 2882
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2904
	task_lock(tsk);
2905
	cg = tsk->cgroups;
2906 2907 2908
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
2909 2910 2911 2912 2913
	if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2914

2915 2916
	/* Keep the cgroup alive */
	get_css_set(cg);
2917
	task_unlock(tsk);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2929
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2930 2931 2932 2933 2934 2935
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
2936
	ret = vfs_mkdir(inode, dentry, 0755);
2937
	child = __d_cgrp(dentry);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2954
		put_css_set(cg);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2973
	ret = cgroup_attach_task(child, tsk);
2974 2975 2976 2977
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2978 2979

	mutex_lock(&cgroup_mutex);
2980
	put_css_set(cg);
2981
	mutex_unlock(&cgroup_mutex);
2982 2983 2984 2985
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
2986 2987 2988 2989 2990 2991
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
2992 2993 2994 2995 2996 2997
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2998
int cgroup_is_descendant(const struct cgroup *cgrp)
2999 3000 3001 3002 3003
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3004
	if (cgrp == dummytop)
3005 3006
		return 1;

3007
	get_first_subsys(cgrp, NULL, &subsys_id);
3008
	target = task_cgroup(current, subsys_id);
3009 3010 3011
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3012 3013
	return ret;
}
3014

3015
static void check_for_release(struct cgroup *cgrp)
3016 3017 3018
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3019 3020
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3021 3022 3023 3024 3025
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3026 3027 3028
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3039
	struct cgroup *cgrp = css->cgroup;
3040
	rcu_read_lock();
3041 3042 3043
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3079
		char *pathbuf = NULL, *agentbuf = NULL;
3080
		struct cgroup *cgrp = list_entry(release_list.next,
3081 3082
						    struct cgroup,
						    release_list);
3083
		list_del_init(&cgrp->release_list);
3084 3085
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3086 3087 3088 3089 3090 3091 3092
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3093 3094

		i = 0;
3095 3096
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3111 3112 3113
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3114 3115 3116 3117 3118
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);